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ABSTRACT : We analyze a mathematical model of HIV (human immunodeficiency virus) in macrophages and 

T cells for stability. We report that there are two critical points: the disease-free equilibrium and endemic 

equilibrium. The method of analysis is based on Rene Descartes’ theory of positive solutions. The results 

showed that the disease-free equilibrium (DFE) is asymptotically stable if the basic reproduction number Ro<1 

and the endemic equilibrium is unstable if Ro>1. New theorems were formulated using the basic reproduction 

number Ro. 
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I. INTRODUCTION 
 Undoubtedly, HIV/AIDS pandemic is the greatest public disaster of modern times [21]. Since early 

1980’s when this pandemic became visible, it has continued to ravage the world population and the vast number 

of HIV infected individuals are in sub-Saharan Africa and are mainly due to heterosexual transmission [12]. 

More than 40 million people worldwide are infected with the HIV virus; women account for 50% of those 

infected [24]. During the past two decades, researchers have made significant progress in understanding the 

epidemiology of HIV/AIDS worldwide. Presently, these efforts have led to the reduction of the global spread of 

the disease. Mathematical models have been extensively used to study the transmission dynamics of HIV. (see 

[2, 5, 6, 12, 13, 14, 16, 20, 22, 24, 26] and the references therein).  During the course of the disease, HIV may 

infect a variety of cell types. The dynamics of infection by HIV on macrophages and T cells has been studied by 

a number of authors (see [7,9,10,11,17,18,19,21,23] and the references therein). Since macrophages T cells are 

immune system of the body, HIV destroys these cells on invasion.   In this paper, we consider the model which 

is proposed by Nowak et al [17], make a couple of changes of variable and then study the transformed equations 

for stability. We determine the dynamics of the extended model by a threshold quantity called the basic 

reproduction number (denoted by Ro), which measures the number of new cell infections that an infected cell 

can generate in a completely susceptible population. In particular, it is shown that the disease-free equilibrium is 

asymptotically stable if Ro<1 and the endemic equilibrium is unstable if Ro > 1. 

 

II. MATHEMATICAL FORMULATION 
 We shall consider the differential system that describes the model of macrophages and T cell infection 

by HIV  proposed by Nowak et al. [17] 
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where 1x  = uninfected macrophages 

 1y   = infected macrophages  

 2x  = uninfected T cells  

 2y  = infected activated T cells  

   = resting T helpher cells  

   = production rate of resting T helpher cells  

 r  = activation rate of resting T helpher cells 

 f  = death rate of resting T helpher cells  

   = production rate of uninfected macrophages  

 1d  = death rate of uninfected macrophages  

 2d  = death rate of uninfected T cells  

 1   = transmission rate of HIV in infected macrophages  

 2   = transmission rate of HIV in infected T cells  

  1a   = death rate of infected macrophages  

 2a   = death rate of infected T cells  

 Let 
E

fxd 



  1,1 11

. Substituting into equation (1), we obtain 
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Lemma 1: The basic reproduction number of the model (2) for macrophages cell is  

   Ro 
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Lemma 2: The basic reproduction number of the model (2) for T cell is  
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III. STABILITY RESULT 
3.1 The Critical Points 

 The critical points of equation (2) are  

   Ao = (0,0,0,0,0) and  
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Where Ao is the disease – free equilibrium and A
*
 is the endemic equilibrium. 
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We shall need the following theorems in the analysis of the nature of the critical points.  

 

Theorem 3. 1 [9]. 
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, where P(x,y) and Q(x,y) have continuous first partial derivatives in a neighbourhood 

of X1 

(a) If the eigenvalues of A = )( 1

1 Xg  have  negative real part then X1 is an asymptotically stable 

critical point  

(b)  If A = )( 1

1 Xg  has an eigenvalue with positive real part, then X1 is an unstable critical point. 

 

Theorem 3.2 (DESCARTES’ RULE OF SIGNS) [2] 

The number of positive zeros (negative zeros) of polynomials with real coefficient is either equal to the number 

of change in sign of the polynomial or less than this by an even number (by counting down by two’s) 

 

3.2  Stability of the Disease-free equilibrium  

Theorem 3.3 

The critical point of the DFE is asymptotically stable if a1 > 0, a2 >0, d1 >0,  

d2 > 0, r >0, E > 0, f > 0, and Ro < 1. 

 

Proof 

 The Jacobian matrix of disease – free equilibrium at Ao is  
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The eigenvalues are given  by  
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Hence, 1  = - d1, 2  = 1a , 3  = 
E

f
 , 4  = - d2, 5  = 2a . 

 Expanding equation (5), we have  
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By Rene Descartes’s rule of signs if a1 > 0, a2 >0, d1 >0,d2 > 0, r >0, E > 0, f > 0 in equation (5), then it follows 

that there are no change in signs which implies that there no positive solutions of equation (5).  

Hence, all the  eigenvalues 54321 ,,,,   are negative. Thus, we conclude that the  critical point  Ao  is 

asymptotically stable.  

 

Using model parameter values in [17]:  =1, 2 = 0.5, d1 = 0.6, a1 = 2, then we calculate Ro = 0.417. This 

shows that Ro is less than unity. Hence, the DFE is asymptotically stable.  

 
 

3.2 Stability of the Endemic Equilibrium 

Theorem 3.4  

The critical point A
*
 of the endemic equilibrium is unstable if r > 0, E > 0,  >0,  >0, a1>0, d2>0 , f>0 and Ro 

> 1. 

Proof 

The Jacobian matrix of equation (2) at A
*
 is  
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It is sufficient to show that at least one eigenvalues of the endemic equilibrium is positive. By solving  

0 IA         (7) 

We claim that if E > 0, f > 0, r > 0,  a1 > 0, a2 > 0 ,  d1>0, d2>0  1>0,  2>0 and Ro > 1, then by Rene 

Descartes’ rule of sign, equation (7) has 2 negative roots and 3 positive roots given by  
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Hence, the critical point A
*
 of the endemic equilibrium (2) is unstable.This completes the proof.     

 

 

 Using parameter values taken from [18]:  2 = 2, E = 1,  =1, d2 = 0.6, r =2, 

f =0.01, a2 = 0.5, Ro =6.536. It shows that Ro > 1 and hence the critical point A* is unstable.  

 

IV. DISCUSSION AND CONCLUSION 
 The mathematical analysis of our dynamical system revealed that the stability of the two critical points 

depends on the basic reproduction number Ro. Our results show that the DFE is asymptotically stable if Ro<1 

while the endemic equilibrium is unstable when Ro>1. If Ro<1, an average infectious macrophages and T cell is 

unable to replace itself and the infection is temporal and dies out in time. If Ro>1, the infection persists and an 

epidemic results. This could lead to a wiping out of the macrophage and T cell populations and drive disease 

progression to AIDS. Consequently, the instability of the endemic equilibrium is of great concern to scientists 

and other stakeholders in the spread and control of HIV disease. Hence, the study of endemic instability is 

essential in predicting the future course so that prevention and intervention strategies can be effectively 

designed. Since macrophages and T cells are human system against attack by foreign particles, HIV prevention 

and therapeutic strategies should be vigorously pursued to combat the spread of the virus. Media alert of the 

disease, condom use, HIV vaccines and anti-retroviral drugs could lead to a reduction in the transmission of 

HIV if effectively utilized. 
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