Integral Solutions of Non-Homogeneous Biquadratic Diophantine Equation $x^{4}-y^{4}=34(z+w) p^{2}$ With Five Unknowns

R.Anbuselvi ${ }^{1}$, * S.Jamuna Rani ${ }^{2}$
${ }^{1}$ Associate Professor , Department Of Mathematics, ADM College For Women, Nagapattinam, Tamilnadu ,India
${ }^{2}$ Asst Professor, Department Of Computer Applications, Bharathiyar College Of Engineering And Technology, Karaikal, Puducherry, India
Corresponding Author: R.Anbuselvi

Abstract

The non-homogeneous biquadratic Diophantine equation given by $x^{4}-y^{4}=34(z+$ $w p 2$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Keywords: Non-homogeneous Equation, Integral Solutions, Polygonal Numbers, Pyramidal Numbers and Special Numbers

Date of Submission: 11-09-2017
Date of acceptance: 25-09-2017

I. Introduction

Biquadratic Diophantine equations homogenous and non-homogenous are rich in variety [1-3]. For an extensive review of sizable literature and various problems, one may refer [4-18]. In this communication, we consider yet another interesting biquadratic equation $x^{4}-y^{4}=34(z+w) p^{2}$ and obtain infinitely many nontrivial integral solutions. A few interesting relations between the solutions and special polygonal numbers are presented.

Notations Used

- $\mathrm{t}_{\mathrm{m}, \mathrm{n}}$ - Polygonal number of rank ' n ' with size ' m '
- $\quad \mathrm{CP}_{\mathrm{n}}^{6}$ - Centered hexagonal Pyramidal number of rank n
- $\mathrm{Gno}_{\mathrm{n}}$ - Gnomic number of rank ' n '
- $\mathrm{FN}_{\mathrm{A}}^{4}-$ Figurative number of rank ' n ' with size ' m '
- $\operatorname{Pr}_{\mathrm{n}}$ - Pronic number of rank ' n '
- $\quad P_{n}^{m}$ - Pyramidal number of rank ' n ' with size ' m '
- $\operatorname{carl}_{n}-$ Carol number
- ky_{n} - Keynea number
- $\mathrm{Tha}_{\mathrm{n}}$ - Thabit number
- $S_{n}-$ Star number of rank n
- SO_{n} - Stella octagonal number of rank n

II. Method of Analysis

The Diophantine equation representing the biquadratic equation with five unknowns to be solved for its non zero distinct integral solutions is
$x^{4}-4=34(z+w) p^{2}$
Consider the transformation

$$
\left.\begin{array}{c}
x=u+v \tag{1}\\
y=u-v \\
z=2 u v+1 \\
p=2 u v-1
\end{array}\right\}
$$

On substituting (2) in (1), we get
$u^{2}+v^{2}=17 p^{2}$
Now,We illustrate methods of obtaining non Zero distinct integer solutions to (1)

Pattern I

Assume

$$
\begin{equation*}
p=A^{2}+B^{2}=(A+i B)(A-i B) \tag{4}
\end{equation*}
$$

Let $\quad u^{2}+v^{2}=16 p^{2}+p^{2}$

$$
\frac{u+p}{4 p+v}=\frac{4 p-v}{u-p}
$$

Employing the method of factorization, we get the system of equations

$$
\begin{gather*}
u(A, B)=A^{2}-B^{2}+8 A B \\
v(A, B)=-4 A^{2}+4 B^{2}+2 A B \\
p(A, B)=A^{2}+B^{2}
\end{gather*}
$$

Substituting the values of u, v and p in (2),the nonzero distinct integral values of x, y, z, w and p are given by

$$
\left.\begin{array}{c}
x=x(A, B)=-3 A^{2}+3 B^{2}+10 A B \\
y=y(A, B)=5 A^{2}-5 B^{2}+6 A B \\
z=z(A, B)=-8 A^{4}-8 B^{4}+48 A^{2} B^{2}-60 A^{3} B+60 A B^{3}+1 \\
w=w(A, B)=-8 A^{4}-8 B^{4}+48 A^{2} B^{2}-60 A^{3} B+60 A B^{3}-1 \\
p=p(A, B)=A^{2}+B^{2}
\end{array}\right\}
$$

Properties

1. $\mathrm{y}(\mathrm{A}, \mathrm{A})+\mathrm{x}(\mathrm{A}, \mathrm{A})-2 \mathrm{p}(\mathrm{A}, \mathrm{A})-16 \mathrm{t}_{4, \mathrm{~b}} \equiv 0$
2. $y(1,1)+x(1,1)-2 p(1,1)$ is a perfect square
3. $5 x(A, 1)+3 y(A, 1) \equiv 0(\bmod 68)$
4. $z(A, B)-w(A, B)$ is a Thabit number
5. $z(1,1)+w(1,1)$ is a cubic integer
6. $-6[z(1,0)+w(1,0)]$ is a nasty number
7. $31[y(1,1)+p(1,1)]$ is a perfect number
8. $\mathrm{z}(\mathrm{A}, 1)+\mathrm{w}(\mathrm{A}, 1)+192 \mathrm{Fn}_{\mathrm{A}}^{4}-80 \mathrm{Pr}_{\mathrm{A}}+120 \mathrm{CP}_{\mathrm{A}}^{6}-16 \mathrm{Gno}_{\mathrm{A}} \equiv 0(\bmod 8)$

Pattern II

Equation (3) as

$$
\begin{equation*}
u^{2}+v^{2}=17 p^{2} \tag{5}
\end{equation*}
$$

Where $17=(4+i)(4-i)$
Using (4)and (5) in (3) and writing (3) in factorization form as

$$
(u+i v)(u-i v)=(4+i)(4-i)[(A+i B)(A-i B)]^{2}
$$

which is equivalent to the system of equation
$u+i v=\left(4 A^{2}-4 B^{2}-2 A B\right)+i\left(A^{2}-B^{2}+8 A B\right)$
Equating real and imaginary parts, we get
$\mathrm{u}=4 \mathrm{~A}^{2}-4 \mathrm{~B}^{2}-2 \mathrm{AB}$
$v=A^{2}-B^{2}+8 A B$
On substituting the values of u and v in (2) the nonzero distinct integral values of x, y, z, w and p satisfying (1) are given by

$$
\begin{gathered}
x=x(A, B)=5 A^{2}-5 B^{2}+6 A B \\
y=y(A, B)=3 A^{2}-3 B^{3}-10 A B \\
z=z(A, B)=8 A^{4}+8 B^{4}-48 A^{2} B^{2}+60 A^{3} B-60 A B^{3}+1 \\
w=w(A, B)=8 A^{4}+8 B^{4}-48 A^{2} B^{2}+60 A^{3} B-60 A B^{3}-1 \\
p(A, B)=A^{2}+B^{2}
\end{gathered}
$$

Properties

1. $x(A, A)+y(A, A)+8 p(A, A)-16 \operatorname{Pr}_{A} \equiv 0(\bmod 20)$
2. $x(1, B)+y(1, B)+8 p(1, B) \equiv 16(\bmod 4)$
3. $\mathrm{z}(\mathrm{A}, 1)+\mathrm{w}(\mathrm{A}, 1)-192 \mathrm{FN}_{\mathrm{A}}^{4}-60 \mathrm{So}_{\mathrm{A}}+60 \mathrm{Pr}_{\mathrm{A}}+20 \mathrm{t}_{4, \mathrm{~A}}-16 \equiv 0$
4. $\mathrm{z}(1, \mathrm{~B})+\mathrm{w}(1, \mathrm{~B})-16 \mathrm{Bi}_{\mathrm{B}}-16 \mathrm{So}_{\mathrm{B}}+16 \mathrm{~S}_{\mathrm{B}}+18 \mathrm{Gno}_{\mathrm{A}}-14 \equiv 0$
5. $z(1,1)+w(1,1)$ is a cubic integer
6. $\mathrm{z}(1,0)+\mathrm{w}(1,0)$ is a perfect number

Pattern III

Equation (3) as

$$
\begin{equation*}
u^{2}+v^{2}=17 p^{2} \tag{6}
\end{equation*}
$$

Where $17=(1+4 \mathrm{i})(1-4 \mathrm{i})$
Using (4)and (6) in (3) and writing (3) in factorization form as

$$
(u+i v)(u-i v)=(1+4 i)(1-4 i)[(A+i B)(A-i B)]^{2}
$$

which is equivalent to the system of equation
$u+i v=\left(A^{2}-B^{2}-8 A B\right)+i\left(4 A^{2}-4 B^{2}+2 A B\right)$
Equating real and imaginary parts, we get
$u=A^{2}-B^{2}-8 A B$
$v=4 A^{2}-4 B^{2}+8 A B$
On substituting the values of u and v in (2)the nonzero distinct integral values of x, y, z, w and p satisfying
(1) are given by

$$
\begin{gathered}
x=x(A, B)=5 A^{2}-5 B^{2}-6 A B \\
y=y(A, B)=-3 A^{2}-3 B^{3}-10 A B \\
z=z(A, B)=8 A^{4}+8 B^{4}-48 A^{2} B^{2}-60 A^{3} B+60 A B^{3}+1 \\
w=w(A, B)=8 A^{4}+8 B^{4}-48 A^{2} B^{2}-60 A^{3} B+60 A B^{3}-1 \\
p=p(A, B)=A^{2}+B^{2}
\end{gathered}
$$

Properties

1. $x(3,2)+y(3,2)+2 p(3,2)$ is a nasty number
2. $\mathrm{z}(\mathrm{A}, 1)+\mathrm{w}(\mathrm{A}, 1)-192 \mathrm{FN}_{\mathrm{A}}^{4}+120 \mathrm{CP}_{\mathrm{A}}^{6}+300 \mathrm{ct}_{\mathrm{A}}-30 \mathrm{Gno}_{\mathrm{A}}-46 \equiv 0$
3. $y(1,-1)+3 p(1,-1)$ is a perfect square
4. $3 \mathrm{x}(\mathrm{A}, 1)+5 \mathrm{y}(\mathrm{A}, 1)+68 \mathrm{~A} \equiv 0$
5. $x(B, B)+p(B, B)+2 t_{4, \beta} \equiv 0$

Pattern IV

Equation (3) as

$$
\begin{equation*}
u^{2}+v^{2}=17 p^{2} * 1 \tag{7}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{\left(\mathrm{A}^{2}-\mathrm{B}^{2}+2 \mathrm{iAB}\right)\left(\mathrm{A}^{2}-\mathrm{B}^{2}-2 \mathrm{iAB}\right)}{\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)^{2}} \tag{8}
\end{equation*}
$$

Using (4)and (8) in (3) and writing (3) in factorization form as

$$
(u+i v)(u-i v)=(1+4 i)(1-4 i)[(A+i B)(A-i B)]^{2} \frac{\left(A^{2}-B^{2}+2 i A B\right)\left(A^{2}-B^{2}-2 i A B\right)}{\left(A^{2}+B^{2}\right)^{2}}
$$

which is equivalent to the system of equation
$u+i v=(1+4 i)(A+i B)^{2} \frac{\left(A^{2}-B^{2}-2 i A B\right)}{\left(A^{2}+B^{2}\right)}$
Equating real and imaginary parts, we get
$u=\frac{1}{\left(A^{2}+B^{2}\right)}\left(A^{4}+B^{4}-6 A^{2} B^{2}-16 A^{3} B+16 A B^{3}\right)$
$v=\frac{1}{\left(A^{2}+B^{2}\right)}\left(A^{4}+4 B^{4}-24 A^{2} B^{2}+4 A^{3} B-4 A B^{3}\right)$
On substituting the values of u and v in (2)the nonzero distinct integral values of x, y, z, w and p satisfying (1) are given by

$$
\left.\begin{array}{c}
x=x(A, B)=\frac{1}{A^{2}+B^{2}}\left(5 A^{4}+5 B^{4}-30 A^{2} B^{2}-12 A^{3} B+12 A B^{3}\right) \\
y=y(A, B)=\frac{1}{A^{2}+B^{2}}\left(-3 A^{4}-3 B^{4}+18 A^{2} B^{2}-20 A^{3} B+20 A B^{3}\right) \\
z=z(A, B)=\frac{2}{\left(A^{2}+B^{2}\right)^{2}}\left(4 A^{8}+4 B^{8}-60 A^{7} B-112 A^{6} B^{2}+420 A^{5} B^{3}+280 A^{4} B^{4}-420 A^{3} B^{5}-112 A^{2} B^{6}+60 A B^{7}\right)+1 \\
w=w(A, B)=\frac{2}{\left(A^{2}+B^{2}\right)^{2}}\left(4 A^{8}+4 B^{8}-60 A^{7} B-112 A^{6} B^{2}+420 A^{5} B^{3}+280 A^{4} B^{4}-420 A^{3} B^{5}-112 A^{2} B^{6}+60 A B^{7}\right)-1 \\
p=p(A, B)=A^{2}+B^{2}
\end{array}\right)
$$

Properties

1. $\mathrm{x}(\mathrm{A}, 0)-5 \mathrm{t}_{4, \mathrm{~A}} \equiv 0$
2. $z(1,1)+w(1,1)+x(1,1)$ is a nasty number
3. $\mathrm{z}(0, \mathrm{~B})-8 \mathrm{Bi}_{\mathrm{A}}-1 \equiv 0$
4. $y(1,-1)+3 p(1,-1)$ is a perfect square
5. $p\left(2^{n}, 2^{n}\right)=\operatorname{Carl}_{n}+K y_{n}+2$
6. $2 p(A, A)$ is a nasty number

III. Conclusion

In this paper, we have presented four different patterns of non- zero distinct integer solutions of biquadratic Diophantine equation $x^{4}-y^{4}=34(z+w) p^{2}$ and relations between solutions and special numbers are also obtained. To conclude, one may search for other patterns of solutions and their corresponding properties.

References

Journal Articles

[1]. GopalanMA, Sangeethe G. On the Ternary Cubic Diophantine Equation $y^{2}=D x^{2}+z^{3}$ Archimedes J.Math, 2011,1(1):7-14.
[2]. GopalanMA,VijayashankarA,VidhyalakshmiS.Integral solutions of Ternary cubic Equation, $x^{2}+y^{2}-x y+2(x+y+2)=\left(k^{2}+3\right) z^{2}$, Archimedes J.Math,2011;1(1):59-65.
[3]. GopalanM.A,GeethaD,Lattice points on the Hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+5=z^{2}+4$ Impact J.Sci.Tech,2010,4,23-32.
[4]. GopalanM.A,VidhyalakshmiS,KavithaA,Integral points on the Homogenous Cone $z^{2}=2 x^{2}-7 y^{2}$, The Diophantus J.Math,2012,1(2) 127-136.
[5]. GopalanM.A,VidhyalakshmiS,SumathiG,Lattice points on the Hyperboloid of one sheet $4 z^{2}=2 x^{2}+3 y^{2}-4$, The Diophantus J.Math, 2012, 1(2),109-115.
[6]. GopalanM.A, VidhyalakshmiS, LakshmiK, Integral points on the Hyperboloid of two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.Math,2012,1(2),99-107.
[7]. GopalanM.A,VidhyalakshmiS,MallikaS,Observation on Hyperboloid of one sheet $x^{2}+2 y^{2}-z^{2}=2$ Bessel J.Math,2012,2(3),221-226.
[8]. GopalanM.A,VidhyalakshmiS,Usha Rani T.R,MallikaS,Integral points on the Homogenous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$ Impact J.Sci.Tech,2012,6(1),7-13.
[9]. GopalanM.A,VidhyalakshmiS,LakshmiK,Lattice points on the Elliptic Paraboloid, $16 y^{2}+9 z^{2}=4 x^{2} \quad$ Bessel J.Math,2013,3(2),137-145.
[10]. GopalanM.A,VidhyalakshmiS,KavithaA,Observation on the Ternary Cubic Equation $x^{2}+y^{2}+x y=12 z^{3}$ Antarctica J.Math,2013;10(5):453-460.
[11]. GopalanM.A,VidhyalakshmiS,Um
[12]. araniJ,Integral points on the Homogenous Cone $x^{2}+4 y^{2}=37 z^{2}$,Cayley J.Math,2013,2(2), 101-107.
[13]. MeenaK,VidhyalakshmiS,GopalanM.A,PriyaK,Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2}$, Bulletin of Mathematics and Statistics and Research,2014,2(1),65-70.
[14]. GopalanM.A,VidhyalakshmiS,NivethaS,on Ternary Quadratic Equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2}$ Diophantus J.Math,2014,3(1),1-7.
[15]. GopalanM.A,VidhyalakshmiS,ShanthiJ,Lattice points on the Homogenous Cone $8\left(x^{2}+y^{2}\right)-15 x y=56 z^{2}$ Sch Journal of Phy Math Stat,2014,1(1),29-32.
[16]. MeenaK,VidhyalakshmiS, GopalanM.A, Aarthy ThangamS, Integer solutions on the homogeneous cone $4 x^{2}+3 y^{2}=28 z^{2}$, Bulletin of Mathematics and Statistics and Research,2014,1(2),47-53.
[17]. MeenaK,GopalanM.A,VidhyalakshmiS,ManjulaS,Thiruniraiselvi,N, On the Ternary quadratic Diophantine Equation $8\left(x^{2}+y^{2}\right)+8(x+y)+4=25 z^{2}$,International Journal of Applied Research, 2015,1(3),11-14.
[18]. Anbuselvi R, Jamuna Rani S, Integral solutions of Ternary Quadratic Diophantine Equation $11 \mathrm{x}^{2}-3 y^{2}=8 \mathrm{z}^{2}$, International journal of Advanced Research in Education \& Technology,2016,1(3), 26-28.
[19]. Anbuselvi R, Jamuna Rani S, Integral solutions of Ternary Quadratic Diophantine Equation $x^{2}+x y+y^{2}=7 z^{2}$, Global Journal for Research Analysis ,March 2016,3(5), 316--319.

Reference Books

[20]. Dickson IE, Theory of Numbers, vol 2. Diophantine analysis, New York, Dover, 2005
[21]. Mordell J. Diophantine Equations Academic Press, NewYork, 1969
[22]. Carmichael RD, The Theory of numbers and Diophantine Analysis,
[23]. NewYork, Dover, 1959.
R.Anbuselvi. "Integral Solutions of Non-Homogeneous Biquadratic Diophantine Equation $x^{\wedge} 4-y^{\wedge} 4=34$ (z w) $\mathrm{p}^{\wedge} 2$ With Five Unknowns." International Journal of Engineering Science Invention(IJESI), vol. 6, no. 9, 2017, pp. 21-24.

