Factorization and Pivotal Transform of Q-EP

S. Sridevi⁽¹⁾, Dr.K.Gunasekaran⁽²⁾

PG and Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam - 612 002, Tamil nadu , India . Corresponding Author: S. Sridevi

Abstract: In this paper the Factorization and Pivotal transform of q-EP matrices are discussed. **Keywords:** q-EP matrix, Schur Complements in q-EP, Factorization of q-EP, Pivotal transform of q-EP. **AMS Classification** : 15A57, 15A15, 15A09

Date of Submission: 22-01-2018 Date of acceptance: 12-02-2018

I. Introduction

Throught we shall deal with $n \times n$ quaternion matrices: Let A^* denote the conjugate transpose of A. Any matrix $A \in H_{n \times n}$ is called q-EP. If $R(A) = R(A^*)$ and is called, q-EP_r if A is q-EP and rk(A) = r, where N(A), R(A) and rk(A) denote the null space, range space and rank of A respectively. It is well known that sum and product of q-EP, Generalized Inverse Group Inverse and Reverse order law for q-EP, Bicomplex representation methods and application of q-EP matrices and Schur Complements in q-EP matrices [3-8].

1. FACTORIZATION OF q-EP

Throught this section, M is a $2n \times 2n$ matrix of the form $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ ------ (I)

With $\rho(M) = \rho(A) = r$. where A is $n \times n$ and D is $n \times n$ if M is q-EP. By [8, Theorem 1],

 $N(A) \subseteq N(C), N(A^*) \subseteq N(B^*), D = CA^{\dagger}B$

Lemma 1.1

If M is q-EP_r of the form(I) then there exists a $(p \times 2n - p)$ matrix X such that

$$M = \begin{pmatrix} A & AX \\ X^*A & X^*AX \end{pmatrix} -\dots$$
(II)

and A is q-EP_r.

Proof

Since M is of the form (I) and $\rho(A) = \rho(M)$. Hence there is an $(p \times 2n - p)$ matrix X such that C = YAand B = AX By [11,p.21]. Since M is q-EP, a is q-EP and $CA^{\dagger} = (A^{\dagger}B)^{*}$

 \Rightarrow YA = X^{*}A

Also $D = CA^{\dagger}B = YAX = X^{*}AX$, therefore M is of the form(II)

Theorem 1.2

If M is q-EP, of the form(I) and A is q-EP, then M is a product of q-EP, matrices. $\ensuremath{\text{Proof}}$

If M is q-EP_r of the form(I) then it satisfies $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, $D = CA^{\dagger}B$ then there exists X and Y such that

$$C = YA, B = AX, D = CA^{\dagger}B = YAA^{\dagger}AX = YAX$$

consider the matrices $S = \begin{pmatrix} A^{\dagger}A & AA^{\dagger}Y^{*} \\ YAA^{\dagger} & YAA^{\dagger}Y^{*} \end{pmatrix}, L = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} A^{\dagger}A & AA^{\dagger}X \\ X^{*}A^{\dagger}A & X^{*}A^{\dagger}AX \end{pmatrix}$

By theorem [8, Theorem 1.8] S,L and T are q-EP_r $CA^{\dagger} = (A^{\dagger}B)^{*}$

Also
$$(S)(L)(T) = \begin{pmatrix} A & AX \\ YA & YAX \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = M$$

Thus, M is a product of S,L, and T are all q-EP_r matrices. Therefore M = SLT. Theorem 1.3

Let $L = \begin{pmatrix} E & F \\ G & F \end{pmatrix}$ be a $2n \times 2n$ matrix of rank r. if E is an $n \times n$ non-singular matrix then $L = S \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} T$, where S,T are q-EP_r matrices.

Proof

$$L = P \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} Q \text{, where P,Q are non-singular matrix. If we write}$$
$$P = \begin{pmatrix} A_1 & B_1\\ C_1 & D_1 \end{pmatrix}, \quad Q = \begin{pmatrix} \hat{A}_1 & \hat{B}_1\\ \hat{C}_1 & \hat{D}_1 \end{pmatrix}, \text{ then } L = \begin{pmatrix} (A_1)(\hat{A}_1) & (A_1)(\hat{B}_1)\\ (C_1)(\hat{A}_1) & (C_1)(\hat{B}_1) \end{pmatrix} \text{ and } (A_1)(\hat{A}_1) = E$$

is non-singular. Thus A, A are non-singular.

So,
$$\begin{pmatrix} A_1 \\ C_1 \end{pmatrix}$$
 and $\begin{pmatrix} \hat{A}_1 & \hat{B}_1 \\ \hat{A}_1 & \hat{B}_1 \end{pmatrix}$ have rank r.

Thus there is an $2n - r \times r$ matrix X and $r \times 2n - r$ matrix Y such that $XA_1 = C_1$ and

$$\hat{A}_{1}Y = \hat{B}_{1}, \text{Put } S = \begin{pmatrix} A_{1} & A_{1}X^{*} \\ XA_{1} & XA_{1}X^{*} \end{pmatrix}, T = \begin{pmatrix} \hat{A}_{1} & \hat{A}_{1}Y \\ Y^{*}\hat{A}_{1} & Y^{*}\hat{A}_{1}Y \end{pmatrix}$$

$$\text{Now, } S = \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} T = \begin{pmatrix} A_{1} & A_{1}X^{*} \\ XA_{1} & XA_{1}X^{*} \end{pmatrix} \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{A}_{1} & \hat{A}_{1}Y \\ Y^{*}\hat{A}_{1} & Y^{*}\hat{A}_{1}Y \end{pmatrix} = L \text{ By [1,p.91]}$$

Hence S,T are q-EP matrices.

Any matrix $A \in H_{2n \times 2n}$ of rank r is called a q-EP_r matrix. If it has a principal $r \times r$ non-singular matrix. Lemma 1.4

Let M be a $2n \times 2n$ matrix of order r. If M is a P_r matrix then M is a product of q-EP_r matrices.

Proof

Let M be a $2n \times 2n$ matrix of order r having E as a principal $r \times r$ non-singular sub-matrix there is a permutation matrix P such that .

$$PMP^{T} = \begin{pmatrix} E & F \\ G & H \end{pmatrix}, \text{ by theorem } 1.3 \begin{pmatrix} E & F \\ G & H \end{pmatrix} = S \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} T, \text{ where S,T are q-EP}_{r} \text{ matrices}$$

Hence,
$$PMP^{T} = S \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} T, M = P^{T}S \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} TP, M = (P^{T}SP)P^{\dagger} \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix} P(P^{\dagger}TP)$$

Since S,T are q-EP_r matrices, $P^T SP$ and $P^{\dagger}TP$ are q-EP matrices. Thus, M is a product of q-EP matrices. Remark 1.5

The converse of theorem (1.4) need not be true. Example 1.6

Let
$$A = \begin{pmatrix} 0 & 0 & i \\ 0 & 1 & j \\ -i & -j & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & k & 0 \\ -k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 & k \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{pmatrix}$$

Where A,B,C are q-EP matrices of rank 3 but $ABC = \begin{pmatrix} j & 0 & i \\ -i & 1 & 1+j \\ -k & 0 & -j+1 \end{pmatrix}$ has rank 3, does not have a

P₃ Matrices. More over, ABC is not q-EP.

Lemma 1.7

Let $A = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$ be a q-EP matrix is an $r \times r$ matrix and $\begin{pmatrix} E & F \end{pmatrix}$ has rank r, then E is non-

singular. **Proof**

$$\begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} E & F\\ G & H \end{pmatrix} = \begin{pmatrix} E & F\\ 0 & 0 \end{pmatrix} \text{ where } I_r \text{ is the } r \times r \text{ identity matrix.}$$
$$\begin{pmatrix} E & F\\ G & H \end{pmatrix} \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} E & 0\\ G & 0 \end{pmatrix} \text{ has rank r. By [11, P.52] E has rank r. Thus E is non-singular.}$$
Lemma 1.8

Let A and B be $2n \times 2n$ q-EP matrices. If AB has rank r, then AB is unitarily similar to a P_r matrix.

Proof

Since A is q-EP_r, there is a unitary matrix U such that A is unitarily similar to a diagonal block EP_r matrix $\begin{pmatrix} D & O \\ O & O \end{pmatrix}$ where D is a $r \times r$ non-singular matrix $A = U \begin{pmatrix} D & O \\ O & O \end{pmatrix} U^* \Rightarrow \text{put } U^*(B)U = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$ where E is $r \times r$ matrix Then, $U^*(A)(B)U = \begin{pmatrix} D & O \\ O & O \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix}, U^*(AB)U = \begin{pmatrix} DE & DF \\ O & O \end{pmatrix}$ has rank r. Thus $(U^*AU)(U^*BU) = \begin{pmatrix} E & F \\ G & H \end{pmatrix} \begin{pmatrix} D & O \\ O & O \end{pmatrix}$ $\Rightarrow U^*ABU = \begin{pmatrix} ED & 0 \\ GD & 0 \end{pmatrix}$ therefore, GD = O Hence G = O

E is Non-Singular. Applying lemma 1.3. A is a product of q-EP_r matrices. **Remark 1.10**

The condition on $\rho(A) = r$ is essential If $\rho(A) \neq r$ then theorem(1.9) fails. For example,

Let
$$A = \begin{pmatrix} 0 & i \\ -i & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 Here $\rho(A) = 1, \rho(B) = 0$, B is q -EP₀ $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is q -

 EP_0 , Here $B = AB_1$. Hence the statement of (1.9) fails.

Theorem 1.11

Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
, $L = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ be q-EP_r matrices and ML be of rank r. Then the following are ent.

equivalent. (i) ML is q-EP_r q-

AP is q-EP_r and $CA^{\dagger} = RP^{\dagger}$ (ii) AP is q-EP, and $A^{\dagger}B = P^{\dagger}O$ (iii) Proof $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, L = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ $(M)(L) = \begin{bmatrix} A & AX \\ X^*A & X^*AX \end{bmatrix} \begin{bmatrix} P & PY \\ Y^*P & Y^*PY \end{bmatrix} = \begin{pmatrix} AZP & AZPY \\ X^*AZP & X^*AZPY \end{pmatrix}, Z = 1 + XY^*$ Clearly, $N(AZP) \subset N(X^*AZPY)$ $N(AZP)^* \subset N(X^*AZPY)$ Schur complements of AZP in ML, $(ML / AZP) = (X^*AZPY) - (X^*AZP)(AZP)^{\dagger}(AZP) = 0 \quad \rho(AZP) = \rho(ML) = r$ Hence by theorem "Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $\rho(M) = \rho(A) = r$, then M is q-EP_r and $CA^{\dagger} = (A^{\dagger}B)^{*}$ ". A and P are both q-EP_r matrices $CA^{\dagger} = (A^{\dagger}B)^*, RP^* = (P^{\dagger}Q)^*$ $R(AZP) \subset R(A)$ $R(AZP)^* \subset R(P^*) = R(P)$ (Since P is q-EP) $\rho(AZP) = \rho(A) = \rho(P) = r$ and Hence, $R(AZP) = R(A); R(AZP)^* = R(P)$ $(AZP)(AZP)^{\dagger} = (A)(A)^{\dagger}$ $(AZP)^{\dagger}(AZP) = (P)(P)^{\dagger}$ ML is q-EP_r \Leftrightarrow (M)(L) is EP_r \Leftrightarrow AZP is EP_r $(X^*AZP)(AZP)^{\dagger} = (AZP)^{\dagger}(AZPY)^{\ast}$ $\Leftrightarrow R(AZP) = R(AZP)^*$ $X^*(A)(A)^{\dagger} = Y^*(P)(P)^{\dagger} \Leftrightarrow R(A) = R(P)$ and by $(AZP)(AZP)^{\dagger} = AA^{\dagger}, (X^{*}A)(A^{\dagger}) = (Y^{*}P)(P^{\dagger})$ Since A and P are both q-EP_r matrices, \Leftrightarrow AP is q-EP_r, $CA^{\dagger} = RP^{\dagger}$ \Leftrightarrow AP is q-EP, and $CA^{\dagger} = RP^{\dagger}$ \Leftrightarrow AP is q-EP, and $(A^{\dagger}B)^{*} = (P^{\dagger}Q)^{*}$ \Leftrightarrow AP is q-EP, and $(A^{\dagger}B) = P^{\dagger}Q$ Thus, ML is q-EP_r \iff AP is q-EP_r and $A^{\dagger}B = P^{\dagger}O$ **PIVOTAL TRANSFORM ON Q-EP MATRICES** II.

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ then principal re-arrangement of square matrix M (i.e) $P^T M P$, where P is a permutation matrix, $P^T M P = \begin{pmatrix} D & C \\ B & A \end{pmatrix}$, where p is permutation matrix $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Let us consider a system of linear equations, MZ = T, where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ satisfying $N(A) \subseteq N(C), N(A^*) \subseteq N(B^*)$.

If z and t are partitioned conformably as $z = \begin{bmatrix} x \\ y \end{bmatrix}$ and $t = \begin{bmatrix} u \\ v \end{bmatrix}$, then Ax + By = u, Cx + Dy = v Then by

[10,p.21] we can solve for x and v as $x = A^{\dagger}u^{-}A^{\dagger}By$, $v = CA^{\dagger}u + (D - CA^{\dagger}B)y$. Thus a matrix $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ satisfying $N(A) \subseteq N(C), N(A^*) \subseteq N(B^*)$ can be transformed into the matrix

$$\hat{M} = \begin{pmatrix} A^{\dagger} & -A^{\dagger}B \\ CA^{\dagger} & (M/A) \end{pmatrix} - \dots$$
(1)

M is called a principal pivot transform of M.

Lemma 2.1

Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 with $N(A) \subseteq N(C)$, $N(D) \subseteq N(B)$ then the following are equivalent.

M is q-EP, $N(M / A) \subset N(B)$, $N(M / D) \subset N(C)$ (i)

A and M/D are q-EP and D and (M/A) are q-EP (ii)

Further, $N(A) = N(M / D) \subset N(B^*)$ and $N(D) = N(M / A) \subset N(C^*)$

Proof

 $(i) \Leftrightarrow (ii)$ Since M is q-EP, $N(A) \subset N(C)$, $N(M / A) \subset N(B)$ By theorem [8, Theorem1],

A is q-EP and M / A is q-EP, $N(A^*) \subset N(B^*)$ and $N(M / A)^*) \subseteq N(C^*)$. Since A is q-EP, $N(A^*) = N(A)$ (By definition of q-EP).

Therefore $N(A) = N(B^*)$ since M is q-EP, M is EP, implies the principal rearrangement $P^{T}MP = \begin{pmatrix} D & C \\ B & A \end{pmatrix}$ is also EP. Further $N(D) \subseteq N(B)$ and $N(D) \subseteq N(B)$ and $N(M/D) \subseteq N(C)$

holds hence by theorem [6, Theorem 1], D is EP (M / D) is EP.

 $N(D^*) \subset N(C^*)$ and $N(M/D) \subset N(B^*)$

Thus we have, D is q-EP, (M / D) is q-EP.

$$N(D^*) \subseteq N(C^*)$$
 and $N(M/D) \subseteq N(B^*)$

Since D is q-EP, by definition $N(D^*) = N(D)$.

Thus $N(D) \subset N(C^*)$

Ν

Since the relations, $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(C), N(A^*) \subseteq N(B^*)$, $N(M/A) \subset N(B)$ and $N(M / A)^* \subseteq N(C^*)$ holds for A.

According to the assumption and from the definition

$$M^{\dagger} = \begin{pmatrix} A^{\dagger} + (A^{\dagger})(B)(M / A)^{\dagger}(A^{\dagger}) & -(A)^{\dagger}B(M / A)^{\dagger} \\ -(M / A)^{\dagger}C(A)^{\dagger} & (M / A)^{\dagger} \end{pmatrix}$$
(2)
$$C = (M / A)(M / A)^{\dagger} \text{ and } B = (A)(A)^{\dagger}(B) \\ (M^{\dagger})(M) = \begin{pmatrix} (A)(A)^{\dagger} & 0 \\ 0 & 0 \end{pmatrix}$$
(3)

Using

Since the relations, $N(D) \subseteq N(C)$ and $N(M / D) \subseteq N(B^*)$ holds for d, according to the assumptions by theorem.

$$(M)^{\dagger} = \begin{pmatrix} (M/D)^{\dagger} & -(A)^{\dagger}B(M/A)^{\dagger} \\ -(D)^{\dagger}C(M/D)^{\dagger} & (M/A)^{\dagger} \end{pmatrix}$$
(4)
$$C = (D)(D)^{\dagger}C, C = DD^{\dagger}C \text{ and } B = (A)(A)^{\dagger}(B), B = AA^{\dagger}B \text{ in } (3)$$

$$C = (D)(D)^{\dagger}C, C = DD^{\dagger}C \text{ and } B = (A)(A)^{\dagger}(B), B = AA^{\dagger}B \text{ in } (B)$$
$$(M)(M^{\dagger}) = \begin{pmatrix} (M/D)(M/D)^{\dagger} & 0\\ 0 & (M/A)(M/A)^{\dagger} \end{pmatrix}$$

Comparing (2) and (4) $(A)(A^{\dagger}) = (M / D)(M / D)^{\dagger} \Leftrightarrow AA^{\dagger} = (M / D)(M / D)^{\dagger}$ Since A and (M / D) are q-EP, $A^{\dagger}A = (M / D)^{\dagger}(M / D)$ $A^{\dagger}A = (M / A)^{\dagger}(M / D)$ Thus, N(A) = N(M / D)

Similarly, we can obtain the expressions for $M^{\dagger}M$, comparing $D^{\dagger}D = (M / A)^{\dagger}(M / A)$ $\Leftrightarrow N(D) = N(M / A)$

 $(ii) \Rightarrow (i): N(M / A) \subseteq N(B)$ follows directly from $N(M / A) = N(D) \subseteq N(B)$ Similarly, $N(M / D) \subseteq N(C)$ follows $N(M / D) = N(A) \subseteq N(C)$

Now, A is q-EP and (M / A) is q-EP satisfying the relations $N(A) \subseteq N(C)$, $N(A^*) \subseteq N(B^*)$, $N(M / A) \subseteq N(B)$ and $N(M / A)^* \subseteq N(C)^*$

Hence by theorem [8, Theorem 1] . Therefore M is q-EP. Thus (i) holds. **Theorem 2.2**

Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 be a q-EP_r matrix, $N(A) \subseteq N(C)$, $N(D) \subseteq N(B)$, $N(M / A) \subseteq N(B)$

 $N(M / A) \subseteq N(B)$ and $N(M / A) \subseteq N(C)$. Then the following are hold.

(i) Principal sub-matrix A is q-EP and principal sub matrix D is q-EP

- (ii) The Schur Complement (M / A) is q-EP
- (iii) Each principal pivot transforms of M is q-EP

Proof

(i) and (ii) are consequence of lemma 2.1 (iii); By Lemma 2.1, M satisfies $N(A) \subseteq N(C)$

 $N(A^*) \subseteq N(B^*)$ hence by pivoting the block A, the principal pivot transform M of M is of the form.

$$\hat{M} = \begin{pmatrix} (A)^{\dagger} & -(A)^{\dagger}(B) \\ (C)(A)^{\dagger} & (M/A) \end{pmatrix}, \quad \hat{M} = \begin{pmatrix} A^{\dagger} & -A^{\dagger} \\ CA^{\dagger} & (M/A) \end{pmatrix}$$

In $\stackrel{\wedge}{M}$, $N(A^{\dagger}) \subseteq N(CA^{\dagger})$, $N(A^{\dagger})^* \subseteq N(CA^{\dagger})^*$

Further,
$$(\dot{M} / A^{\dagger}) = (M / A) + (CA^{\dagger})(A^{\dagger})^{\dagger}(A^{\dagger}B) = (M / A) + CA^{\dagger}AA^{\dagger}B = (M / A) + CA^{\dagger}B$$

$$(M/A^{\dagger}) = D$$

By the assumption, $N(\hat{M}/A^{\dagger}) = N(D)$ which implies $N(\hat{M}/A^{\dagger}) = N(D) \subseteq N(B)$.

From Lemma 2.1, A is q-EP and D is q-EP. Therefore, A^{\dagger} is q-EP and (M/A^{\dagger}) is q-EP.

Hence, $D = (\hat{M} / A^{\dagger})$

Also,
$$N(\hat{M}/A^{\dagger})^{*} = N(D^{*}), N(\hat{M}/A^{\dagger})^{*} = N(D^{*}) \subseteq N(C^{*})$$

Now applying theorem [8, Theorem 2.1]

[2, Theorem

Now $r = \rho(M) = \rho(A) + \rho(M / A)$ 1]

$$= \rho(A^{\dagger}) + \rho(D)$$
(Lemma 2.1)
$$= \rho(A^{\dagger}) + \rho(\hat{M}/A^{\dagger})$$
$$= \rho(\hat{M})$$
[2, Theorem

1]

Thus M is q-EP_r. Similarly, under the conditions given on M, M can be transformed to its principal pivot transform by pivoting the block D without changing the rank.

Remark 2.3

For K(i) = i, (the identity transposition), theorem (2.2) reduced to Theorem [9, Theorem]

Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, then $\rho(M) \ge \rho(A) + \rho(M / A)$ with equality if and only if

 $N(M / A) \subseteq N(IAA^{\dagger})B$

$$N(M / A)^* \subseteq N(I - A^{\dagger}A)C^*$$
 and $(I - AA^{\dagger})B(M / A) \subseteq (I - A^{\dagger}A) = 0$

Remark 2.4

In the special case when M is non-singular with A and D non-singular, then the conditions $N(A) \subseteq N(C)$ and $N(D) \subseteq N(B)$. Automatically hold (M / A) and (M / D) are non-singular by [2, Theorem 1].

Further, $\rho(M) = \rho(A) + \rho(D)$. Hence it follows that each principal pivot transform of M is non-

singular. We note that the non-singularity of M need not imply M is non-singular.

References

- [1]. Baskett.T.S. and Katz.I.J : Theorems on product of EPr matrices; Lin. Alg. Appl., 2,87-103 (1969).
- [2]. Carlson.D, haynsworth.E and Markham.T.H : A generalization of the Schur Complement by means of the Moore-Penrose inverse; SIAM J.Appl. Math., 26, 169-175 (1974).
- [3]. Gunasekaran.K and Sridevi.S On Range Quaternion Hermitian Matrices; Inter; J;Math., Archieve-6(8), 159-163.
- [4]. Gunasekaran.K and Sridevi.S On Sums of Range Quaternion Hermitian Matrices; Inter; J.Modern Engineering Research -.5, ISS.11. 44 – 49(2015).
- [5]. Gunasekaran.K and Sridevi.S On Product of Range Quaternion Hermitian Matrices; Inter., Journal of pure algebra 6(6), 2016, 318 -321.
- [6]. Gunasekaran.K and Sridevi.S Generalized inverses, Group inverses and Revers order law of range quaternion Hermitian matrices.,IOSR-JM,Vol.,12, Iss.4 ver.II(Jul– Aug 2016), 51-55.
- [7]. Gunasekaran.K and Sridevi.S On Bicomplex Representation Methods and Application of Range Quaternion Hermitian Matrices (q-Ep)., IJMTT- Vol.48 No.4 August 2017, 250 259.
- [8]. Gunasekaran.K and Sridevi.S On Schur Complements In Range Quaternion Hermitian Matrices., "International Journal of Mathematics And its Applications", Volume 5 Number 4–F (2017), 985–991.
- [9]. Meenakshi.A.R: Principle pivot transforms of on EP matrix; C.R.Math. rep. Acad. Sci. Canada, 8, 121-126 (1986).
- [10]. Penrose. R: On best approximate solution of linear matrix equations; Proc. Cambridge Phil, Soc, 52, 17-19 (1959).
- [11]. Rao.C.R and Mitora.S.K.: Generalized inverse of matrices and its Applications; Wiley and sons, New York (1971).

International Journal of Engineering Science Invention (IJESI) is UGC approved Journal with Sl. No. 3822, Journal no. 43302.

S. Sridevi "Factorization and Pivotal Transform of Q-EP" International Journal of Engineering Science Invention (IJESI), vol. 07, no. 02, 2018, pp. 10–16.

L_____

.