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Abstract: In this study we introduce the multi-domain Trivariate spectral collocation method for solving 

nonlinear parabolic partial differential equations that are defined over large time intervals. The main idea is to 

reduce the size of the computational domain at each subinterval to ensure that 

veryaccurateresultsareobtainedwithinshortercomputationaltimewhenthespectralcollocation method is applied. 

The proposed method is based on applying the quasilinearization technique to simplify the nonlinear partial 

differential equation (PDE) first. The time domain is decomposed into smaller non-overlapping subintervals. 

Discretization is then performed on both time and space variables using spectral collocation. The approximate 

solution of the PDE is obtained by solving the resulting linear matrix system at each subinterval independently. 

When the solution in the first subinterval has been computed, the continuity condition is used to obtain the initial 

guess in subsequent subintervals. The solutions at different subintervals are matched together along a common 

boundary. The examples chosen for numerical experimentation include, the system equations governing 

Numerical solution of the Transient Free Convection in Magneto-Micropolar Fluid past vertical semi-infinite 

porous plate with Heat Generation, Mass Transfer and Constant Heat Flux subjected to variable Magnetic 

Field. To demonstrate the accuracy and the effectiveness of the proposed method, the condition number and the 

error analysis of the system is presented in graphs and tables. 
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I. INTRODUCTION 

Many practical problems in life result to non-linear partial differential equations. This trend is observed 

especially in chemistry, physics, biology, mathematics and engineering fields. In order to solve the arising 

nonlinear PDEs, many assumptions and approximations are made. According to [1]many nonlinear PDEs are 

not solvable analytically.[2, 3] reiterate that investigation of solutions of such non-linear PDEs 

hasthenbeenofkeyinteresttomanyresearchersduetotheirpotentialapplicationsandmore effort has been devoted to 

search for better and more efficient solution methods for these nonlinear models. [4] studied Applications of 

Radial Basis Function Schemes to Fractional Partial Differential Equations. In their work, it is proposed to show 

that meshless methods, in particular methods with radial basis functions (RBF), are an alternative to schemes in 

differences or structured meshes. 

TheNumericalSolutionofSingularlyPerturbedNonlinearPartial Differential Equations in Three Space 

Variables, the Adaptive Explicit Inverse Preconditioning Approach has been analyzed by [5]. A modified 

explicit preconditioned conjugate gradient method based on explicit inverse preconditioners is introduced for 

solving complex nonlinear parabolic problems.ThenumericalsolutionofacharacteristicSPnonlinear 

initial/boundary value is presented, and numerical results demonstrating both applicability and effectiveness of 

the derived new methods are given.Two-Dimensional Meshless Solution of theNon-Linear Convection-

Diffusion-ReactionEquation by the Local HermitianInterpolation Method was studied by [6]. The 

numericalscheme is verified by comparing the obtained results to the one-dimensionalBurgers’ and two-

dimensional Richards’ analytical solutions. The same resultsare obtained for all the non-linear solvers tested, but 

better convergence ratesare attained with the Newton Raphson method in a double iteration scheme. 

[7] analyzed a novel RBF-FD meshless scheme in curvilineargeometry for unbounded flows. They 

found out that the order of accuracy ofthe method is found in comparison with a finite difference scheme.A 

spectral collocation method based on integratedChebyshev polynomials for two-dimensionalbiharmonic 

boundary-value problems was presented [8]. The performance of the proposed method is investigated 
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byconsidering several biharmonic problems of first and second kinds; more accurate resultsand higher 

convergence rates are achieved than with conventional differential methods. [9] presented an Introduction to 

Spectral/Pseudo spectral Methods.They defined the spectral space representation of functions and the 

transformation to the physical space representation. A Hilbert space is defined as well as the definition of self-

adjoint operators that occur in quantum mechanics and kinetic theory. A time-spectral method for initial-value 

problemsusing a novel spatial subdomain scheme has been formulated by [10]. They established that the 

Common Boundary-Condition method (CBC) here proposed is a spatial subdomain scheme for the GWRM. It 

solves the physical equations independently from the global connection of subdomains in order to reduce the 

totalnumber of modes. Thus, it is a condensation procedure in the spatial domain thatallows for a simultaneous 

global temporal solution. It is here evaluated against thefinite difference methods of Crank-Nicolson and Lax-

Wendroff for two examplelinear PDEs. The CBC-GWRM is also applied to the linearised ideal 

Magnetohydrodynamics (MHD) equations for a screw pinch equilibrium. The growth rate of the mostunstable 

mode was efficiently computed with an error<0:1%. 

Inthisstudy,wedescribethemulti-domain Trivariatespectralcollocationmethod(MDTSCM) to solutions 

of nonlinear parabolic PDEs defined over large time interval. The MDTSCM is based on decomposing the given 

domain of approximation in the time variable into smaller subintervals and then solving the PDE independently 

in each subinterval using the Trivariate spectral collocation method. The multi-domain approach has been 

applied to solve nonlinear ordinary differential equations that model chaotic systems described as 1
st
 order 

systems of equations, [11]-[13]. In this study the same idea is extended to solutions of non-linear parabolic 

PDEs. In the description of the method, the algorithm is kept as simple as possible, 

whileretainingtheheartofgeneralitytocovermanyapplications. Theextentofthediscussion of multi-domain 

approach in this study is limited to non-overlapping subintervals only. 

 

II. METHOD OF SOLUTION  
In this section we describe the algorithm to describe how the multi-domain Trivariate spectral 

collocation method can be applied to solve nonlinear parabolic PDEs. We shall consider a general second order 

nonlinear system of PDEs arising from the problem of Numerical solution of the Transient Free Convection in 

Magneto-Micropolar Fluid past vertical semi-infinite porous plate with Heat Generation, Mass Transfer and 

Constant Heat Flux subjected to variable Magnetic Field as 
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subject to boundary conditions 
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In view of the non-linearity in Eq.(3) and the coupling of the partial diff erential equations Eqs.1-4, we 

simplify the diff erential equations using relaxation method. In the relaxation method, it is assumed that all 

nonlinear terms are known from the previous iteration while at the same time decoupling the system of 

diff erential equations using the Gauss-Seidel approach. Applying the relation method, we obtained the 

decoupled system of equations; 
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 where small s signifies the previous iteration level. Using initial approximations to solutions of the 

partial diff erential equations as 0u , 0N , 0 , and 0 , the Gauss-Seidel relaxation scheme Eqs.(7)-(10) is solved 

iteratively until the solution converges. As a rule of thumb, a simple choice of the initial approximation to the 

solution is a polynomial that satisfies the given boundary conditions. The semi-infinite domain of approximation 

 ,0 is truncated into a finite domain  L,0 where L is taken to be large enough to approximate conditions at 

infinity. The finite domain of approximation is discretized into Chebyshev Gauss-Lobatto nodes defined in Eq. 

(11) as 
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Fig1 depicts the Grid points/ collocation points used to estimate the solution. 

 
Figure 1: Structure of the grid in each spatial domain 

 

Here  ba, is the interval of approximation in the x -direction and T is the final time. The objects xN , zN , tN are 

the grid points in x , z , and t , respectively. In the solution process, the approximate solution of the PDEs Eqs. 

(1)-(6) is assumed to be the Trivariate Lagrange interpolating polynomials. For illustrative purposes, we shall 

consider the solution to the unknown function  tzxu ,, that takes the form; 

           tLzLxLtzxUtzxUtzxu rqp

N

p

N

q

N

r

rqp

x z t


  



0 0 0

,,,,,,       (12) 

The spatial diff erentiation matrix in x is approximated at the collocation nodes  kji tyx ,ˆ,ˆ , for 
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where T  denotes matrix transpose. Similarly, the spatial diff erentiation matrix in y is approximated at the 
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Eq. (16) distinguishes the diff erentiation matrix in z  and t , respectively, from that in x . We note that in 

generating the sequence of vectors t
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subscript k . Such a pattern will be useful when assembling the system of linear algebraic equations to obtain 

coefficient matrices. The partial derivatives of the unknowns N , , are approximated in a similar manner.  

 

Using Eq. (13), Eq. (15) and Eq. (16) in the scheme Eqs. (1)-(6), we obtain a      111  xyt NNN  

decoupled system of linear algebraic equations given by; 
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where  is an identity matrix of size    11  xx NN . The right-hand side of equations Eqs. (17)-(20) is defined 

as 
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where0 is a zero vector of size       1111  xyt NNN . The initial condition  tzxu ,,  when evaluated at 

the collocation points yields 
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The initial conditions corresponding to the other unknowns are evaluated in a similar manner. The initial 
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Eqs. (23)-(26) are solved subject to the boundary conditions 
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to yield the approximate numerical solution. 

 

2.1 Convergence and stability of the TSCM 

2.1.1 Convergence 

For a numerical scheme to be useful it needs to correspond to the partial diff erential equation that is 

approximated. A numerical method is said to be convergent if the solution of the discrete equations tends to 

exact solution of the diff erential equation as the distance between the computational grids is defined. The 

significance of spectral methods is that they can achieve high accuracy with little more resolution than is 

required to achieve moderate accuracy [14]. The fundamental problem of the numerical analysis in the boundary 

value problems is to find the approximate solution  tzxu ,, which converges to exact solution as zN  increases 

for some given time interval  T,0 . To estimate the error, the estimated solution is subtracted from the exact 

solution. The primary result is the Lax-Richtmyer equivalence theorem which states that stability is equivalent 

to convergence for consistent approximations to well-posed linear problems[14]. It is important to note that the 

theorem is applicable to any discretisation; real fluid dynamics is usually nonlinear and a typical problem is 

usually boundary value or mixed initial and boundary value problems. Let the infinity norm error is 

approximated as 

zi
n
ii NiuuE 


0,*

         (29) 

 where
n
iu  is the approximated solution, 

*
iu  is the exact solution at time level  t  and zN represent 

collocation points in the space direction. The scheme is consistent if as zN  tends to infinity, infinity norm error 

goes to zero and then the scheme is said to be convergent [15]. For nonlinear evolution problems which are 

influenced by boundary conditions, convergence and stability are difficult to prove. Convergence can be proved 

by repeating the experiments many times. 
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In order to demonstrate the convergence of the iterative scheme, we keep track of the infinity error 

norm of the solutions between successive iterations. We shall call these values the solution error. The solution 

error at each iteration is calculated using the formula; 

       
  ssessessesse SolSolNNNSolUUuSol 1111 ,,,    (30) 

2.1.2 Stability 

Since the Trivariate Spectral Collocation Method will to be used, we wish to know the largest time-step 

consistent with stability. The stability analysis for simultaneous partial differential equations is outlined in the 

MatLab Software. Stability of the iterative numerical scheme is accessed by computing the conditional numbers 

of the coefficient matrix of the system of linear algebraic equations being solved. To compute the condition 

number of coefficient matrix A, we invoke the MatLab cond(A). 

 

2.2 Accuracy and Consistency of the MDTSCM 

Numerical schemes are used to approximate the solution of evolution equations. In the algorithm 

development, when approximating the function  tzxu ,, there are errors that arise. The errors that are associated 

with the algorithm development of the 

Numerical scheme are: 

 Convergence error: it is the diff erence in numerical solution and exact solutions of the given equations. It 

is also called iteration error. 

 Modelling error:Modelling errors arise due to the diff erence between the real problem and its formulation 

as a mathematical model. 

 Truncation error: Truncation error refers to the error in a method, which occurs because some series (finite 

or infinite) is truncated to a fewer number of terms. Such errors are essentially algorithmic errors and can 

predict the extent of the error that will occur in the method. 

 Round off  error: Round off  error occur because of the computing machine inability to deal with certain 

numbers. Such numbers need to be rounded off  to some near approximation which is dependent on the 

word size used to represent numbers of the device. 

A scheme is consistent if the operator reduces to the original diff erential equation as the increases in 

the independent variables vanish. Consistency requires that the original equations can be recovered from the 

arithmetical equations. Clearly this should be a minimum requirement for any discretisation. Consistency is 

necessary for convergence, but not every consistent scheme is convergent [16]. To achieve the usefulness of the 

spectral method it is crucial to design it to give greater accuracy than can be obtained using other methods like 

finite diff erence methods. The choice of spectral method representation depends on the kind of boundary 

conditions involved in the problem. 

To assess the accuracy of the numerical scheme, we compute the magnitude of the residual error. In 

order to define the residual error, it is convenient to rewrite Eqs. (3)-(6) in the form; 

  4,3,2,1,0,,,  vNuFv           (31) 

where 0vF , 4,3,2,1v is a nonlinear operator acting on entities in the thv equation. Residual error in each 

partial diff erential equation is thus defined as 

    4,3,2,1,,,,Re 


vUFFs vv         (32) 

where U ,  ,  , and  are vectors representing discrete solutions for the unknowns u , N ,  , and  , 

respectively. 

In the next section, we describe error bound theorems emanating from Trivariate Lagrange interpolating 

polynomials. 

 

2.3 Error bounds theorems in a Multi-Domain Trivariate polynomial interpolation 

 In this section, we investigate an upper bound for the absolute error. Also, we present a procedure to 

estimate the absolute error. In this section, we present new error bound theorems that govern polynomial 

interpolation error in a Trivariate Lagrange interpolating polynomial constructed using Chebyshev Gauss-

Lobatto nodes which are essentially the relative extremes of the xN th degree Chebyshev polynomial of the 

first kind       1,1ˆ,ˆarccoscosˆ  xxNxT xNx
. A complete set of the Chebyshev Gauss Lobatto nodes are the 

roots of the 1xN th degree polynomial given by; 

     xTxxL
xx NN ˆ'ˆ1ˆ 2

1            (33) 

The theorem that benchmarks formulation of the error bound theorems on Trivariate polynomial interpolation is 

given below; 
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 Theorem 1. Let         TdcbaCtzxu tzx NNN
,0,,,,

3



be sufficiently smooth such that at least the 

 1xN th partial derivative with respect to x ,  1zN th partial derivative with respect to z ,  1tN th 

partial derivative with respect to t , and the   1tzx NNN th mixed partial derivative with respect to zx,

and t  exists and are all continuous, then there exists values    ,,,,,, '' dcba zzxx   and  Ttt ,0, '  , such 
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 (34) 

where  tzxU ,, is a Trivariate interpolating polynomial of  tzxu ,, at   xN

iix
0

grid points in x -variable,   zN

jjz
0

 

grid points in z -variable, and   tN

kkt 0
grid points in t -variable. The remainder formula Eq. (34) is based on the 

mean value theorem and is derived recursively from to the corresponding univariate error formula given in Eq. 

(42) for a sufficiently smooth function  tzxu ,, . Taking the absolute value of Eq. (34) we obtain 
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where      Tdcba ,0,,  . Since the function  tzxu ,, is assumed to be smooth on the interval of 

approximation, it follows that its derivatives are bounded and thus  constants 321 ,, CCC  and 4C , such that 

 

 
 

 

 

 
 

 






















































4111

3

,,
31

1

,,

21

1

,,
11

1

,,

,,
max,

,,
max

,
,,

max,
,,

max

C
tzx

tzxu
C

t

tzxu

C
z

tzxu
C

x

tzxu

tzx

tzx

t

t

z

z

x

x

NNN

NNN

tzxN

N

tzx

N

N

tzxN

N

tzx

     (36) 

The error bound for Trivariate polynomial interpolation using Chebyshev Gauss-Lobatto nodes on a single 

domain is governed by the theorem below; 

 

 Theorem 2 (The error bound in a single domain). The resulting error bound when CGL grid points
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variable are used in Trivariate polynomial interpolation is given by 
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Proof: First, using the relation stated in [4] we express Eq. (3.54) as 

         xTNNxTNxNxTxxL xxxxNN xx
ˆˆˆˆ'ˆ1ˆ

1
2

1         (38) 

Using the triangle inequality and noting that    ,1,1ˆ,1ˆ  xxTNx we have 

          xxxxxxxNxN NxTNNxTNxNxTNNxTxNxL
xx

2ˆˆˆˆˆˆˆ
111 
     (39) 

The leading coefficient of  xL
xN

ˆ
1 is x

N
Nx 1

2


, where the components 
1

2
xN

and xN comes from the leading 

coefficient of  xTNx
ˆ  and the application of xN -th rule of differentiation on  xTNx

ˆ , respectively. The product 

factor in the first term of the error bound expression given at Eq. (35) can therefore be taken as the factorized 

form of monic polynomial
 

x
N

N

N

xL

x

x

1

1

2

ˆ




. We write, 
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Using Eq. (39), it is easy to establish that the monic polynomial Eq. (40) is bounded by 
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Considering a general interval  bax , , we can show that the first product factor in Eq. (35) is bounded by 
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Similarly, we conclude that the second and the third product factor are bounded, respectively, by; 
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And 
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Using Eqs. (42) −(44), and Eq. (36) in Eq. (35) the proof is completed. 

 

III. RESULTS AND DISCUSSION 
3.1 Residual Error Graph 

Residual error is useful in accessing the accuracy of numerical approximations where there is no prior 

knowledge of the exact solutions.  We also look at the residual error results in order to ensure that our numerical 

scheme is accurate. Figure 5.31 show that very accurate results are obtained after the 6
th
 iteration suggesting that 

the numerical scheme is very accurate and residual errors of order 810 are obtained. Fig2 clearly show the 

accuracy of the method. The accuracy is seen to improve with an increase in the number of collocation points

xN . It is remarkable to note that accurate results with errors of order up to 810 are obtained using very few 

collocation points in both the x and t variables 0tN , 0xN . This is a clear indication that the MDTSCM is 

powerful method that is appropriate in solving non-linear PDEs. We note also that the TSCM is computationally 

fast as accurate results are generated in a fraction of a second in the computation considered in this study. 
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Figure 2: Residual error graph for ,,, Nu and ,

 
 

3.2 Convergence Graph 

Fig3 depicts that the numerical scheme converges quadratically. Convergence is achieved after only 5 

iterations an indicator that the numerical scheme converges faster. The order of convergence is computed and 

displayed in table 1. Values in this table confirm the order of convergence of the iterative numerical scheme is 

indeed 2. 

 
Figure 3: Convergence graph for ,,, Nu and ,  

 
3.3 Order of Convergence 

The method will converge if infinity norm errors goes to zero as the number of collocation points 

increases. It also converges if an increase in collocation points results in a decrease in the infinity norm errors. 

Table 2 depicts the order of convergence of the MDTSCM for the cases under study. It can be seen that, in the 

present case considered, the iteration scheme takes about 5 iterations to converge fully. Beyond the point where 

full convergence is reached, error norm levels off and does not improve with an increase in the number of 

iterations. This plateau level gives an estimate of the maximum error that can be achieved when using the 

proposed method with a certain number of collocation points. It is worth remarking that the accuracy of the 

method depends on the number of collocation points in both the x and t directions.  
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Table 1: Order of Convergence 
Iterations, u  

Order of convergence

1

1log








ss

ss

uu

uu
 

  

1 ……….. 

2 1.883 

3 1.954 

4 1.986 

5 1.970 

6 1.992 

7 2.021 

8 1.981 

9 1.984 

10 1.967 

 
So, the order of convergence is quadratic i.e. almost 2 (See above). The rate of convergence of spectral 

approximations depends only on the smoothness of the solution, yielding the ability to achieve high precision 

with a small amount of data. The spectral collocation method is chosen considering the fact that it gives an 

exponential convergence rate, which is very useful in providing highly accurate solutions to nonlinear 

diff erential equations even if a small number of grid points are used. The spectral methods also work well in 

solving both linear and nonlinear equations. Generally the spectral methods are computationally less challenging 

compared to traditional methods but become inaccurate for problems with disjointed coefficients [17]. 

 
3.4 Stability 

The condition number of the matrix measures the ratio of the maximum relative stretching to the 

maximum relative shrinking that matrix does to any non-zero vectors. The 2-norm condition number of a matrix 
nnA  is defined as 

 
2

1

2

 AAA . 

Without any preconditioning  nA grows proportionally with n , which is significantly better than the 

typical growth of  Nn2  in the condition number for the standard tau and collocation methods. It is imperative 

to note that the condition number of the linear system is independent of the number of collocation points; and 

the underlying boundary conditions are imposed exactly. Table 2 is a table of condition numbers of coefficient 

matrices.  

 

Table 2: Condition numbers of coefficient matrices 
Unknown Condition number 

u  3.54778e+03 

N  
5.03241e+04 

  
2.76865e+03 

  8.05429e+03 

 
In view of the sizes of the associated coefficient matrices, above conditions numbers are small, hence 

the system of linear algebraic system is well posed, and thus the numerical scheme is stable. 

To assess the stability of the numerical scheme, we computed condition numbers of the associated 

coefficient matrices of the system of linear algebraic equations being solved.  

 

IV. CONCLUSION 
In view of size of the small values of condition numbers, we infer that the numerical scheme is stable 

and thus less sensitive to changes in initial data i.e. the problem is well-posed, and convergence of the iterative 

numerical scheme is independent of the initial approximation to the solution. The useful features of the iterative 

numerical method suggest that it is superior and therefore a reliable method for solving this class of fluid 

dynamics problems. 
The multi-domain Trivariate spectral collocation method has been used successfully to solve non-linear 

parabolic PDEs that arises in wide range of application like genetics, biology, heat and mass transfer and wave 

processes. The approximate results confirms that the multi-domain Trivariate spectral collocation method is very 

accurate and is computationally faster. This approach is an alternative to other numerical methods that can be 
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used to solve non-linear parabolic partial differential equations. The multi-domain Trivariate spectral collocation 

method being more accurate and computationally faster can therefore be adopted and extended to solve similar 

problems that model real life phenomenon. 
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