Supereulerian and Trailable Digraph Products

Khalid A. Alsatami*Juan Liu[†], Xindong Zhang[‡],

*Department of Mathematics, College of Science, Qassim University, Buraydah, KSA. Email: [†]College of Mathematics Sciences, Xinjiang Normal University, Urumqi, China. Email: liujuan1999@126.com [‡]College of Mathematics Sciences, Xinjiang Normal University, Urumqi, China. Email: Corresponding Author; Khalid A. Alsatami

Abstract: A digraph D is supereulerian if D contains a spanning eulerian subdigraph, and is trailable if D contains a spanning ditrail. Sufficient conditions on D_1 and D_2 are obtained for the Cartesian product digraph and Lexicographic product digraph of D_1 and D_2 to be supereulerian or trailable.

Key words. Combinatorial problems, Supereulerian digraph, Cartesian product, Lexicographic product, Eulerian digraph

Date of Submission: 03-04-2019 Date of acceptance: 19-04-2019

Introduction

We consider finite graphs and digraphs.Undefined terms and notation will follow [6] for graphs and [3] fordigraphs.WewriteD₁ \cong D₂to

Denote that the digraphs D_1 and D_2 are is omorphic. A sin[6], uv represents an edge joining uandv. Asin[3], a digraph does not have **parallel**arcs, that is, pairs of arcs with the same tailand the same head, or **loops**. The underlying graph of a digraph D, denoted bytt(D), is obtained from D by erasing the orientation so fallarcs of D. Throughout this paper, we use the notation (u, v) to denote an arcoriented from utovina digraph; and use [u, v] to denote an arcwhich is either (u, v) or (v, u). For an integer, we define $[n] = \{1, 2, \dots, n\}$. A walk in D is an alternating sequence $W = x_1 a_1 x_2 a_2 x_3 \cdots x_{k-1} a_{k-1} x_k$ of vertices x_i and arcs a_j from D such that $a_j = (x_j, x_{j+1})$ for every $i \in [k]$ and $j \in [k-1]$. A walk Wisclosed if $x_1 = x_k$, and open otherwise. We use $V(W) = \{x_i : i \in [k]\}$

and $A(W) = \{a_j: j \in [k-1]\}$. We say that W is a walk from x_1 to x_k or an (x_1, x_k) -walk. If $x_1 f = x_k$, then we say that the vertex x_1 is the **inital vertex** of W, the vertex x_k is the **terminal vertex** of W, and x_k are end-

I.

vertices of W. The length of a walk is the number of its arcs. When the arcsof W are understood from the context, we will denote W by $x_1x_2x_k$. A **ditrail** in D is a walk in which

allarcsaredistinct. Always we use a ditrail to denote an open ditrail. If the vertices of Ware distinct, then W is a **dipath**. If the vertices $x_1x_2x_{k-1}$ are distinct, $k \in 3$ and $x_1 = x_k$, then W is a **dicycle**. A digraph D is **strong** if, for every pair x, y of distinct vertices in D, there exist an (x, y)-walk and a (y,x)-walk. A digraph D is **weaklyconnected** if the top (D) of (D) of (D), then D(X) denotes the subdigraph induced by X. For a digraph D and a set $B \subseteq A(D)$, the digraph D – B is the spanning subdigraph of D with arc set A(D) - B. If H is a subdigraph of D and $S \subseteq A(D) - A(H)$

with $V(D(S)) \subseteq V(H)$, the digraph H+S is the subdigraph of D with arcset A(H)+S and vertex set

V(H). We often write D-a for $D-\{a\}$ and D+a for $D+\{a\}$. Let D_1 and D_2 betwo digraphs, the

union $D_1 \cup D_2$ of D_1 and D_2 is a digraph with vertex set $V(D_1 \cup D_2) = V(D_1) \cup V(D_2)$ and arcset

 $A(D_1 \cup D_2) = A(D_1) \cup A(D_2).$

Following [3], for X, $Y \subseteq V$ (D), define

$$(X, Y)_{D} = \{(x, y) \in A(D) : x \in X, y \in Y\}.$$

For a vertex v in D, we use the following notation:

 $N_{D}^{+}(v) = \{ u \in V(D) - v: (v, u) \in A(D) \}, N_{D}^{-}(v) = \{ w \in V(D) - v: (w, v) \in A(D) \}.$

The sets $N_D^+(v)$, $N_D^-(v)$ and $N_D(v) = N_D^+(v) \cup N_D^-(v)$ are called the **out-neighbourhood**, **in-neighbourhood** and **neighbourhood** of v. We called the vertices in $N_D^+(v)$, $N_D^-(v)$ and $N_D(v)$ the **out-neighbours**, **in-neighbours** and **neighbours** of v.

neighbours and neighbours of v.

For a set $X \subseteq V(D)$, $d_D^+(X) = |(X, V(D) - X)_D|$ is the **out-degree** of X and $d_D^-(X) = |(V(D) - X, X)_D|$ is the **in-degree** of X. The degree of X is the number $d_D(X) = d_D^+(X) + d_D^-(X)$. When the digraph D is understood from the context, we often omit the subscript D.

Next, we use the following definitions of Cartesian product and Lexicographic product of digraphs [3].

Next, we use the following definitions of Cartesian product and Lexicographic product of digraphs [3]. **Definition 1.1** Let $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ be two digraphs, $V_1 = \{u_1, u_2, \dots, u_{n_1}\}$, $V_2 = v_1, v_2,$, v_{n_2} . Then the Cartesian product and Lexicographic product of D_1 and D_2 are defined as following (*i*) **The Cartesian product** denoted by $D_1 \times D_2$ is the digraph with vertex set $V_1 \times V_2$ and $A(D_1 \times D_2) = \{((u_i, v_j), (u_s, v_t)) : u_i = u_s \text{ and } (v_j, v_t) \in A_2, \text{ or } (u_i, u_s) \in A_1 \text{ and } v_j = v_t\}$. (*ii*) **TheLexicographicproduct** denoted by $D_1[D_2]$ is the digraph with vertex set $V_1 \times V_2$ and $A(D_1[D_2]) = \{((u_i, v_i), (u_s, v_t)) : u_i = u_s \text{ and } (v_i, v_t) \in A_2, \text{ or } (u_i, u_s) \in A_1\}$.

Boesch, Suffel, and Tindell [5] in 1977 proposed the supereulerian problem, which seeks to characterize graphs that have spanning eulerian subgraphs; and they indicated that such this problem would be very difficult. Pulleyblank [14] in 1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP-complete. As of today, there have been lots of researches on it. See Catlin's survey [7] and the updates in [8] and [13] for a liternature in the topic.

It is natural to study supereulerian digraphs. A digraph D is **eulerian** if G(D) is connected and for every $v \in V(D)$, $d_D^+(v) = d_D^-(v)$; and is **supereulerian** if D contains a spanning eulerian subdigraph; and is **trailable** if D contains a spanning ditrail. Earlier studies were done by Gutin [10, 11]. Recent developments can be found in [2, 4, 12], among others.

In [9], an open problem (Problem 6 of [9]) was raised to find natural conditions for the product of graphs to be hamiltonian. Motivated by this problem, we propose to seek natural conditions on digraphs D_1 and D_2 such that the product of D_1 and D_2 is superculerian. In this paper, sufficient conditions on D_1 and D_2 for $D_1 \times D_2$ and $D_1[D_2]$ to be superculerian or trailable are investigated.

II. MainResults

2.1 Notations

The following notation will be used througout this section. Let $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ be two digraphs with $V_1 = \{u_1, u_2, \dots, u_{n_1}\}$ and $V_2 = \{v_1, v_2, \dots, v_{n_2}\}$. For each fixed $v_j \in V_2$, define $D_1^{v_j}$ to be the digraph with vertex set $V_1^{v_j} = \{(u_i, v_j):$ for any $u_i \in V_1\}$, and arc set $A_1^{v_j} = \{((u_i, v_j), (u_s, v_j)): (u_i, u_s) \in A_1\}$. Similarly, for each fixed $u_i \in V_1$, define $D_2^{u_i}$ to be the digraph with vertex set $V_2^{u_i} = \{((u_i, v_j), (u_s, v_j)): (v_i, v_s) \in V_2\}$, and arc set $A_2^{u_i} = \{((u_i, v_j), (u_i, v_s)): (v_j, v_t) \in A_2\}$. The following observations are immidiate:

Observation 2.1 Each of the following holds.

(i) $D_1^{v_j}$, $D_2^{u_i}$ are subdigraphs of $D_1 \times D_2$ and $D_1[D_2]$, and $D_1^{v_j} \cong D_1$, $D_2^{u_i} \cong D_2$ for any $i \in [n_2]$, and for any $j \in [n_1]$.

 $\begin{array}{l} (ii) \ V(D_1 \times D_2) = V(D_1[D_2]) = \bigcup_{j=1}^{n_2} \ V(D_1^{v_j}) = \bigcup_{i=1}^{n_1} \ V(D_2^{u_i}). \\ (iii) \ V(D_1^{v_j}) \cap V(D_1^{v_t}) = \emptyset, \ \text{if} v_j, v_t \in V_2 \\ \text{and} v_j \neq v_t; \ V(D_2^{u_i}) \cap V(D_2^{u_s}) = \emptyset, \ \text{if} u_i, u_s \in V_1 \\ \text{and} u_i \neq u_s. \\ (iv) \ V(D_1^{v_j}) \cap V(D_2^{u_i}) = \{(u_i, v_j)\} \\ \text{and} A(D_1^{v_j}) \cap A(D_2^{u_i}) = \emptyset \\ \text{for} u_i \in V_1, v_j \in V_2. \end{array}$

For any subdigraph $H_1 \subseteq D_1$ and $v \in V_2$, we use H_1^v to denote the subdigraphs of D_1^v with $V(H_1^v) = \{(u_i, v): u_i \in V(H_1)\}$ and $A(H_1^v) = \{((u_i, v), (u_s, v)): (u_i, u_s) \in A(H_1)\}$. Similarly, for any subdigraph $H_2 \subseteq D_2$ and $u \in V_1$, we use H_2^u to denote the subdigraphs of D_2^u with $V(H_2^v) = \{(u, v_i): v_i \in V(H_2)\}$ and $A(H_2^v) = \{((u, v_i), (u, v_s)): (v_i, v_s) \in A(H_2)\}$.

2.2 Cartesian product of digraphs

Sufficient conditions will be investigated in this section for the Cartesian product of D_1 and D_2 to be supereulerian or trailable. The results below are useful.

Theorem 2.1 (J.M. Xu [15]) Let D_1 and D_2 be eulerian digraphs. Then the Cartesian product $D_1 \times D_2$ is eulerian.

Lemma 2.1 (K.A. Alsatami et al, Lemma 2 of [1]) A digraph D is nonsuperculerian if for some integer m > 0, V(D) has vertex-disjoint subsets B, B₁, ..., B_m satisfying both of the following: (i) N⁻(B_i) \subseteq B, for $i \in [m]$. (ii) $|\partial^{-}(B)| \le m - 1$.

Lemma 2.1 can be applied to find examples for digraph D to be nonsupereulerian. In the following, we present some tools needed in our arguments.

Definition 2.1 Let D be a digraph, F_1, F_2, \dots, F_k be eulerian subdigraphs of D, and let $F = \{F_1, F_2, \dots, F_k\}$. (i) F is called an eulerian vertex cover of D, if $V(D) = \bigcup_{F_i \in F} V(F_i)$ and $F = \bigcup_{F_i \in F} F_i$ is weakly connected. (ii) For any $u, v \in V(D)$, F is called an **eulerian chain** joining u and v, if $u \in V(F_1)$, $v \in V(F_k)$, and $V(F_i) \cap$ $V(F_{i+1}) \neq \emptyset$ for every $i \in [k-1]$.

In [3], a digraph D is called cyclically connected if for every pair x, y of distinct vertices of D there is a sequence of dicycles C_1, C_2, \dots, C_k such that x is in C_1 , y is in C_k , and C_i and C_{i+1} have at least one common vertex for every $i \in [k - 1]$. The following theorem are useful.

Theorem 2.2 [3] A digraph D is strong if and only if it is cyclically connected.

Proposition 2.1 Let D be a weakly connected digraph. Then the following are equivalent.

(i) D is strong.

(ii) D is cyclically connected.

(iii) $\forall u, v \in V(D)$, D has an eulerian chain joining u and v.

(iv) D has an eulerian vertex cover.

Proof.(i) \Leftrightarrow (ii). By Theorem 2.2, the result is hold.

(ii) \Rightarrow (iii). As dicycles are eulerian digraphs, every dicycle sequence is also joining u and v, and is also an eulerian chain.

(iii) \Rightarrow (iv). We may assume that $|V(D)| \ge 2$. By (iii), D has an eulerian subdigraph. By Definition 2.1, every eulerian subdigraph has an eulerian vertex cover. Let D' be a subdigraph of D such that D' has an eulerian vertex cover F' with |V(D')| maximal. If V(D') = V(D), then done. Assume that |V(D')| < |V(D)|. Then there exist $u \in V(D) - V(D')$ and $v \in V(D')$. By (iii), *D* has an eulerian chain $F_{-1} = \{F_1, F_2, \dots, F_k\}$ joining *u* and *v*. By Definition 2.1, $D' \cup D[\cup_{i=1}^k A(F_i)]$ is also a subdigraph with an eulerian vertex cover $F' \cup F_{-1}$, contrary to the maximality of D'. Hence (iv) must hold.

 $(iv) \Rightarrow (i)$ Let D' be a maximal strong component of D. If V(D') = V(D), then (i) holds. Otherwise $\exists u \in V(D')$ and $v \in V(D) - V(D')$. By (iv), D has an eulerian vertex cover $F = \{F_1, F_2, \dots, F_k\}$. Since F is weakly connected, there exists an $F_i \in F$ with $V(F_i) \cap V(D) \neq \emptyset$ and $V(F_i) - V(D') \neq \emptyset$. It follows by definition that $D[A(D') \cup A(F_i)]$ is strong, contrary to the maximality of D'.

In the following, we will show some sufficient conditions on D_1 and D_2 to assure that the Cartesian product $D_1 \times$ D₂is supereulerian or trailable.

Theorem 2.3 Let D_1 and D_2 be two strong digraphs with $min\{|V(D_1)|, |V(D_2)|\} \ge 2$ such that D_1 is superculerian and D_2 has an eulerian vertex cover with m eulerian subdigraphs such that $m \leq |V(D_1)|$. Then the Cartesian product $D_1 \times D_2$ is supereulerian.

Proof. Let $V(D_1) = \{u_1, u_2, \dots, u_m, u_{m+1}, \dots, u_{n_1}\}$ and $V(D_2) = \{v_1, v_2, \dots, v_{n_2}\}$. Let $F = \{F_1, F_2, \dots, F_m\}$ be an eulerian vertex cover of D_2 . Since D_1 is a supereulerian digraph, D_1 has a spanning eulerian ditrail H_1 . By Observation 2.1, let

 $H = (\bigcup_{j=1}^{n_2} H_1^{v_j}) \cup (\bigcup_{i=1}^m F_i^{u_i}).$

We want to prove that H is a spanning eulerian subdigraph of $D_1 \times D_2$. Since H_1 is a spanning eulerian ditrail of D_1 , so by Observation 2.1 (i), (ii) and (iii),

 $\bigcup_{i=1}^{n_2} V(H_1^{v_j}) = V(D_1 \times D_2), \text{ and for any } v_j, v_t \in V(D_2) \text{ if } v_j \neq v_t, \text{ then } V(H_1^{v_j}) \cap V(H_1^{v_t}) =$ Ø.

Hence H is a spanning subdigraph. In the following, we will show that $d_H^+((u_i, v_i)) = d_H^-((u_i, v_i))$ for all $(u_i, v_i) \in V(H).$

By Observation 2.1 (iii) and (iv),

 $(\bigcup_{j=1}^{n_2} A(H_1^{v_j})) \cap (\bigcup_{i=1}^m A(F_i^{u_i})) = \emptyset.$ (1) Since H_1 is a spanning eulerian ditrail of D_1 , it follows that $d_{H_1}^+(u_i) = d_{H_1}^-(u_i)$ for $u_i \in V(H_1)$. And by (1), we get that

$$d_{H_1}^{+v_j}((u_i, v_j)) = d_{H_1}^{-v_j}((u_i, v_j)) \text{ for all } (u_i, v_j) \in V(H_1^{v_j}).$$
(2)

Since F_i is an eulerian subdigraph in D_2 for $i \in [m]$, we get that $d_{F_i}^+(v_j) = d_{F_i}^-(v_j)$ for $v_j \in V(F_i)$. By

Observation 2.1 (iii),

 $V(F_s^{u_s}) \cap V(F_h^{u_h}) = \emptyset \text{ for } s, h \in [m] \text{ and } s \neq h.$ (3)

By (1) and (3), we get that

$$d_{F_{i}^{u_{i}}}^{+}((u_{i},v_{j})) = d_{F_{i}^{u_{i}}}^{-}((u_{i},v_{j})) \text{ for all } (u_{i},v_{j}) \in V(F_{i}^{u_{i}})(4)$$

Thus, by (2) and (4), we get that $d_{H}^{+}((u_{i}, v_{i})) = d_{H}^{-}((u_{i}, v_{i}))$ for all $(u_{i}, v_{i}) \in V(H)$.

Now, we prove that for any two distinct vertices (u_i, v_s) and (u_j, v_t) in V(H), there is a $((u_i, v_s), (u_j, v_t))$ dipath in *H*. By Proposition 2.1, there exists an eulerian chain $F' = \{F_{i_1}, F_{i_2}, \dots, F_{i_h}\}$ joining v_s and v_t in D_2 such that $v_s \in V(F_{i_1})$ and $v_t \in V(F_{i_h})$. Let $F_{i_l}^{u_{i_l}} \cong F_{i_l}$ be the subdigraph of $D_2^{u_{i_l}}$ at the fixed vertex u_{i_l} , where $i_l \in [m]$ for $l \in [h]$. By the definition of an eulerian chain, $V(F_{i_{l-1}}) \cap V(F_{i_l}) \neq \emptyset$, pick a vertex $v_{(l-1,l)}$ in $V(F_{i_{l-1}}) \cap V(F_{i_l})$ for $l \in \{2, 3, \dots, h\}$. Let $u_{i_1} = u_i$, $u_{i_h} = u_j$, $v_{(0,1)} = v_s$ and $v_{(h,h+1)} = v_t$, and let $P_{F_{i_l}}$ be the $((u_{i_l}, v_{(l-1,l)}), (u_{i_l}, v_{(l,l+1)}))$ -dipath in $F_{i_l}^{u_{i_l}}$ and $P_{i_{(l-1,l)}}^{v_{(l-1,l)}}$ be the $((u_{i_{l-1}}, v_{(l-1,l)}), (u_{i_l}, v_{(l-1,l)}))$ -dipath in $H_1^{v_{(l-1,l)}}$. Thus.

$$P = (\bigcup_{l=1}^{h} P_{F_{i,l}}) \cup (\bigcup_{l=2}^{h} P_{i,l-1,l})$$

 $P = (\bigcup_{l=1}^{n} P_{F_{i_l}}) \cup (\bigcup_{l=2}^{n} P_{i_{(l-1,l)}})$ is a dipath from (u_i, v_s) to (u_j, v_t) in V(H). This proves the Theorem.

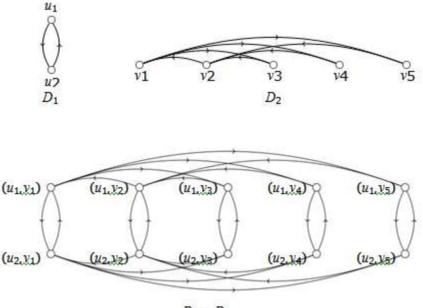
Example 2.1 below presents a superculerian digraph D_1 and a strong digraph D_2 which has an eulerian vertex cover with m eulerian subdigraphs, where $m > |V(D_1)|$ such that the Cartesian product $D_1 \times D_2$ is nonsupereulerian.

Example2.1Let D_1 be a supercular indigraph with $V(D_1) = \{u_1, u_2\}$ and $A(D_1) = \{(u_1, u_2), (u_2, u_1)\}$.

Let D_2 be astrong digraph with $V(D_2) = \{v_1, v_2, v_3, v_4, v_5\}$ and $A(D_2) = \{(v_2, v_1), (v_1, v_3), (v_3, v_2), (v_1, v_4), (v_4, v_2), (v_1, v_3), (v_3, v_2), (v_1, v_3), (v_3, v_2), (v_1, v_3), (v_3, v_2), (v_1, v_3), (v_3, v_3), (v_$ v_5 , (v_5, v_2) , which has an eulerian vertex cover with 3 eulerian subdigraphs. By definition 1.1, we can obtain the Cartesian product $D_1 \times D_2$ of D_1 and D_2 (See Figure 1). Let B, B₁, B₂ and B₃ be vertex-disjoint subsets of V $(D_1 \times D_2)$ with B = { $(u_1, v_1), (u_2, v_1)$ }, B₁= { $(u_1, v_3), (u_2, v_3)$ }, B₂=

 $\{(u_1, v_4), (u_2, v_4)\}$ and $B_3 = \{(u_1, v_5), (u_2, v_5)\}$. We find that $N^{-}(B_i) \subseteq B$ for $i \in \{1, 2, 3\}$ and $|\partial^{-}(B)| =$

2. By Lemma 2.1, the Cartesian product $D_1 \times D_2$ is nonsupereulerian.



 $D_1 \times D_2$

Figure 1. The digraphs D_1 , D_2 and the Cartesion product $D_1 \times D_2$

Example 2.1 indicates that if D_1 is a superculerian digraph with $|V(D_1)| = 2$ and D_2 is a strong digraphwhichhasaneulerianvertexcoverwith3euleriansubdigraphs, then $D_1 \times D_2$ is nonsupereulerian. In fact, for n_1 , $n_2 \in N$ and $n_2 \ge n_1 + 3$, the example can be extended to infinite case: Let D_1 be a dicycle with $V(D_1) = \{u_1, u_2, \dots, u_n\}$, let D_2 be astrong digraph with $V(D_2) = \{v_1, v_2, \dots, v_n\}$ and $A(D_2) = \{v_1, v_2, \dots, v_n\}$.

$$\{(v_2, v_1), (v_1, v_3), (v_3, v_2), (v_1, v_4), (v_4, v_2), \cdots, (v_1, v_n 2), (v_n 2, v_2)\}$$
. D₂has an eulerian vertex cover with

n₂−2euleriansubdigraphs{D[{v₁,v₂,v_{i+2}}]:i ∈[n₂−2]}.LetB,B₁,B₂,···,B_n₂−2bevertex-disjoint subsets of V (D₁× D₂) with B = { $(u_1, v_1), (u_2, v_1), \dots, (u_{n_1}, v_1)$ } and B_i = { $(u_1, v_{i+2}), (u_2, v_{i+2}), \dots, (u_{n_1}, v_{i+2})$ } for $i \in [n_2 - 2]$. We find that $N^{-}(B_i) \subseteq B$ for $i \in [n_2-2]$ and $|\partial^{-}(B)| = n_1 \le n_2 - 3 = (n_2 2)$ 1. By Lemma 2.1, the Cartesian product D₁D₂is nonsupereulerian. These examples indicate that Theorem 2.3 is best possible in some sense.

If D_2 has an eulerian vertex cover with one (for m = 1 in Theorem 2.3) eulerian subdigraph, then D_2

is supereulerian. The following corollary can be obtained.

Corollary 2.1 Let D_1 be a supereulerian digraph and D_2 be a digraph. (i) If D_2 is supereulerian, then the Cartesian product $D_1 \times D_2$ is supereulerian.

(ii) If D_2 is trailable, then the Cartesian product $D_1 \times D_2$ is trailable.

Proof. Let $V(D_1) = \{u_1, u_2, \dots, u_{n_1}\}, V(D_2) = \{v_1, v_2, \dots, v_{n_2}\}$, and let $u_{i_1} = u_1, v_{i_1} = v_1$. First, we will show that (i) holds. If $|V(D_1)| = 1$, then $D_1 \times D_2 \cong D_2$ is superculerian. If $|V(D_2)| = 1$, then $D_1 \times D_2 \cong D_1$ is superculerian. Hence we assume that $|V(D_i)| \ge 2$ for i = 1,2. Since D_2 is superculerian, let $H_{21} =$ $v_{j_1}v_{j_2}\cdots v_{j_{h_1}}v_{j_1}$ be a spanning eulerian ditrail of D_2 , where $j_1, j_2, \cdots, j_{h_1} \in [n_2]$. Then H_{21} is an eulerian vertex cover with one eulerian subdigraph. Thus, (i) follows by Theorem 2.3, for m = 1.

Next, we will prove that (ii) holds. If $|V(D_1)| = 1$, then $D_1 \times D_2 \cong D_2$ is trailable. If $|V(D_2)| = 1$, then $D_1 \times D_2 \cong D_1$ is supercularian, which is also trailable. Hence we assume that $|V(D_i)| \ge 2$ for i = 1, 2. Since D_1 is superculerian, let $H_1 = u_{i_1}u_{i_2}\cdots u_{i_{h_1}}u_{i_1}$ be a spanning culerian ditrail of D_1 , where $i_1, i_2, \cdots, i_{h_1} \in D_1$ $[n_1]$. Since D_2 has a spanning ditrail denoted by $H_{22} = v_{j_1}v_{j_2}\cdots v_{j_{h_2}}$, where $j_1, j_2, \cdots, j_{h_2} \in [n_2]$. If $(v_{j_{h_2}}, v_{j_1}) \in [n_2]$. $A(D_2)$, then $H_{22} + (v_{i_{h_2}}, v_{i_1})$ is a spanning eulerian ditrail of D_2 , so D_2 is supereulerian. By (i), $D_1 \times D_2$ is superculerian, thus, $D_1 \times D_2$ is trailable. If $(v_{j_{h_2}}, v_{j_1}) \notin A(D_2)$, we obtain a new digraph $D_{2'}$ such that $V(D_{2'}) =$ $V(D_2)$ and $A(D_{2'}) = A(D_2) \cup (v_{j_{h_2}}, v_{j_1})$. Then $H_{22'} = H_{22} + (v_{j_{h_2}}, v_{j_1})$ is a spanning closed ditrail in $D_{2'}$. Let

$$H' = (\bigcup_{j=1}^{n_2} H_1^{v_j}) \cup H'^{u_1}_{22} = (\bigcup_{j=1}^{n_2} H_1^{v_j}) \cup (H^{u_1}_{22} + ((u_1, v_{j_{h_2}}), (u_1, v_{j_1}))).$$

By Theorem 2.3, H' is a spanning closed ditrail in $D_1 \times D_2$. Let

 $H = H' - ((u_1, v_{j_{h_2}}), (u_1, v_{j_1})) = (\bigcup_{j=1}^{n_2} H_1^{v_j}) \cup H_{22}^{u_1}.$ Then *H* is a spanning ditrail in $D_1 \times D_2$.

A digraph D is **bi-trailable** if there exist two distinct vertices $x, y \in V(D)$, such that D has both spanning (x, y)-ditrail and spanning (y, x)-ditrail. In the study of supereulerian and trailable Cartesian product of digraphs, bi-trailable digraphs seem to play a useful role.

Theorem 2.4 Let D_1 be a bi-trailable digraph and D_2 be a digraph.

(i) If D_2 is trailable, then the Cartesian product $D_1 \times D_2$ is trailable.

(ii) If D_2 is superculerian with $|V(D_2)| \ge 2$ and $|V(D_2)|$ is even, then the Cartesian product $D_1 \times D_2$ is supereulerian.

Proof. Let $V(D_1) = \{u_1, u_2, \dots, u_{n_1}\}$ and $V(D_2) = \{v_1, v_2, \dots, v_{n_2}\}$. Since D_1 is bi-trailable, we assume that for a pair of distinct vertices $x, y \in V(D_1)$, D_1 contains a spanning (x, y)-ditrail $H_{11} = u_s u_{i_1} u_{i_2} \cdots u_{i_b} u_t$ and a spanning (y, x)-ditrail $H_{12} = u_t u_{l_1} u_{l_2} \cdots u_{l_h} u_s$, where $x = u_s$, $y = u_t$ and $s, t, i_1, i_2, \cdots, i_h, l_1, l_2, \cdots, l_{h'} \in [n_1]$. If L_i is a subdigraph of D_i for i = 1, 2, then for each $u_j \in V(D_1)$ and $v_k \in V(D_2)$, we use $L_1^{v_k}$ to denote the the corresponding subdigraph in $D_1^{v_k}$ and $L_2^{u_j}$ to denote the corresponding subdigraph in $D_2^{u_j}$.

To prove (i), we present an algorithm (Algorithm A below) to find a spanning ditrail in $D_1 \times D_2$. By assumption, D_2 has a spanning ditrail H_2 . Denote $H_2 = v_{j_1}v_{j_2} \cdots v_{j_{h_2}}$, with $j_1, j_2, \cdots, j_{h_2} \in [n_2]$. The algorithm has a set A to record vertices $v_j \in V(D_2)$ that the ditrail has visited the copy $D_1^{v_j}$, and will start from a vertex (u_s, v_{j_1}) , travel along $H_{11}^{v_{j_1}}$ in $D_1^{v_{j_1}}$ to end at (u_t, v_{j_1}) , and place v_{j_1} in A. Then in $D_2^{u_t}$, move to (u_t, v_{j_2}) and travel along $H_{12}^{v_{j_2}}$ in $D_1^{v_{j_2}}$ to end at (u_s, v_{j_2}) , and place v_{j_2} in A. Inductively, at $(u_t, v_{j_{r-1}})$, if $v_{j_r} \in A$, that is, $D_1^{v_{j_r}}$ has been traversed, then in $D_2^{u_t}$, move to (u_t, v_{j_r}) ; if $v_{j_r} \not\in A$, that is, $D_1^{v_{j_r}}$ has not been traversed, then in $D_2^{u_t}$, move to (u_t, v_{j_r}) and travel along $H_{12}^{v_{j_r}}$ in $D_1^{v_{j_r}}$ to end at (u_s, v_{j_r}) , and place v_{j_r} in A. A similar process will be done if at $(u_s, v_{i_{r-1}})$, until all vertices in $D_1 \times D_2$ are visited.

Algorithm A:

INPUT: A digraph D_1 with spanning ditrails H_{11} and H_{12} and a digraph D_2 with spanning ditrail H_2 , define $H_2' = \{v_{j_1}(1), v_{j_2}(2), \dots, v_{j_r}(p), \dots, v_{j_{h_2}}(q)\}$. Using the notation above.

OUTPUT: A spanning ditrail *H* in $D_1 \times D_2$ starting from (u_s, v_{j_1}) .

1. Let $H := H_{11}^{v_{j_1}}$; $A := \{v_{j_1}\}$ and p := 2.

2. If p > q, go to step 6.

3. Let *H* be current ditrail.

If $(u_t, v_{j_{r-1}})$ is the terminal vertex of *H*, go to step 4.

If $(u_s, v_{j_{r-1}})$ is the terminal vertex of *H*, go to step 5.

4. If $v_{j_r} \in A$ for $v_{j_r}(p) \in H_{2'}$, set $H := H + ((u_t, v_{j_{r-1}}), (u_t, v_{j_r})), A := A \cup \{v_{j_r}\}$ and p := p + 1, go to step 2. If $v_{j_r} \notin A$ for $v_{j_r}(p) \in H_{2'}$, set $H := (H + ((u_t, v_{j_{r-1}}), (u_t, v_{j_r}))) \cup H_{12}^{v_{j_r}}, A := A \cup \{v_{j_r}\}$ and p := p + 1, go to step 2.

5. If $v_{j_r} \in A$ for $v_{j_r}(p) \in H_{2'}$, set $H := H + ((u_s, v_{j_{r-1}}), (u_s, v_{j_r})), A := A \cup \{v_{j_r}\}$ and p := p + 1, go to step 2. If $v_{j_r} \notin A$ for $v_{j_r}(p) \in H_{2'}$, set $H := (H + ((u_s, v_{j_{r-1}}), (u_s, v_{j_r}))) \cup H_{11}^{v_{j_r}}, A := A \cup \{v_{j_r}\}$ and p := p + 1, go to step 2.

6. Return the ditrail *H*.

The finiteness of D_1 and D_2 indicates that the Algorithm will terminate. Let H be the output of Algorithm A. We are to show that H is a spanning ditrail. In fact, at each step of Algorithm A, the current H is always a ditrail. As $V(H_{11}) = V(H_{12}) = V(D_1)$, and as by Steps 1, 3, 4, 5 in Algorithm A, we note that $V(H) = \bigcup_{k=j_1}^{j_{h_2}} V(D_1^{v_k})$ and $\{v_{j_1}, v_{j_2}, \dots, v_{j_{h_2}}\} = V(D_2)$. By Observation 2.1 (i) and (ii), H is a spanning ditrail of $D_1 \times D_2$. This proves (i).

We will construct a spanning closed ditrail H' of $D_1 \times D_2$ to prove (ii). Recall that H_{11} and H_{12} are spanning ditrails of D_1 . Let $H_2 = v_{j_1}v_{j_2}\cdots v_{j_{h_2}}v_{j_1}$ be a spanning closed ditrail in D_2 . Then $H_{2'} = v_{j_1}v_{j_2}\cdots v_{j_{h_2}}$ is a spanning ditrail in D_2 . By Algorithm A, and since $|V(D_2)|$ is even, H is a spanning ditrail in $D_1 \times D_2$ starting from (u_s, v_{j_1}) and ending at $(u_s, v_{j_{h_2}})$. Since $(v_{j_{h_2}}, v_{j_1}) \in A(D_2)$, it follows by the definition of Cartesian product that $((u_s, v_{j_{h_2}}), (u_s, v_{j_1})) \in A(D_1 \times D_2)$. It follows that the subdigraph $H + ((u_s, v_{j_{h_2}}), (u_s, v_{j_1}))$ is a spanning closed ditrail in $D_1 \times D_2$. This proves (ii).

2.3 Lexicographic product of digraphs

Sufficient conditions on D_1 and D_2 for the Lexicographic product $D_1[D_2]$ to be supereulerian or trailable will be investigated in this section.

Theorem 2.5 Let D_1 and D_2 be two digraphs. If D_1 is superculerian with $|V(D_1)| \ge 2$, then the Lexico- graphic product $D_1[D_2]$ is superculerian.

Proof.Let $V(D_1) = \{u_1, u_2, \dots, u_n\}$ and $V(D_2) = \{v_1, v_2, \dots, v_n2\}$. If $V(D_2) = 1$, then $D_1[D_2] \cong D_1$ is superculerian. Hence we assume that $|V(D_2)| \ge 2$. As D_1 is superculerian, we assume that

 $H_1 = u_i 1 \ u_i 2 \cdots u_{ih} \ u_i 1$ is a spanning closed ditrailof D_1 . (5) By (5), $(u_{ih}, u_{i1}) \in A(D_1)$, and so by the definition of Lexicographic product of digraphs,

for any vertices $v_s, v_t \in V(D_2)$, we have that $((u_{ih}, v_s), (u_{i1}, v_t)) \in A(D_1[D_2]).(6)$

To construct a spanning closed ditrail of $D_1[D_2]$, we start with (u_{i_1}, v_1) in $D_1^{v_1}$, traveling along $H_1^{v_1}$ ending at (u_{i_h}, v_1) ; and then by (6), use the arc $((u_{i_h}, v_1), (u_{i_1}, v_2))$ to move to (u_{i_1}, v_2) . Inductively, for some $p < n_2$, the ditrail at (u_{i_1}, v_p) in $D_1^{v_p}$, will travel along $H_1^{v_p}$ to end at (u_{i_h}, v_p) . When $p = n_2$, the ditrail applies (6) again and takes the arc $((u_{i_h}, v_p), (u_{i_1}, v_1))$ to complete the ditrail, which is now a spanning closed ditrail of $D_1[D_2]$. The construction of this spanning closed ditrail of $D_1[D_2]$ can be illustrated in Algorithm B below.

Algorithm B:

INPUT: A digraph D_1 with a spanning closed ditrail $H_1 = u_{i_1}u_{i_2}\cdots u_{i_h}u_{i_1}$ and a digraph D_2 with $V(D_2) = \{v_1, v_2, \cdots, v_{n_2}\}$. OUTPUT: A spanning closed ditrail H in $D_1[D_2]$.

1. Let $H: = H_1^{v_1} - ((u_{i_h}, v_1), (u_{i_1}, v_1)); p: = 2.$

2. If $p > n_2$, let $H := H + ((u_{i_h}, v_{n_2}), (u_{i_1}, v_1))$, go to step 5. **3.** Let *H* be current ditrail with the terminal vertex (u_{i_k}, v_{n-1}) . **4.** Set $H := (H + ((u_{i_h}, v_{p-1}), (u_{i_1}, v_p))) \cup H_1^{v_p} - ((u_{i_h}, v_p), (u_{i_1}, v_p))$ and p := p + 1, go to step 2. **5.** Return the closed ditrail H_{i_h}

As in each step of Algorithm B, the current *H* is a ditrail starting from (u_{i_1}, v_1) in $D_1^{v_1}$, the finiteness of the digraphs implies that Algorithm B must stop. When Step 2 is executed, *H* becomes a closed ditrail. Since H_1 is a spanning ditrail of D_1 , we have $V(H_1) = V(D_1)$. By steps 1, 3, 4, 5, $V(H) = \bigcup_{k=j_1}^{j_{h_2}} V(D_1^{v_k})$ and $\{v_{j_1}, v_{j_2}, \dots, v_{j_{h_2}}\} = V(D_2)$. Thus at the end of the algorithm, we have

$$H = ((\bigcup_{j=1}^{n_2} (H_1^{v_j} - ((u_{i_h}, v_j), (u_1, v_j)))) + (\bigcup_{t=1}^{n_2-1} ((u_{i_h}, v_t), (u_{i_1}, v_{t+1})))) + ((u_{i_h}, v_{n_2}), (u_{i_1}, v_1))$$

Therefore, *H* is a spanning closed ditrail of $D_1[D_2]$. This proves the theorem.

Theorem 2.6 Let D_1 and D_2 be two strong digraphs with $min\{|V(D_1)|, |V(D_2)|\} \ge 2$ and D_1 is trailable. Then the Lexicographic product $D_1[D_2]$ is superculerian.

Proof. Let $V(D_1) = \{u_1, u_2, \dots, u_{n_1}\}$ and $V(D_2) = \{v_1, v_2, \dots, v_{n_2}\}$. Let *H* be a spanning ditrail of D_1 . If *H* is closed, then by Theorem 2.5, $D_1[D_2]$ is supercularian. Hence we assume that

 $H_1 = u_{i_1}u_{i_2} \cdots u_{i_h}$ is a spanning ditrail of D_1 , where $u_{i_s} \in V(D_1)$ for $s \in [h]$ and $u_{i_1} = u_1 \neq u_{i_h}$. (7)

For each $p \in [n_2]$, define $L_1^{v_p} = H_1^{v_p} - ((u_{i_1}, v_p), (u_{i_2}, v_p))$. Since D_1 is strong, D_1 contains a shortest (u_{i_h}, u_{i_1}) -dipath $P = u_{i_{s_k}} u_{i_{s_{k-1}}} \cdots u_{i_{s_2}} u_{i_{s_1}}$, where $u_{i_{s_k}} = u_{i_h}$ and $u_{i_{s_1}} = u_{i_1}$. By the definition Lexicographic product, we observe that

for any vertices $v, v' \in V(D_2)$, if $(u, u') \in A(D_1)$, then $((u, v), (u', v')) \in A(D_1[D_2])$.(8) We will construct a spanning closed ditrail of $D_1[D_2]$ depending on the parity of k = |V(P)|. Assume first that k is even, we start with (u_{i_1}, v_1) in $D_1^{v_1}$, travel along $H_1^{v_1}$ to end at (u_{i_h}, v_1) ; then by (8), take the dipath $P_{2'} = (u_{i_{s_k}}, v_1)(u_{i_{s_{k-2}}}, v_1)(u_{i_{s_{k-3}}}, v_2) \cdots (u_{i_{s_2}}, v_1)(u_{i_{s_1}}, v_2)$ to reach $(u_{i_{s_1}}, v_2)$. Inductively, for some p with $2 \le p \le n_2$, the current ditrail will move from $(u_{i_{s_1}}, v_p)$, traversing along $H_1^{v_p}$ ending at $((u_{i_h}, v_p)$; then take the dipath

 $P_{p'} = (u_{i_{s_k}}, v_{p-1})(u_{i_{s_{k-1}}}, v_p)(u_{i_{s_{k-2}}}, v_{p-1})(u_{i_{s_{k-3}}}, v_p) \cdots (u_{i_{s_2}}, v_{p-1})(u_{i_{s_1}}, v_p)(9)$ to reach $(u_{i_{s_1}}, v_p)$. At $(u_{i_{s_k}}, v_{n_2})$, it utilizes (8) to take

$$P_{1'} = (u_{i_{s_k}}, v_{n_2})(u_{i_{s_{k-1}}}, v_1)(u_{i_{s_{k-2}}}, v_{n_2})(u_{i_{s_{k-3}}}, v_1) \cdots (u_{i_{s_2}}, v_{n_2})(u_{i_{s_1}}, v_1)(10)$$

to return to $(u_{i_{s_1}}, v_1)$.

Assume next that k is odd, we start with (u_{i_1}, v_1) in $D_1^{v_1}$, travel along $H_1^{v_1}$ to end at (u_{i_h}, v_1) ; then by (8), take the dipath $P_{2''} = (u_{i_{s_k}}, v_1)(u_{i_{s_{k-1}}}, v_2)(u_{i_{s_{k-2}}}, v_1)(u_{i_{s_{k-3}}}, v_2) \cdots (u_{i_{s_2}}, v_2)(u_{i_{s_1}}, v_1)$ and then bypass $((u_{i_{s_1}}, v_1), (u_{i_2}, v_2))$ to reach (u_{i_2}, v_2) . Inductively, for some p with $2 \le p \le n_2$, the current ditrail will move from (u_{i_2}, v_p) , travel along $L_1^{v_p} = H_1^{v_p} - ((u_{i_1}, v_p), (u_{i_2}, v_p))$ to get to (u_{i_h}, v_p) ; then take the dipath

 $P_{p''} = (u_{i_{s_k}}, v_{p-1})(u_{i_{s_{k-1}}}, v_p)(u_{i_{s_{k-2}}}, v_{p-1})(u_{i_{s_{k-3}}}, v_p) \cdots (u_{i_{s_2}}, v_p)(u_{i_{s_1}}, v_{p-1})(u_{i_2}, v_p)(11)$

to reach (u_{i_2}, v_p) . At (u_{i_2}, v_{n_2}) , the current ditrail will travel along $L_1^{v_{n_2}} = H_1^{v_{n_2}} - ((u_{i_1}, v_{n_2}), (u_{i_2}, v_{n_2}))$ to get to (u_{i_k}, v_{n_2}) , then following

$$P_{1''} = (u_{i_{s_k}}, v_{n_2})(u_{i_{s_{k-1}}}, v_1)(u_{i_{s_{k-2}}}, v_{n_2})(u_{i_{s_{k-3}}}, v_1) \cdots (u_{i_{s_2}}, v_1)(u_{i_{s_1}}, v_{n_2})(12)$$

to arrive at (u_{i_1}, v_{n_2}) . Since $D_2^{u_{i_1}} \cong D_2$ is strong, $D_2^{u_{i_1}}$ has a $((u_{i_1}, v_{n_2}), (u_{i_1}, v_1))$ -dipath $P_2^{u_{i_1}}$. Then, from (u_{i_1}, v_{n_2}) , it goes through $P_2^{u_{i_1}}$ to return to (u_{i_1}, v_1) .

With the definitions of the related dipaths in (9), (10), (11), (12), the construction of this spanning closed ditrail of $D_1[D_2]$ can be illustrated in Algorithm C below.

Algorithm C:

INPUT: A strong digraph D_1 with a spanning ditrail and a strong digraph D_2 . OUTPUT: A spanning closed ditrail H in $D_1[D_2]$. **1.** Let $H: = H_1^{\nu_1}$ and p: = 2. **2.** If $p > n_2$, and if k is even, let $H: = H \cup P_{1'}$, go to step 5; if k is odd, let $H: = H \cup P_{1''} \cup P_2^{\mu_{i_1}}$, go to step 5.

- **3.** Let *H* be current ditrail with the terminal vertex $(u_{i_{h}}, v_{p-1})$.
- **4.** If k is even, let $H := H \cup P_{p'} \cup H_1^{v_p}$ and p := p + 1, go to step 2.
- If k is odd, let $H := H \cup P_{p''} \cup H_{1'}^{v_p}$ and p := p + 1, go to step 2.
- **5.** Return the closed ditrail H.

As in each step of Algorithm C, the current H is a ditrail starting from (u_{i_1}, v_1) in $D_1^{v_1}$, the finiteness of the digraphs implies that Algorithm C must stop. When Step 2 is executed, H becomes a closed ditrail. Since H₁ is a

spanning ditrail of D_1 , we have $V(H_1) = V(D_1)$. By steps 1, 3, 4, 5, $V(H) = \bigcup_{k=j_1}^{j_{h_2}} V(D_1^{v_k})$ and $\{v_{j_1}, v_{j_2}, \dots, v_{j_{h_2}}\} = V(D_2)$, thus, by Observation 2.1 (i) and (ii), H is a spanning closed ditrail of $D_1[D_2]$.

Since a bi-trailable digraph is strong, by Theorem 2.6 the following corollary holds.

Corollary 2.2 Let D_1 and D_2 be two digraphs with $\min\{|V(D_1)|, |V(D_2)|\} \ge 2$.

• If D_1 is a bi-trailable digraph and D_2 is a strong digraph, then the Lexicographic product $D_1[D_2]$ is superculerian.

• If D_1 is trailable and strong, then the Lexicographic product $D_1[D_2]$ is trailable.

Acknowledgement:

There search of Juan Liuwas supported by grants NSFC (No.61363020,11301450) and China Scholarship Council, and there search of Xindong Zhang was supported in part by grants NSFC (No.11461072) and the Youth Science and Technology Education Project of Xinjiang(No.2014731003).

References

- [1]. K. A. Alsatami, X.D. Zhang, J. Liu and H.-J. Lai, On a class of supereulerian digraphs, Applied Mathematics, 7 (2016), 320-326.
- M.J.Algefari,K.A.Alsatami,H.-J.LaiandJ.Liu,Superculeriandigraphswithgivenlocalstructures, Information Processing Letters, 116(5) (2016),321-326.
- [3]. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Edition, Springer, (2010).
- [4]. J.Bang-JensenandA.Maddaloni,Sufficientconditionsforadigraphtobesupereulerian,Journalof Graph Theory, 79(1) (2015)8-20.
- [5]. F. T. Boesch, C. Suffel, and R. Tindell, The spanning subgraphs of eulerian graphs, Journal of Graph Theory, 1 (1977) 79-84.
- [6]. J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.
- [7]. P. A. Catlin, Supereulerian graphs: a survey, Journal of Graph Theory, 16 (1992) 177-196.
- [8]. Z. H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, Combinatorics and graph theory' 95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ 1995 pp. 53-69.
- [9]. R. Gould, Advances on the Hamiltonian Problem-A Survey, Graphs and Combinatorics, 19 (2003) 7-52.
- [10]. G.Gutin, Cycles and paths indirected graphs, PhD thesis, School of Mathematics, TelAvivUniversity, 1993.
- [11]. G.Gutin, Connected(g;f)-factorsandsupereuleriandigraphs, ArsCombinatoria, 54, (2000)311-317. [12]Y. Hong, H.-J. Lai, and Q. Liu, Supereulerian digraphs, Discrete Mathematics, 330 (2014) 87-95. [13]H.-J. Lai, Y. Shao, and H. Yan, An update on supereulerian Graphs, WSEAS Transactions onMath-ematics, 12(9) (2013) 926-940.
- [12]. W. R. Pulleyblank, A note on graphs spanned by Eulerian graphs, Journal of Graph Theory, 3 (1979) 309-310.
- [13]. J.M.Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publish- ers, 2001.

Khalid A. Alsatami" Supereulerian and Trailable Digraph Products" International Journal of Engineering Science Invention (IJESI), Vol. 08, No. 04, 2019, PP 12-19