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Abstract : The present study deals with the effects of MHD stagnation point flow over a stretching sheet with 

thermal radiation and slip boundary conditions. Using similarity transformations the governing equations are 

reduced to coupled nonlinear ordinary differential equations. The effective numerical technique Keller Box 

method is used to solve these equations. The variations in velocity, temperature profiles are presented with the 

various values of Magnetic parameter M, Suction parameter S, Grashof number Gr, Prandtl number Pr, 

Radiation parameter R, Heat generation parameter Q, Heat absorption parameter d, Velocity ratio parameter 

𝜀, Velocity Slip  parameter A and Thermal Slip parameter B. We observed that velocity profile decreases with 

the increasing values of velocity slip parameter and also temperature increases when thermal slip parameter 

values increases.  
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I. Introduction: 
A large amount of research has been done on stagnation-point flows. Due to its enormous applications 

in industries such as cooling of electronic devices by fans, cooling of nuclear reactors during emergency 

shutdown and hydrodynamic processes, stagnation point flows attracted many researchers. In fluid mechanics, a 

point where the local velocity of the fluid becomes zero is called a stagnation-point. Stagnation points exist at 

the surface of objects in the flow field, where the fluid is brought to the rest by the object. Recently, Nazar et al. 

[1] discussed unsteady two-dimensional stagnation point flow of an incompressible viscous fluid over a 

deformable sheet. They discussed the analysis when the flow is started impulsively from rest and the sheet is 

suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. They 

used Keller-box method to solve the unsteady boundary layer equations. Ishak et al [2] demonstrated the 

stagnation-point flow and heat transfer over a shrinking sheet in a micropolar fluid. Wang [3] investigated the 

stagnation flow towards a shrinking sheet and found that the convective heat transfer decreases with the 

shrinking rate due to an increase in the boundary layer thickness. Chen [4] presented the unsteady mixed 

convection flow over a stretching sheet in the presence of velocity and thermal slips near the stagnation-point. A 

good amount of literature has been generated on the stagnation-point flows towards a stretching or shrinking 

sheet [5-11]. 

In all investigations mentioned above, the flow field obeys the no slip conditions. It is known that no 

slip conditions state that the moving fluid in contact with a solid body will not have any velocity relative to the 

body at the contact surface (Prabhakara and Deshpande [12]). The no-slip boundary condition is the basic 

principle of the Navier–Stokes equations theory. But there are situations where such a condition is not 

appropriate. Especially in the case of non-Newtonian liquids, the no-slip condition is inadequate. On melting, 

many polymers exhibit microscopic wall slip, which is governed by a nonlinear and monotone relation between 

the slip velocity and traction. Navier himself in 1827 suggested a slip boundary condition in terms of shear 

stress. After Navier, much research has been conducted on the extension of his work. Hence, the problem of slip 

on a stretching sheet for different cases of fluid has been analyzed by different researchers. The earlier studies 

that took into account the slip boundary condition over a stretching sheet were conducted by Andersson [13]. He 

gave a closed form solution of a full Navier–Stokes equations for a magneto hydrodynamics flow over a 

stretching sheet. Velocity and thermal slip conditions are adequate for the flow of liquids at the micro-scale 

level especially in view of the lack of data on the thermal accommodation coefficient. Momentum and heat 
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transfer in laminar boundary layer with slip effects are discussed by Martin and Boyd [14]. A very good 

collection of articles on this topic can be found in [14-18].  

The study of boundary layer flows with the effects of heat and mass transfer over a stretching sheet has 

various applications in industrial and engineering processes. Some of its applications are manufacture and 

extraction of polymer and rubber sheets. The flow due to stretching of a flat surface was first investigated by 

Crane [19]. The heat and mass transfer occurring in the laminar boundary layer on a linearly accelerating 

surface with temperature dependent heat source subject to suction or blowing was investigated by Acharya et al. 

[20].  The stretching problem of an incompressible fluid over a permeable wall was studied by Magyari and 

Keller [21]. The steady boundary layer stagnation-point flow of Casson fluid and heat transfer towards a 

shrinking/stretching sheet was analyzed by Bhattacharyya [22].The mixed convection MHD flow of a Casson 

nanofluid over a nonlinear permeable stretching sheet with viscous dissipation was proposed by Prabhaker [23]. 

Yahaya and Simon [24] investigated the theoretical influence of buoyancy and thermal radiation on MHD flow 

over a stretching porous sheet. 

Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting fluids in a magnetic 

field. The study of magnetohydrodynamics has wide applications, and may be used to deal with problems such 

as cooling of nuclear reactors by liquid sodium and induction flow meter. The effect of external magnetic field 

on the MHD flow over a stretching sheet was examined by Pavlov [25]. Dulal and Hiranmoy [26] explained the 

effects of variable thermal conductivity, soret and dufour on MHD non-Darcy mixed convection heat and mass 

transfer over a nonlinear stretching sheet in the presence of thermal radiation, viscous dissipation, non-uniform 

heat source/sink and first-order chemical reaction. Chamkha [27] discussed the thermal radiation and buoyancy 

effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink. Slip effects on 

MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation 

was studied by Swati Mukhopadhyay [28]. The Keller-Box method introduced by Keller [29] is one of the best 

numerical method basically it’s a mixed finite volume method which consists in taking the average of a 

conservation law and of the associated constitutive law at the level of the same mesh cell. Sarif [30] worked the 

numerical solution of the steady boundary layer flow and heat transfer over a stretching sheet with Newtonian 

heating by using Keller box method.  

Motivated by the above literature, the main aim of the study deals with the analyzation of the effects of 

thermal radiation and slip parameters on MHD stagnation point flow of a stretching sheet. The basic governing 

equations are converted into ordinary differential equations by applying suitable similarity transformations and 

those equations were solved numerically by using finite difference method called as the Keller Box method.    

 

II. Mathematical Formulation: 
Consider a two dimensional steady MHD stagnation point flow of incompressible, electrically 

conducting, viscous flow over a stretching sheet. The velocity of the stretching sheet is 𝑢𝑤 𝑥 = 𝑎𝑥  (where a > 

0 is the constant acceleration parameter).  The x-axis is taken along the stretching sheet and y is the coordinate 

normal to the surface. The fluid is electrically conducting under the influence of magnetic field B(x) normal to 

the stretching sheet. The induced magnetic field is neglected due to assume magnetic Reynolds number is small. 

Assume that wall temperature is Tw  and wall suction is vw.. The ambient temperature of the flow is T∞ .The 

thermal physical properties of the flow assumed to be constant. The pressure gradient and external forces are 

neglected. All the fluid properties are assumed to be constant.  

Under the above assumptions, MHD stagnation point flow over a stretching sheet with the effect of thermal 

radiation and slip conditions are governed by the following equations: 

The continuity equation            
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The energy equation                    
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Using the Rosseland approximation 𝑞𝑟 = −(
4𝜎∗ 

3𝑘∗ )
𝜕𝑇4

𝜕𝑦
 is obtained where 𝜎∗ is the Stefan-Boltzmann constant and 

𝑘∗ is the absorption coefficient. We presume that the temperature variation within the flow is such that 𝑇4 may 
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be expanded in a Taylor’s series. Expanding 𝑇4 about 𝑇∞ and neglecting higher-order terms we get 𝑇4 =  

4𝑇∞
3𝑇 − 3𝑇∞

4 , then 𝑞𝑟  becomes 

𝑞𝑟 =  −
16𝑇∞

3𝜎∗

3𝑘∗

𝜕𝑇

𝜕𝑦
                                                                        

Substitute 𝑞𝑟  value in (3) we obtain 
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The associated boundary conditions are  
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Here bxUandxATTaxuw   0,     

Where vu, are velocity components along the x, y axis respectively. U∞ = 𝑏𝑥 is the straining velocity of the 

stagnation-point flow with 𝑏 > 0 being the straining constant,  is the electrical conductivity , g is the 

acceleration due to gravity ,   is the fluid density, T is the coefficient of thermal expansion , B is the magnetic 

field , is the kinematic viscosity ,  is the thermal diffusivity of the fluid , 0Q is the heat generation , pc is the 

specific heat at constant pressure ,
* is the  Stepan Boltzmann constant,

*k is the mean absorption coefficient ,
 

L  is the  velocity slip factor, 1K  is the thermal slip factor. When 01 KL  the no-slip condition 

components along x-axis and y-axis respectively. 

Using  similarity transformations 
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                     Where   denotes stream function and is defined as 
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dimensionless stream function,  is dimensionless temperature function and   is similarity variable.  After 

similarity transformations, the governing equations (2)-(4) are reduced as follows: 
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Where R  is the radiation parameter, Gr is the Grashof number, M  is the magnetic parameter, Q is the heat 

generation, d is the heat absorption. 

 The associative boundary conditions becomes 
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                          Here A, B, S, R, L are velocity slip parameter, thermal slip parameter, suction parameter, 

radiation parameter and velocity ratio parameter respectively .   
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III. Numerical Procedure: 
The boundary value problem (7)–(8) is solved by a second order finite difference scheme known as the Keller 

Box method [29]. The numerical solutions are obtained in four steps as follows: 

• Reduce the equations to a system of first order equations; 

• write the difference equations using central differences; 

• linearize the algebraic equations by Newton’s method, and write them in matrix–vector form; 

   and 

• solve the linear system by the block tri-diagonal elimination technique. 

The step size ∆𝜂 and the position of the edge of the boundary layer 𝜂∞ are to be adjusted for different values of 

the parameters to maintain accuracy. For numerical calculations, a uniform step size of ∆𝜂 = 0.01 is found to be 

satisfactory and the solutions are obtained with an error tolerance of 10−6 in all the cases.  

  

IV. Result And Discussion: 
The non-linear ordinary differential equations Eqs. (8) – (9) with the boundary conditions (10) were 

solved numerically by Keller Box method. The computation have been carried out for different values of 

governing parameters viz. Magnetic parameter M, Suction parameter S, Grashof number Gr, Prandtl number Pr, 

Velocity ratio parameter 𝜀, Thermal radiation parameter R, Heat generation coefficient Q, Heat absorption 

coefficient d, Velocity slip parameter A, Thermal slip parameter B. The velocity and temperature profiles for 

different governing parameters have examined. The results obtained in the study are compared with the existing 

literature and found in good agreement which is presented in the Table 1. Comparison of wall temperature 

gradient – 𝜃 ′(0) for different values of the suction or injection parameter S and the heat generation or absorption 

parameter d when M = d = R = Gr = A = B = 0 and Pr = 0.71. 

S D Chamka Acharya Present study 

0.45 0.5 0.82397 0.8225 0.8229 

0.45 1 0.96191 0.9618 0.9619 

0 0.5 0.94769 0.9462 0.9465 

0 1 1.07996 1.0789 1.0791 

-1.5 0.5 1.57077 1.5696 1.5696 

-1.5 1 1.6603 1.6603 1.6603 

 

 
Fig 1: Velocity profile with variation in 

                                                                     Stagnation parameter L       

Fig .1 shows that the effect of velocity profile with variation in velocity ratio parameter. We observed that the 

velocity profile increasing with  increasing the values of L (L = 
𝑎

𝑏
 = 0, 0.5, 1, 1.5, 2).  L is the ratio of free stream 

velocity (𝑎𝑥) to stretching velocity (𝑏𝑥) of the flow. Physically we observed that  𝐿 < 1     when the stretching 

velocity of the surface of the flow exceeds the stream velocity of the flow. On similar manner these results are 

plotted for 𝐿 ≤ 1  and  𝐿 > 1 .         
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 Fig 2: Velocity profile with variation in                        Fig 3: Velocity profile with variation                                                                                                                                                                                                                                                                                                                                               

Magnetic parameter M                                                  in Suction parameter S   

Fig.2 and 3 shows that the effect of magnetic parameter M and suction parameter on velocity profile 

respectively. We fixed Pr = 0.71 and all other parameters to be zero in order to depict the effects of different 

parameters under investigation. From the fig.2 we observed that velocity profile increases when the values of 

magnetic parameter    decreases due to Lorentz force. As the Lorentz force is resistive force which opposes the 

fluid motion. From fig 3. we observed that velocity is increases with decreases of suction parameter, because of 

the imposition of  sheet suction the fluid brought is closure to the sheet and it reduces momentum boundary 

layer thickness.  

 
Fig .4: Effect of thermal radiation          Fig.5: Effect of Grashaf number on                                                                                                                                        

parameter on velocity                                        velocity  

                 
 

Fig.4  shows that the influence of thermal radiation parameter on velocity profile . it is seen that as 

radiation parameter increases ,the velocity is increases. Fig. 5 and 6:shows that influence of Grashof number on 

velocity and  temperature profile. We observed that velocity profile increase and temperature profile decrease 

0 2 4 6
0

0.2

0.4

0.6

0.8

1



f 
' 

( 


 )

 

 

M = 0

M = 0.5

M = 1

M = 2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1



f 
' 

( 


 )

 

 

R = 0

R = 1

R = 2

R = 3

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

f 
' 

( 


 )



 

 

Gr = 0

Gr = 0.5

Gr = 1

Gr = 2



MHD Stagnation Point Flow Over A Stretching Sheet With The Effects Of Thermal Radiation .. 

www.ijesi.org                                                                69 | Page 

 

with Grashof number increase . It is evident from these points that the thermal boundary layer becomes thin for 

higher values of Grashof number and momentum boundary layer thickness increase with the increase in Grashof 

number. Fig7 shows that influence of Prandtl number on temperature, Pr increases the dimensionless 

temperature decreases. The thermal boundary layer thickness reduces with Pr, it is due to decrease of thermal 

diffusivity for the larger values of Prandtl value number. 

                             
Fig.8: The effect of thermal radiation parameter    Fig.9:  The effect of heat generation on                                                          

on  temperature profile.                                                       Temperature profile.            

Fig 8. shows that effect of thermal radiation parameter on temperature profile, temperature profile increase with 

thermal radiation parameter increases. Fig.9 Shows that the influence of heat generation on temperature profile, 

temperature profile increase with increase in heat generation. The presence of a heat source in the boundary 

layer generates energy which causes the temperature of the fluid to increase. This increase in temperature 

produces an increase in the flow field due to the buoyancy effect. 

      
  

 Fig.10. Shows that the influence of velocity slip parameter on velocity, velocity profile decrease with 

velocity slip parameter increase. Consequently, with an increment in the slip parameter the velocity boundary 

layer thickness decreases. This is due to the fact that as the velocity slip parameter increases in magnitude, 

allowing more fluid to slip past the sheet, the flow accelerates for a distance very close to the plate, whereas for 

a distance far away from the plate the opposite effect is observed. Fig 11. shows the effect of temperature with 

respect to thermal slip parameter B. From the graph we observe that the wall temperature 𝜃(0) and thermal 

boundary layer thickness decreases when the values of slip parameter B increases. 

 

V. Conclusion: 
                Investigation has been carried out numerically to study the effects of MHD stagnation point flow of a 

stretching sheet with Thermal radiation and Slip boundary conditions. The transformed nonlinear ordinary 

differential equations are solved by using Keller Box Method. The numerical results obtained agreed very well 

with previously published work and they are found to be in good agreement. The main observations of the 

present study are as follows: 

1. The velocity of the fluid is decreases with an increase in both Magnetic parameter and Suction parameter.  

2. Thermal boundary layer thickness decreases with an increase in both Grashof number and Prandtl number.  
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3. The velocity profile of the fluid is increases with increase in both Radiation parameter and Grashof number. 

4. Thermal boundary layer thickness is increases with increase in Radiation parameter. 

5. Temperature profile is decreases with an increase in Heat generation or absorption coefficient.  

6.  The velocity of the fluid is decreases with increase in velocity slip parameter. 

7. The thermal boundary layer thickness is increases with an increases thermal slip parameter.  

 

References: 
[1]. Nazar R,  Amin N, Filip D, Pop I. Unsteady two-dimensional stagnation point flow of an incompressible viscous fluid over a 

deformable sheet. Int. J. Eng. Sci. 2004;42(11-12):1241-1253. 

[2].  Ishak  A, Lok Y Y,  Pop  I. Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Comm. 2010;197: 
1417–1427. 

[3]. Wang, C. Y. Stagnation flow towards a shrinking sheet. Int. J. Non-Linear Mech. 2008;43: 377–382. 

[4]. Chen H. Mixed convection unsteady stagnation-point flow towards a stretching sheet with slip effects, Math. Prob. Eng. 2014, 
Article ID 435697 (2014),7 pages. 

[5]. Bhattacharyya K. Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a 

stretching/shrinking sheet. Int. Commun. Heat Mass Trans. 2011;38:917–922. 
[6]. Ishak A, Nazar R, Pop I. Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. 

Meccanica,2008;43(4): 411–418. 

[7]. Bhattacharyya K. Heat transfer in unsteady boundary layer stagnation-point flow towards a shrinking sheet. Ain Shams Engineering 
Journal,2013;44(2):259–264.  

[8]. Imran anwari, Sharidan shafie, Mohd Zuki salleh. Radiation Effect on MHD Stagnation-Point Flow of a Nanofluid over an 

Exponentially Stretching.  
[9]. SheetRizwan Ul Haq, Sohail Nadeema, Zafar Hayat Khan, Noreen Sher Akbar. Thermal radiation and slip effects on MHD 

stagnation point flow of nanofluid over a stretching sheet. Physica E 2015;65:17–23. 

[10]. Mahapatra T R and Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass 
Transfer,2002;38(6):517–521.  

[11]. Najib N, Bachok N, Arifin N M, Ishak A. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking 

cylinder. Scientific Reports 4, Article ID 04178 (2014). 
[12]. Prabhakara S, Deshpande M. The no-slip boundary condition in fluid mechanics. 

a. Resonance 2004;9(5):61-71. 

[13]. Andersson H. Slip flow past a stretching surface. Acta Mech 2002;158:121–125. 
[14]. Martin M J, Boyd I D. Momentum and heat transfer in a laminar boundary layer with slip flow. J. Thermophys. Heat Transf. 

2006;20(4):710-719. 

[15]. Hayat T, Qasim M, Mesloub S. MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int J Numer 
Methods Fluids 2011;66:963-975. 

[16]. Bhattacharyya K, Mukhopadhyay S and Layek G C. Slip effects on boundary layer stagnation-point flow and heat transfer towards 

a shrinking sheet. Int. J.  Heat and Mass Transfer 2011;54(1–3):308-313. 
[17]. Wubshet Ibrahima, Bandari Shankar. MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet 

with velocity, thermal and solutal slip boundary conditions. Computers & Fluids 2013;75:1–10. 

[18]. Aman F, Ishak A, Pop I. Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Int 
Comm Heat Mass Transfer 2013;47:68-72.  

[19]. Crane LJ. Flow past a stretching plate. Z Angew Math Phys1970;21(4):pp.645–647.  

[20]. Acharya M, Singh LP, Dash GC. Heat and mass transfer over an accelerating surface with heat source in presence of suction and 
blowing, Int. J. Eng. Sci.1999;37 (1):189–211. 

[21]. Magyari E, Keller B. Exact Solutions for Self Similar Boundary Layer Flows Induced  by  Permeable Stretching Walls. European J 

of Mechanics B Fluids,2000;19: 109-122.   
[22]. Krishnendu Bhattacharyya. Boundary layer stagnation point flow of a Casson fluid and heat transfer towards a shinking/stretching 

sheet. Frontiers in Heat and Mass Transfer,2013;4:023003. 
[23]. Prabhakar B, Shanker B. Mixed Convection MHD Flow of a Casson Nanofluid over a Nonlinear Permeable Stretching Sheet with 

Viscous Dissipation. J of Applied Mathematics and Physics, 2015;3:1580-1593. 

[24]. Yahaya Shagaiya Daniel, Simon K. Daniel. Eff ects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet 
using homotopy analysis method. Alexandria Engineering Journal, 2015;54:705–712. 

[25]. Pavlov KB. Magnetohydrodynamic flow of an incompressible viscous fluid caused by the deformation of a plane surface. 

Magnetohydrodynamics, 1974;10:146–148. 
[26]. Dulal Pal, Hiranmoy Mondal. MHD non-Darcian mixed convection heat and mass transfer over a non-linear stretching sheet with 

Soret–Dufour effects and chemical reaction. International Communications in Heat and Mass Transfer 2011;38:463–467. 

[27]. A.J. Chamkha, Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat 
source or sink, Int. J. Eng. Sci. 38 (15) (2000) 1699–1712.  

[28]. Swati Mukhopadhyay. Slip eff ects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and 

thermal radiation. Ain Shams Engineering Journal 2013; 4:485–491. 
[29]. Keller HB. A New Difference Scheme for Parabolic Problems. In: Hubbard, B., Ed., Numerical Solutions of Partial Differential 

Equations, Vol. II, Academic Press, New York,1971;327-350. 

[30]. Sarif NM, Salleha MZ and  Nazar R. Numerical Solution of Flow and Heat Transfer over a Stretching Sheet with Newtonian 
Heating Using the Keller Box Method. Procedia Engineering, 2013;53:542-554. 

 

 
 

International Journal of Engineering Science Invention (IJESI) is UGC approved Journal with 

Sl. No. 3822, Journal no. 43302. 


