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Abstract : In this research article, we proposed a predator-prey model with fading memory for Holling type-II 

functional response is developed. The fading memory term is used with the hypothesis that the predator growth 

rate at present depends on the recent past quantities of prey. The effects of predator harvesting are also 

considered in the model. The model is analysed theoretically as well as numerically. One parameter bifurcation 

analysis is done; bifurcation points are identified. Maximum sustainable yield with respect to harvesting effort 

is also determined. Numerical simulation of the nonlinear model has confirmed our analytical studies. It is 

observed that the system dynamics is very rich in presence of fading memory. The obtained results may be useful 

in the field of fishery and agriculture. 
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I. Introduction 

 
The most significant feature of ecological system is prey-predator functional relationship which is the 

key to preserve the natural resources of the Earth from destruction. The essential feature of life is to continue in 

existence in spite of so many changes in different ecological phenomena. Of late, study of prey-predator 

relationship taking different strategies is very important part of ecological science. To regulate the Earth’s 

ecosystem, it is necessary to study and investigate various prey-predator populations to preserve more food and 

more energy for future purpose. Basically depending on the interaction between prey and predator population 

proper and applicable choices of various ecological parameters and factors are required to get more realistic 

models consisting of functional response. For the concerned Earth’s ecological system, it is essential to protect 

its ecological health and being acknowledgeable of this fact biological models are designed Incorporating 

strategies to obtain maximum economic gain. Mathematical modeling strategies considering harvesting 

strategies was introduced by Clark [1, 2]. To make a model more realistic, memory is a vital component. 

Memory, an inherent feature of life, is enable to convey the experiences of past to forecast the future. In this 

case we take into account the fact that memory of past events and then plan for the future depending on these 

events has a great impact on the growth rate of predators.  

 

Various ecological phenomena, massive number of predator-prey systems were studied theoretically as 

well as numerically. Mainly mathematical models of predator-prey systems depend on the interaction of prey 

and predator population. Functional relationship between predator and prey population are the central themes in 

mathematical ecology [3]. Most of the models were used simple common type of Holling Type-I, Type-II or 

Type- III functional responses. The Holling type-II function is based on the assumption that predation rate is 

proportional to prey density if prey is scarce. We now concentrate on two species food chain model with Holling 

type-II of functional responses [4, 5, 6, 7]. Allowing to Makinde, harvesting of populations is commonly 

practiced in fishery, forestry and wildlife management according to the demands of human needs [8]. There is a 

wide range of interest in the use of harvesting in many biological models [9, 10].  

 

The functional form of the harvesting is generally considered using the phrase catchper- unit- effort 

(CPUE) hypothesis under the assumption that catch per unit effort is proportional to the stock level [11]. In this 

regard, we now including harvesting effort, two species food chain model with Holling type-II of functional 

responses. The model is reducing to the form: 
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where the variables U(T) and V (T) represent the density of prey and predator species respectively and T 

denotes the time. The constants 0  and K are the intrinsic growth rate and carrying capacity of the prey species 

U(T). The parameter 0 denotes the capturing rate of the predator V (T) on the prey U(T) and   denotes the 

conversion rate of the prey to the predator. The constant 0g is the half saturation constant for the predator. 

1 denotes the predator’s death rate in absence of prey and E0 are positive and represent catchability coefficient 

and effort applied to harvest the individuals, respectively. 

 

We are developing a more realistic model if we take into account a memory term accepting that the predator 

growth rate at present depends on past quantities of prey and therefore a continuous density (or weight) function 

G is introduced whose role is to weight moments of the past [12]. Following [13, 14] this can be done by 

replacing U in the second equation of (1) by; 
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Where ),0[:G  represents a probability density function satisfying the following properties: 
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  with h0>0. Here we 

select of G exponentially fading memory, because the largest weight is given to moments in the neighborhood 

of the present and as we go back in time the weight is decreasing exponentially. This assumption is biologically 

meaningful. It is clear that smaller h0 implies the existence of past influence for larger time interval in which the 

values of U(T) are taken into account, that is 01 h  the measure of the influence of the past. Therefore, the 

function satisfies the equation (2) is; 
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Differentiating with respect to T, we get; 

 

                                                
) ) T M(- U(T)(h = M(T) 0                                                          (3) 

Therefore, including the concept of fading memory in equation (3), the modified form of the model (1) becomes 

the following, 
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The system is the following initial conditions: 
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Considering the dimensionless quantities: 
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m   and Tt 0 ,  the system (4) is 

transformed into the form: 
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0

E
E  ,  the system is analysed with the initial 

condition: u(0) > 0, v(0) > 0 and m(0) > 0 and the parameter are given by 
7),,,,,,( qhgE . Note 

that for no memory h = 0 and the model reduces to the eminent predator prey Holling Type-II interaction model. 

 

1.1 BOUNDEDNES 

Theorem 1. All solutions of the system (5) which initiated in 
3 are uniformly bounded, provided 0 < h < 1, 

  Eq . 

 

Proof:  Let (U(t), v(t), q(t)) be any solution of the system (5) with positive initial condition. Let us consider that 
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Hence all the solutions of (5) that initiate in 
3 are confined in the region: 
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This proves the theorem. 

 

 
Figure 1: A periodic solution is shown for different values of E: (a) h = 0.4, E = 0.1; (b) h = 0.4, E = 0.1; (c) h = 

0.4, E = 0.5; (d) h = 0.4, E = 0.5; of the prey-predator system and taking other parameters values from Table 1. 

 

1 Equilibrium and stability analysis 

In this section, we only consider positive equilibriums of the system and their stability 

 

1.1 Equilibria 

The system (5) with the initial condition possesses the following positive equilibrium: 

 

i. the trivial equilibrium state, E0 (0, 0, 0), 

ii. the predator free equilibrium state, Ep (1, 0, 1), 

iii. the interior equilibrium, E
*
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The interior equilibrium state E
*
exist if 10 *  u  and qE  . This condition biologically means that 

for existence of predator population, the conversion rate of prey is always greater than the harvesting rate and 

natural death rate, unless predator population will extinct. 

 

1.2 Local stability analysis 

 

The Jacobian matrix of system (5) at E0 = (0, 0, 0) is given by: 
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The eigen values of the Jacobian matrix of system (5) at E0 are 1, )( qE  and  −h. Therefore, the 

equilibrium point E0 is unstable. Since 1 being an eigenvalue. 

 

Theorem 2. The predator free equilibrium state Ep = (1, 0, 1) is locally stable if P0 < 1 where P0 = 

))(1( qEg  


the condition are satisfied. 

 

Proof: The Jacobian matrix of system (5) at Ep = (1, 0, 1) is given by: 
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The eigen values of the Jacobian matrix of system (5) at Ep = (1, 0, 1) are −1, )(
1
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 and −h. 

Therefore the equilibrium point Ep is stable for  )(
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 i.e.  P0 < 1. 

Hence Ep is locally stable if the conditions given in the theorem are satisfied. 

 

Theorem 3: The interior equilibrium point E
*
(u

*
, v

*
, m

*
) for the system (5) is locally stable if the 

conditions 0;0 21  and 0321   hold, where hold, where s are given in the proof of the 

theorem. 

 

Proof:  The Jacobian matrix J(E
*
) at the interior point E

*
(u

*
, v

*
, m

*
) is; 
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The characteristic equation of the Jacobian Matrix J(E
*
) is given by: 
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2
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Where )( 33111 jj  , 33112 jj  and 3123123 jjj . 

 

Here, we get 011 j , 012 j , 023 j , 031 j  , 033 j  and obviously 0,0;0 321   and 

0321   hold. Thus, using Routh-Hurwitz criteria [15, 16] the conditions for asymptotic stability at 

interior equilibrium point are satisfied. Therefore, the interior equilibrium point E
* 

of the system (5) is 
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asymptotically stable. Hence, the stability behavior at the interior equilibrium point depends upon the biological 

parameters along with the fading memory.  

 

 
Figure 2: Phase portrait of the prey-predator populations of the system (5) with harvesting effort (E = 0.3) and 

different values of h: (a) h = 0.2; (b) h = 0.3; (c) h = 0.5; and (d) h = 0.95. Figure depicts that the system (5) has 

periodic orbit around the equilibrium point for h = 0.2 and h = 0.3 the system (5) moves to stable state around 

the equilibrium point for h = 0.5 and h = 0.95 and taking other parameters values from Table 1. 

 

II. Hopf Bifurcation 
In this section, we derive analytically the conditions for existence of Hopf bifurcation in the system (5) about 

interior equilibrium point E
*
. In order to determine Hopf bifurcation at h = h

*
, we start now with the equation 

(6). This equation can be re-written as 
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Therefore,      
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and hence    0)((Re 0
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Therefore, the conditions of the Hopf bifurcation theorem hold. It follows that the Hopf bifurcation is 

supercritical and the bifurcating closed orbits are orbitally asymptotically stable. Note that the interior 

equilibrium point E
*
 is an attractor point if   < 0 and an asymptotically unstable point if   < 0.  

 

Now we conclude that the system (5) has attractive periodic solutions for small positive value of  , for values 

of h
*
which are less than  h

*
, but not too far from it. Expressing the same fact in other words, the stable stationary 

population densities of predator and prey disappear when the measure of the influence of the past surpasses the 

value *
1

h
, and the population densities have stable periodic oscillation around their steady state values. 

According to the Hopf bifurcation theorem the period of the oscillation is approximately 


2 in time t and 




0

2 in time T. 

 

 
Figure 3: The figure shows the nonlinear stability of prey-predator plane for different initial values. 

 

III. MSY Strategy Impacts 
Population dynamics, the maximum sustainable yield (MSY) is theoretically the largest yield (or catch) 

that can be taken from a species stock over an indefinite period [17, 18]. In recent years, a number of species 

stocks have been depleted by over-exploitation and many are in danger of extinction. When individuals are 
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removed from a population faster than the population growth, the population begins to decline. If the rate of 

exploitation is not reduced, the harvested population will eventually become extinct. Therefore, sustainable 

harvesting practices are required for careful management, so that these resources are available for our future 

generation and to preserve biodiversity. Thus for sustainable harvesting, a balance must be needed between over 

and under exploitation of populations. The harmful effects are felt both by the exploited population and by the 

harvester who may depend on this population for economic reasons. Under exploitation is the removal of fewer 

individuals than a population can withstand. Based on this event, biologists proposed the concept called 

maximum sustainable yield (MSY), which is the largest number of individuals that can be removed from a 

population over time without causing population decline [18]. 

 

In this section, our aim is to determine the level of harvesting effort at which maximum yield is achieved and its 

application in the proposed predator-prey system (5). 

 

The interior equilibrium point of the system (5) is E
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We observe that the prey biomass growths with respect to the harvesting effort E. On the other hand, 

0
12 **







gu

dE

dv
. 

This implies that predator biomass decreases as harvesting effort increases and ultimately goes to extinction as 

effort increases to; 
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Figure 4: Bifurcation analysis with respect to the parameter for E = 0. Figure shows Hopf point bifurcation with 

the variation of h, taking the other parameters values from Table 1. 
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For a fixed catchability, there exists an optimal effort level EMSY, at which maximum sustainable yield (MSY) is 

occurred, i.e.; 0








MSYEdE

df
. 

 

Therefore, the yield biomass at interior equilibrium is an increasing function with respect to harvesting effort 

and attains the maximum sustainable yield for any harvesting effort lying within the interval (0, EMSY]. 

 

If effort crosses the critical value EMSY, then the predator population decreases and ultimately dies out from the 

system. 

 

IV. Numerical Simulation 
In this section, we solve the model system (5), numerically in Mat lab, in order to gain a better 

understanding of the previous analytical results. We have chosen the default values of the parameters from their 

reported range in various articles. The model parameters together with their default values are given in the Table 

1. The time evolution diagram of prey and predators for the same value of fading memory (h) and different 

value of harvesting effort (E) are presented in Figure 1(a), Figure 1(b), Figure 1(c) and Figure 1(d). The 

additional parameters harvesting effort (E) and fading memory (h) are chosen suitable for numerical 

simulations.  

 

Table 1: Variables and parameters used in the numerical simulations. 
Parameters Definition Values 

β Attack rate of predator 3.0 [19] 

θ Conversion rate of prey 0.8 [21] 

δ Predator mortality rate 0.24 [Estimated] 

g Half saturation constant 2.6 [Estimated] 

q The catchability coefficient 0.1[22] 

 

The dynamical behaviors of prey and predator populations are depicted in Figure 2. To observe the effects of 

harvesting on the dynamics of the system (5), we plot phase portrait with harvesting effort E = 0.3 for different 

values of fading memory (h) in Figure 2.  

 
Figure 5: Stable and unstable region of equilibrium points on h (0.05 ≤ h ≤ 1) versus E, taking the other 

parameters values from Table 1. 
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Figure 2 displays that in presence of harvesting the system (5) has periodic solution around the interior 

equilibrium point for Figure 2(a) h = 0.2, Figure 2(b) h = 0.3 and stable equilibrium solution for Figure 2(c) h = 

0.5 and Figure 2(d) h = 0.95.  

Therefore, the system has stable dynamics in presence of harvesting with higher values of fading memory (h). 

With respect to the parameter values in Table 1, the computer generated figure of the cumulative density of prey 

population versus predator population has been shown in Figure 3 with different initial values. From Figure 3 it 

can be observed that all the trajectories initiating inside the region of attraction approach towards the 

equilibrium value (x
*
, y

*
). Bifurcation diagram with respect to the parameter a for E = 0 is presented in Figure 4 

and it is clearly seen that Hopf point bifurcation occurs with the variation of fading memory(h). Now, bifurcated 

diagram with respect to harvesting effort E=0 for h = 0 and h = 2 are displayed. Hopf bifurcation takes place in 

the system (5) in presence of fading memory. The stability region in the fading memory (h) and harvesting effort 

(E) parameter plane are plotted in Figure 5. Coexisting equilibrium branch of both prey and predator populations 

are drawn in Figure 6. Prey biomass is an increasing function and predator biomass is a decreasing function with 

effort. 

 

V. Discussion and Conclusions 
We have proposed a predator-prey model with Holling type II functional response by considering 

fading memory. The term fading memory is incorporated in the system to model the ecological fact that 

predator’s growth rate at present depends not only on the current prey population but also on prey populations of 

recent past. We consider here an exponentially fading memory, because the largest weight is given to 

moments in the neighborhood of the present and as we go back in time the weight is decreasing exponentially. It 

is a new and more realistic consideration in ecological systems, specially in predator-prey system unlike other 

local predator-prey systems. We also incorporate predator harvesting effort in this model to observe the 

dynamical behavior of fishery and forestry system. 

 
 

 

Figure 6: Coexisting equilibrium bio masses of the prey and predator species as a functions of harvesting effort 

(E). Prey biomass increases and predator biomass decreases with harvesting effort, taking the parameters values 

from Table 1. 

 

Our proposed model is analysed theoretically as well as numerically. We have done numerical 

simulations with the help of parameter values chosen from field data or experimental data. Long-time memory 

together with higher harvesting rate remove the oscillatory nature of solutions by making it stable steady state 

(Figure 2). Therefore, the parameters fading memory (h) and harvesting effort (E) have strong impacts for 

coexistence of periodic and stable dynamics. So, the stability region in the fading memory(h) and harvesting 

effort (E) parameter plane are evaluated (Figures 3). It is to be seen that the existence of Hopf point is confirmed 
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in the system with fading memory. Therefore, from Figure 7, it is clear that the system dynamics is much more 

rich in presence of fading memory compare to without fading memory case. Finally, we observe that the 

coexisting equilibrium biomasses of the prey and predator species as a function of harvesting effort (E). Prey 

biomass increases and predator biomass decreases with harvesting effort (E). 

 

Therefore, dynamics of the proposed model is much more complex due to the presence of fading 

memory. The nonlocal nature of the model makes it ecologically more realistic and useful for practical purpose 

than the local predator-prey models. The results of present analysis may be useful in the field of forestry, 

agriculture and fishery. The nonlocal nature of ecological system may be investigated in future by including the 

memory term in three species food chain model. Moreover, to understand the chaos controllability aspect of 

fading memory term in a three species chaotic ecological models further investigations are necessary in this 

direction. 
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