
Theoretical Zero Field Splitting Parameters of Cr³⁺ doped Dipotassium Tetrachloropalladate

Ram Kripal*, Lal Chandra Shukla

EPR Laboratory, Department of Physics, University of Allahabad, Allahabad-211002, India

ABSTRACT

Zero field splitting parameters (ZFSPs) D and E of Cr^{3+} ion doped dipotassium tetrachloropalladate (DTP) crystal are calculated using the superposition model. The calculated ZFSPs for Cr^{3+} in DTP crystal are compared with the experimental ones obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in reasonable agreement with the experimental values. The energy band positions of optical absorption spectra of Cr^{3+} in DTP crystal computed with CFA package are in good match with the experimental results. **KEYWORDS:** A. Inorganic compounds; D. Crystal fields; D. Electron paramagnetic resonance, D. Optical properties.

PACS No: 76.30.Da; 76.30.Fc; 71.70.Ch

Date of Submission: 10-01-2022

Date of Acceptance: 25-01-2022

I. INTRODUCTION

Electron paramagnetic resonance (EPR) provides information about the local site symmetry and zero field splitting parameters (ZFSPs) of transition ions in crystals [1]. It also helps to identify the defects responsible for the charge compensation in the impurity ions doped crystals [2]. EPR technique is a very important tool for the study of dynamical aspects of the crystalline state and bonding in crystals [3]. The optical absorption study gives the energy levels and crystal field parameters. Cr^{3+} is one of the most studied transition metal ions. Its electronic configuration is $3d^3$ and ground state 4A_2 [4]. In the mostly used perturbation procedure, cubic field and diagonal parts of free ion Hamiltonian are treated as unperturbed Hamiltonian, while the spin-orbit coupling, the low symmetry field, and off diagonal part of free ion Hamiltonian as the perturbation. This procedure was used by Macfarlane for F state ions giving better results [5].

EPR of Cr^{3^+} doped impurity in dipotassium tetrachloropalladate (DTP) crystal at liquid nitrogen temperature has been reported earlier [6]. There are two possibilities of Cr^{3^+} ion entering the crystal of DTP; substitution at K⁺ ion site and/or structural vacancy. This is interesting to determine the site of this paramagnetic impurity. In the present investigation, the ZFSPs for Cr^{3^+} ion are calculated using superposition model (SPM) considering Cr^{3^+} ion to be present at the site of K⁺ ion. The result obtained is consistent with the experimental observation.

II. CRYSTAL STRUCTURE

DTP single crystals are tetragonal [7]. These belong to the space group P4/mmm and contain one molecule in the unit cell (Z = 1). The unit cell parameters are: a = 7.0259(2), c = 4.0797(2) Å. The Pd - Cl bond length is 2.3066(2) Å. Above and below the [PdCl₄]²⁻ plane, excess densities of 2.3(3)e Å⁻³ are found at 0.47 Å from the Pd nucleus which indicates an enhancement of the d_{z2} orbital population. The potassium ion is six coordinated by chlorine atoms as shown in Fg.1. The site symmetry at Cr³⁺ ion is approximately orthorhombic.

Fig. 1. Local structure of Cr^{3+} centre on K⁺ site in DTP where symmetry adopted axis system (SAAS) is shown.

III. THEORETICAL INVESTIGATIONS

EPR spectra of Cr^{3+} doped single crystals of DTP were analyzed using the spin Hamiltonian in a crystal field of orthorhombic symmetry. The ground state of transition ion in crystals can be described using the spin Hamiltonian having Zeeman electronic (Ze) and ZFS terms [8, 9].

$$\mathcal{H} = \mathcal{H}_{\mathsf{ZE}} + \mathcal{H}_{\mathsf{ZFS}} = \mu_B B.g.S + \sum B_k^q O_k^q = \mu_B B.g.S + \sum f_k b_k^q O_k^q \tag{1}$$

where g is the spectroscopic splitting factor, μ_B is the Bohr magneton, B is the applied magnetic field, S is the effective spin operator, B_k^q and b_k^q are zero field splitting parameters (ZFSPs) associated with the extended Stevens operators O_k^q , whereas $f_k = 1/3$ and 1/60 are the scaling factors for k = 2 and 4, respectively. The ZFS terms in Eq. (1) for Cr³⁺ ion (S = 3/2) at orthorhombic symmetry sites are expressed as

$$\mathcal{H} = B_2^0 O_2^0 + B_2^2 O_2^2 = \frac{1}{3} b_2^0 O_2^0 + \frac{1}{3} b_2^2 O_2^2 = D(S_z^2 - \frac{1}{3} S(S+1)) + E(S_x^2 + S_y^2)$$
(2)

The ZFSPs in Eq. (2) and conventional zero field splitting parameters D and E are obtained using SPM as [10-14]:

$$D = b_2^0 = \frac{b_2(R_0)}{2} \left[\left(\frac{R_0}{R_i} \right)^{t_2} \sum_i (3\cos^2\theta_i - 1) \right]$$
(3)

$$E = \frac{b_2^2}{3} = \frac{\bar{b_2(R_0)}}{2} \left[\left(\frac{R_0}{R_i} \right)^{t_2} \sum_i \sin^2 \theta_i \cos 2\phi_i \right]$$
(4)

For $\operatorname{Cr}^{3+}(3d^3, S = 3/2)$ ions, there exist crystal field parameters (CFPs) of the rank k = 2 and 4, while ZFSPs only of the rank k = 2.

IV. RESULT AND DISCUSSION

The Cr^{3+} ion substitutes the K⁺ ion in DTP and has similar ligands environment. From crystal structure the local symmetry around Cr^{3+} ion is C_1 , for which the 14 CF parameters B_{kq} are admitted by group theory. As some of CF parameters in C_1 symmetry are very small [15], the calculations are done on the approximation of orthorhombic symmetry and 5 appreciable CF parameters are determined. For octahedral coordination of Cr^{3+}

ion in LiNbO₃ having Cr³⁺ - O²⁻ bond, $t_2 = -0.12$ and $\bar{b}_2(R_0) = 2.34$ cm⁻¹ [13] were used for calculating b_2^0

and b_2^2 . Here for chlorine ligands in octahedral coordination with Cr^{3+} , $t_2 = 0.92$ and $\bar{b}_2(R_0) = 2.34$ cm⁻¹ are used for calculating b_2^0 and b_2^2 to have results similar to the experimental ones.

The position of Cr^{3+} ion and spherical coordinates of ligands are given in Table 1. The conventional ZFSPs *D* and *E* of Cr^{3+} ion in DTP crystal are determined using Eqs. (3) and (4). The reference distance of 2.00Å is taken for the evaluation of ZFSPs [11], and the calculated conventional ZFSPs are $D = -89 \times 10^{-4} \text{ cm}^{-1}$, $E = 45 \times 10^{-4} \text{ cm}^{-1}$. For orthorhombic symmetry, the ratio b_2^2 / b_2^0 should be within the range (0, 1) [16]. In the present study, the ratio $b_2^2 / b_2^0 = -1.517$ and E/D = -0.506 which is not consistent with above. The calculated ZFSPs, and experimental ZFSPs for Cr^{3+} ion are given in Table 2. The theoretical ZFSPs thus obtained are not in agreement with the experimental values [6]. Therefore, using above values of t_2 and reference distance, the conventional ZFSPs D and E are calculated for Cr^{3+} at the K⁺ site with distortion with position K⁺(-0.1300, -0.0010, -0.4400). The calculated conventional ZFSPs now are $D = 89 \times 10^{-4} \text{ cm}^{-1}$, $E = 19 \times 10^{-4} \text{ cm}^{-1}$, which are in good agreement with the experimental ones. The ratio $b_2^2 / b_2^0 = 0.638$ and E/D = 0.213 which is consistent with above range [16]. Further, using above values of t_2 and reference distance the conventional ZFSPs *D* and *E* are determined ones. To save the space, these data are not being provided here.

Table 1. Coordinates of Cr^{3+} ion together with spherical co-ordinates (R, θ, ϕ) of ligands in DTP single crystal.

Position of Cr ³⁺	Ligands	Spherical co-ordinates of ligands			
		$R^{ m \AA}$	θ^{0}	${oldsymbol{\phi}}^{0}$	
ND: Substitutional	Cl(1)	3.2191	129.3	-49.1	
(0, 0, 0)	Cl(2)	5.7686	110.7	72.4	
	Cl(3)	4.0622	120.1	0.0	
	Cl(4)	8.1157	104.5	63.4	
	Cl(5)	3.5129	90.0	0.0	
	Cl(6)	8.8514	117.4	63.4	
WD: substitutional	Cl(1)	3.5180	59.3	32.7	
(0, 0, 0)	Cl(2)	2.5245	135.3	66.2	
	Cl(3)	5.9334	72.4	38.5	
	Cl(4)	4.7192	112.4	53.4	
	Cl(5)	5.9334	72.4	38.5	
	Cl'(1)	4.7192	112.4	53.4	

ND = No distortion, WD = With distortion.

		Calculated ZFS parameters (cm ⁻¹)		Conventional ZFS parameters ($\times 10^{-4}$ cm ⁻¹)			
	$R_0^{ m \AA}$	b_2^0	b_{2}^{2}	b_2^2 / b_2^0	D	Ε	E/D
ND	2.00	-0.0089	0.0135	-1.517	-89	45	-0.506
WD	2.00	-0.0089	-0.0057	0.638	89° 89 89°	19 ^e 19 19 ^e	0.213 0.213 0.213

Table 2. Calculated and conventional zero field splitting parameters together with reference distance and experimental ZFSPs for Cr³⁺ doped DTP single crystal.

ND = No distortion, WD = With distortion, $K^+(-0.1300, -0.0010, -0.4400)$

^e = experimental.

The CFPs for Cr^{3+} in crystals can be obtained by the following formula [15]

$$B_{kq} = \sum_{i} \bar{B_k} \left(\frac{R_0}{R_i} \right)^{t_k} K_{kq} \left(\theta_i \phi_i \right)$$
(5)

where $R_0 = 2.00$ Å (reference distance); R_i , θ_i , φ_i are the polar coordinates of the *i*th ligand and K_{kq} is the coordination factor [2]. For obtaining B_{kq} (k = 2, 4; q = 0, 2, 4), $B_2 = 40, 400$ cm⁻¹, $t_2 = 1.3$, $B_4 = 11, 700$ cm⁻¹ and $t_4 = 3.4$ are taken from [2]. The calculated B_{kq} parameters are presented in Table 3. Employing these B_{kq} parameters and CFA program [17-18], the optical spectra of Cr³⁺ doped DTP crystals are calculated. The energy levels of the Cr³⁺ ion are determined by diagonalizing the complete Hamiltonian within the $3d^N$ basis of states in the intermediate crystal field coupling scheme. The calculated energy values are shown in Table 4 together with the experimental values [6] for comparison. There is good agreement between these two. Thus the theoretical study supports the experimental investigation [6].

Table 3. B_{kq} parameters to be used in CFA program for calculating optical absorption spectra.

Calculated B_{kq} ^{cm-1} Parameters used for CFA package							
	$R_0^{ m \AA}$	B_{20}	<i>B</i> ₂₂	B_{40}	B_{42}	B ₄₄	B22/B20
WD	2.00	-29237.0	-3129.67	-391.279	-119.151	-603	34.04 0107

WD = With distortion.

Transition from ${}^{4}A_{2g}(F)$	Experimentally observed band (cm ⁻¹) [6]	Calculated energy band from CFA (cm ⁻¹)
$^{2}Eg(G)$	12121, 12578	11750,12469
$^{2}T_{I}g(G)$	15151, 15723, 17094	15906, 16435, 17361
$^{4}T_{2}g(F)$	18115, 18518, 20618	18877, 19182, 19261, 19870, 21566, 21624
${}^{4}T_{1}g(F)$	24096	23827, 25096, 25228, 26138, 26737, 26992
$^{2}T_{1}g(aD)$ 2Eg(bD)	40000 47619	37753, 39729, 41676 44141, 50872

Table 4. Observed and calculated energy band positions of Cr³⁺ doped DTP single crystal from CFA package.

Input parameters: Numbers of free ion parameters = 5, number of d shell electrons = 3, number of fold for rotational site symmetry = 1; Racah parameters in *A*, *B* and *C*, spin-orbit coupling constant and Trees correction are 0, 521, 2861, 276 and 70 cm⁻¹, respectively; number of crystal field parameters = 5; crystal field parameters $B_{20} = -29237.0$, $B_{22} = -3129.67$, $B_{40} = -391.67$, $B_{42} = -119.151$, $B_{44} = -6034.04$ cm⁻¹; spin-spin interaction parameter, M0 = 0.0000; spin-spin interaction parameter, M2 = 0.2021; spin-other-orbit interaction parameter, M00 = 0.0159; spin-other-orbit interaction parameter, M22 = 0.2021; magnetic field, B = 0.0 Gauss; angle between magnetic field B and z-axis = 0.00 degree.

V. CONCLUSIONS:

The theoretical study of ZFSPs has been done using superposition model. The conventional ZFSPs for the Cr^{3+} ion doped DTP are similar to the experimental values. The calculated optical spectra energy values using CFPs and CFA program are in agreement with the experimental ones. The Cr^{3+} ions are concluded to enter the lattice substitutionally by replacing K⁺ site and are electrically bound to neighboring vacancies necessary for the charge compensation. Thus our results support the conclusion obtained from the experimental data.

Acknowledgement

The authors are thankful to the Head, Department of Physics for providing the

departmental facilities and to Prof. C. Rudowicz, Faculty of Chemistry, A. Mikowicz.

University, Poznan, Poland for CFA program.

REFERENCES:

- [1]. D. J. Newman, B. Ng, Rep. Prog. Phys. 52(1989) 699-763.
- [2]. Y.Y. Yeung, D. J. Newman, Phys. Rev. B34 (1986) 2258-2265.
- [3]. O. S. Venger, R. Valiente, H. U. Gudel, J. Chem. Phys.115(2002)3819.
- [4]. M. G. Brik, C. N. Avram, N. M. Avram, Physica B384 (2006)78-81.
 [5]. R. M. Macfarlane, J. Chem. Phys. 47(1967)2066-2073; Phys. Rev. B1 (1970) 9891004.
- [6]. R. Kripal, Shri Devi Pandey, Appl. Magn. Reson. 45(2014)731-742.
- [7]. R. Khipai, Shili Devi Pandey, Appl. Magli. Resol. 45(2014)/31-74.
 [7]. H. Takazawa, S. Ohba, Y. Saito, Acta Cryst. B44 (1988) 580-585.
- [8]. M. Acikgoz, Spectrochimica Acta Part A 86(2012) 417-422.

- [9].
- M. Acikgoz, P. Gnutek, C. Rudowicz, Chem.Phys.Lett. 524(2012)49-55.
 K. A. Muller, W. Berlinger, J. Phys.C: Solid State Phys. 16(1983) 6861-6874. [10].
- T. H. Yeom, J. Phys.: Condensed Matter 13(2001)10471-10476. [11].
- [12]. P. Gnutek, M. Acikgoz, C. Rudowicz, Opt. Mater. 32(2010) 1161-1169.
- T. H. Yeom, Y. M. Chang, C. Rudowicz, Solid State Commun. 87(1993) 245-249.
 E. Siegel, K. A. Muller, Phys. Rev. B 19 (1979)109-120. [13].
- [14].
- Y. Y. Yeung, C. Rudowicz, Y. M. Chang, J. Qin, J. Lumin. 60&61(1994) 108-111. [15].
- C. Rudowicz, R.Bramley, J. Chem. Phys. 83 (1985) 5192-5197. Y. Y. Yeung, C. Rudowicz, J. Comput. Phys. 109(1993) 150-152. [16]. [17].
- [18]. Y. Y. Yeung, C. Rudowicz, Comp. Chem. 16(1992)207-216.