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ABSTRACT: In our universe, distances have increased since the Big Bang. This is directly indicated 

by the redshift of distant galaxies or of the cosmic microwave background. Usually, that increase of 

distances is explained by a continuous expansion of space according to general relativity. However, 
that explanation is very incomplete. This is indicated by the era of cosmic ‘inflation’. In addition, the 

explanation of that era by the standard model of cosmology is hypothetic, problematic and not based 

on a fundamental concept. In contrast, the era of cosmic ‘inflation’ is derived and explained by 

physically founded phase transitions by a discontinuous change of space. These phase transitions 
provide the spectrum of the vacuum. With it, the density of vacuum is derived here. Moreover, the 

local value of the Hubble constant has been derived on the basis of that spectrum. Furthermore, many 

basic problems in elementary particle physics and in fundamental interactions have been solved by 
using that spectrum. For instance, the Higgs mechanism and the vacuum expectation value of 

elementary particle physics have been derived and explained. In this paper, we present a geometric 

derivation of the spectrum of vacuum. This provides further evidence and clarity. 
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I. INTRODUCTION 
The understanding of space is a basic and essential issue of research in mankind. That research ranges 

from Euclidean Geometry, via the discovery of continuous curvature of space and time in general relativity, GR, 

towards the expansion of space since the Big Bang in GR and in the standard model of cosmology, SMC [1-9]. 

Note that the basic concept of the Big Bang is founded by empirical evidence (see e. g. [1,2,8]) and by theory 

[5-12]. Thereby, the rate of expansion is characterized by iteratively improved concepts of the Hubble constant.  

However, the description that is favored at present exhibits essential limitations [5-9]: GR explains the 

increase of distances since the Big Bang in a very incomplete manner, see section II (see e. g. [10], [11] p. 187 

or [12] p. 41). Similarly, the SMC tries to explain that increase of distances since the Big Bang by a combination 

of GR and an era of a hypothetic cosmic ‘inflation’ [13,9,14]. However, that hypothetic cosmic ‘inflation’ is 

hardly founded, it causes the so-called ‘reheating problem’, and it requires the execution of fits of parameters 

that can hardly be explained in a fundamental manner [14]. 

 In contrast, we derive the full increase of distances since the Big Bang, see the green triangles and line 
in figure (1) and see section III. Thereby, we do not execute any fit, we achieve precise accordance with 

observation, and we provide a founded explanation. In particular, we use one measured value, the time since the 

Big Bang.  This value cannot be derived theoretically, as it is a peculiar value. The other used parameters have 

been derived theoretically in the framework of the present theory [12,15]. Thereby, the theoretically derived 

values are within the errors of measurement.  

In order to explain the increase of distances since the Big Bang, we derive dimensional phase 

transitions. These transitions have been founded physically by gravity and relativity. In particular, four very 

general and very different and mutually independent models have been used [10,15,16,17]. Here, we provide a 

geometric derivation additionally, see section IV. Note that physics in higher dimension has been observed 

experimentally [18,19]. Moreover, we analyze essential geometric properties of these physically founded phase 

transitions, see sections V, VI and VII. These geometric properties include the dimensional distance 

enlargement factor and the observed rapid enlargement of distances in the early universe. This enlargement 
explains the era of the so-called cosmic ‘inflation’, whereby the hypothetic ‘inflation’ is replaced by the 

physically founded dimensional phase transitions. 

Furthermore, we propose physically founded zero-point oscillations, ZPOs, that represent the vacuum 

[12,15,16,20,21]. Hereby, we derive geometric properties of these ZPOs, such as directions of propagation and 
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elongation, see section VIII. Thereby, we obtain the corresponding zero-point energies, ZPEs. These ZPEs 

represent the spectrum of the vacuum.  

In 1998, the density of the vacuum has been discovered [22,23]. Meanwhile, that density has been 
confirmed by many very different methods of observation [8,24-34]. However, the physical nature of that 

density was a mystery [11,35]. Based on our spectrum of the vacuum, we derive the density of the vacuum, see 

section IX. Thereby, we execute no fit, and our theoretical density is within the errors of measurement, see 

figure (4). Note that this density has been derived alternatively by the dynamics of the vacuum, which has been 

represented by a differential equation, whereby that dynamics additionally represents the Schrödinger equation 

and quantum physics [12,16,36,37].    

In 2022, it has been observed that the Hubble constant depends on space or time or on both, whereby a 

significance above five standard deviations has been achieved [38]. That dependence has been observed at 

smaller significance by many observers on the basis of very different methods of observation (see [24-34,39-45] 

and figure 4). Based on the spectrum derived here, the Hubble constant as a function of the redshift has been 

deduced, see section IX [16,45]. Thus, the observed local value of the Hubble constant has been explained on 
the basis of the present spectrum of vacuum. Thereby, no fit has been executed, and the derived theoretical 

density is within the errors of measurement, see figure (4).  

Moreover, the spectrum of vacuum derived here has been used in order to deduce and explain many 

essential and fundamental concepts and quantities in elementary particle physics (see [12,36,37,46], section X). 

    

II. PROBLEM OF INCOMPLETENESS 
The expansion of the universe since the Big Bang has been observed by various usual methods [1,2,8,23-34]. 

Moreover, that expansion has been modelled on the basis of general relativity, GR, [5-8]. However, these 

models and GR are not complete, see Fig. (1): 

 
Fig. 1: Time evolution of the light horizon        (green) and of the density      (blue) as a function of 

time in Planck times   : The density can only take values below the Planck density   . Thus, the time 

evolution can be traced back from           towards        only. Hence, times towards         

are not physically meaningful (red).  However, at        and according to general relativity, GR, the 

value of the light horizon is          m. Thus, GR is very incomplete, as a complete time evolution 

must range from is          m towards is                    m. Quantum gravity, QG, solves 

that incompleteness, see triangles ([12], Fig. 2.4): At the Big Bang, the light horizon starts at 

approximately the Planck length,       . Then the light horizon increases slightly by the formation of 

vacuum, and it increases in a very rapid manner at a series of dimensional phase transitions (triangles, 

according to QG). These transitions do not cause an increase of the volume. Later, the light horizon 

increases in three-dimensional space by the formation of vacuum and volume (green line). Altogether, GR 

is very incomplete, whereas QG solves that incompleteness.       
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Complete physics is characterized at least by the combination of gravity and quantum physics [10-

12,15,16,36,37]. In that framework of quantum gravity, physical systems range from the Planck length    

            m to the present-day light horizon at              m. Moreover, the Planck density    

              kg/m3 cannot be exceeded in nature [12,15,16]. So, in a complete physical system, the Planck 

length can be achieved. However, according to general relativity, the present-day light horizon would never 

have been smaller than 0.005 mm, as at that radius, the density of the universe would be equal to the Planck 

density. So, a further reduction of     would be impossible, see figure (1) and [12,15,16]. 

 

III. SOLUTION BY DIMENSIONAL PHASE TRANSITIONS 
In this section, we summarize the solution of the above problem of incompleteness by dimensional 

phase transitions. According to an advanced analysis within quantum gravity, the above incompleteness of GR 

is solved, thereby the light horizon has reached the Planck length,       . This is achieved by a series of 

dimensional phase transitions (see e.g. [12,15,16]). 

So far, these phase transitions have been derived by five methods: a van der Waals type analysis of two objects 

(see e.g. [12,15,16]), a transition in a Bose gas (see e.g. [16]), a phase transition of connections (see e.g. [16]), a 

theory of the dark energy (see e.g. [12,15,16,20,21]) and a droplet model (see e.g. [17]). In all models, a 

dimensional phase transition does not cause a change of the volume. 

 

IV. INVARIANCE OF THE VOLUME AT A DIMENSIONAL PHASE TRANSITIONS 
In the above section, we realized that a dimensional phase transition does not cause a change of the volume. 

Thereby, we used results provided by four models of dimensional phase transitions. In this section, we derive 

that fact even without a model of the phase transition. 

 

The time evolution of the light horizon        implies that a dimensional phase transition does not cause a 

change of the volume:  

The time evolution of the light horizon        is analysed from the present-day time    backwards in time.  

Thereby, the light horizon        decreases. Thus, the volume 
  

 
   

     within the light horizon decreases. 

Hereby, the energy (including mass       ) is a conserved quantity, whereby this holds even in the presence 

of the redshift and the formation of vacuum [11,47]. Hence, the density      increases. This process takes place 

according to GR. 

As a consequence, according to that process, there occurs a smallest possible value of the light horizon. We 

name that value   . That value    is reached, when the density      reaches the maximal possible density     : 

                                        (1) 

Note that the maximal possible density      is equal to one half of the Planck density    (see e.g. [12,15,16]): 

                      (2) 

The precise value    depends on the details of the used cosmological model. Hereby, the usual cosmological 

models derived from GR exhibit a value    that is in the vicinity of one tenth of a millimetre (see e.g. [12,15,16] 

and figure (1)): 

           mm         (3) 

In a complete time evolution of the light horizon       , the value of        reaches the smallest value that can 

be observed by a single measurement, the Planck length   , when the analysis is performed backwards in time:  

The time evolution of the light horizon       , analysed backwards from    towards the Planck length    can 

be achieved by physically founded dimensional phase transitions (see e. g. [15,16,17]). Hereby, the density has 

already the maximal possible value, see equation (1). Thus, a dimensional phase transition cannot cause an 

increase of the density. Hence, a dimensional phase transition cannot cause a decrease of the volume. Moreover, 

the time evolution of the light horizon        does not increase the volume, when that time evolution is analysed 

backwards in time. Thence, a dimensional phase transition can neither decrease nor increase the volume. So, a 

dimensional phase transition does not cause any change of the volume. For details about the dimensional phase 

transitions, see e. g. [10-12,15-17]. For observations of higher dimensions, see e. g. [18,19]. 

In the next sections, we derive the geometric properties of the physically founded dimensional phase transitions.  
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V. BASIC GEOMETRIC RELATIONS AT DIMENSIONAL PHASE TRANSITIONS 
In this section, we introduce the basic geometric relations that characterize a dimensional phase transition.  

 

Firstly, there is a smallest length    that can be observed or measured at a single measurement. Physically, that 

length is the Planck length   . A quantity, that is scaled according to the Planck length, is marked by a tilde. For 

instance, a scaled length    is marked as follows: 

       
 

  
         (4) 

Thereby, the smallest measurable line segment has a scaled length two, as a measurable line segment must have 

distinct start and end points: 

                 (5) 

Secondly, as a consequence, at a dimension  , a hypercube with a length      has the following scaled volume:  

          
          (6) 

Note that we use a hypercube as an appropriate tool for the analysis of ratios of lengths and volumes.  

Thirdly, at a dimensional phase transition, a hypercube changes its dimension, whereby the volume of the 

hypercube remains invariant. For instance, at a dimensional phase transition from a dimension     to a 

dimension  , the following relation holds: 

                     (7) 

Fourthly, as a consequence, the length     of a hypercube at a dimension   decreases, if that hypercube 

experiences a dimensional phase transition to a higher dimension    : 

                    (8) 

 

VI. DISTANCE ENLARGEMENT FACTOR 
At a dimensional phase transition from a dimension     to a dimension  , the length       of a hypercube 

increases by a factor       . That factor is named dimensional distance enlargement factor. In this section, we 

analyze the factor: 

       
   

     
         (9) 

At a dimensional phase transition from a dimension     to a dimension  , and as a consequence of equations 

(6) and (7), the edges of a hypercube obey the following relation: 

   
       

            (10) 

We apply equation (10) to the dimensional distance enlargement factor in equation (9): 

               
   

         (11) 

 

In general, at a dimensional phase transition from a dimension     to a dimension  , the length       of a line 

segment is not invariant, as the volume of a hypercube is invariant, see equations (7) and (8). Correspondingly, 

the length       of a line segment is transformed according to the dimensional distance enlargement factor in 

equation (11). 

 

As a consequence, if a line segment has the length 2 in a dimension  , then that line segment cannot take part in 

a dimensional phase transition to a higher dimension    , as the length would decrease at such a transition, 

see equation (8). 

In particular, if the shortest diameter       corresponding to the shortest light horizon          at dimension 

three, see figure (1), evolves towards the value two at a higher dimension  , then that diameter            

cannot experience a dimensional phase transition to a higher dimension    . That dimension   is named the 

dimensional horizon      .  

              
           (12) 

 

In order to derive the dimensional distance enlargement factor         , by which the diameter             
 is 

multiplied in order to become the value      , we use equation (11). Thereby, we apply the dimension     
     , the dimension    , the difference          , whereby the diameter two at the dimension       is 

the scaled length in equation (11):  

                             (13) 

 

VII. CALCULATION OF THE DIMENSIONAL HORIZON 
In this section, we calculate the value of the dimensional horizon. For it, we use the present-day value of the 

light horizon (see e. g. [8,15,16]): 

                     m        (14) 
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Thus, the complete enlargement factor              
ranging from the present-day time    towards the time of the 

dimensional horizon          is the following ratio: 

                
 

       

  
 

         

                          (15) 

The expansion of space is a uniform scaling with a scale factor              
ranging from the present-day time    

towards the time of the dimensional horizon         . That factor can be derived from the corresponding 

densities of radiation              and        (see e. g. [12,15,16,20,21]): 

                                                    (16) 

 In particular, the scale factor is the fourth root of the ratio of these densities, according to the redshift (see e. g. 

[15,16]): 

                
  

             

       
 
   

               (17) 

Accordingly, the dimensional distance enlargement factor          is the ratio: 

         
             

             
                 (18) 

The dimensional horizon is obtained by solving equation (13): 

                   
 

   
                  (19) 

  

       .  

Fig. 2: Gravitational wave: In three-dimensional space, a gravitational wave has a direction of 

propagation      and two transverse directions of elongation. These three directions are mutually 

orthogonal. 

  

VIII. SPECTRUM OF THE VACUUM 
In this section, we derive the spectrum of the vacuum. For it, we use the plausible concept that a quantum of 
vacuum is a zero-point oscillation, ZPO, of a gravitational wave (see [12,15,16,20,21]).  

 

Firstly, we develop a geometric description of a gravitational wave: In three-dimensional space, a gravitational 

wave has a direction     of propagation and two transverse directions of elongation (see figure 2). Thereby, these 

two transverse directions are orthogonal to each other, and they have a phase shift of π. For instance, in the left 

part of figure (2), the direction     of propagation is parallel to the z-axis, and the two transverse directions are 

parallel to the x-axis and to the y-axis. In another example (see right part of figure 2), the direction     of 
propagation is parallel to the z-axis, and the two transverse directions are parallel to the following vectors: 

      
 
 
 
                    

 
  
 

        (20) 

The second example can be reduced to the first example by rotating the coordinate system by an angle of 

π/4 = 45°. Accordingly, we analyze gravitational waves in an orthogonal coordinate system, in which the 

direction     of propagation is parallel to the last coordinate axis, while the transverse directions of elongation are 

parallel to the other coordinate axes. For instance, in a   dimensional space, the gravitational wave has one 

direction     of propagation and     transverse directions of elongation. Thereby, the direction     of 

propagation and all     transverse directions of elongation are mutually orthogonal. This physically founded 
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result provides a geometric description of a gravitational wave in a   dimensional space. In particular, the 

dimension   of space must be three or larger. 
 

Secondly, we derive the gravitational wave at the dimensional horizon      : At the dimensional horizon      , 

the universe is at the Planck scale. Thus, the corresponding energy is one half of the Planck energy (see e. g. 

[12,15,16]): 

         
  

 
                      

 

 
       (21) 

 That energy can be described in terms of the Planck circular frequency   : 

         
  

 
      

 

 
        (22) 

Thus, the energy at the Planck scale is the zero-point energy, ZPE [11,12,15,16]. Correspondingly, the 

gravitational wave is a ZPO at the dimensional horizon      . 
 

Thirdly, we derive the time evolution of that ZPO or quantum of vacuum and of the corresponding ZPE: When 

the space expands according to GR, then the number of these quanta or ZPOs increases, whereby the ZPE 

remains invariant. However, at a dimensional phase transition from a dimension     to a dimension  , the 

ZPE changes as follows: At a dimensional phase transition from a dimension     to a dimension  , the 

number of transverse elongations changes from       to    . Thus,   transverse directions of elongation 

are lost. That loss of elongations causes a loss of the energy by the factor 
   

     
. Moreover, the quanta of 

vacuum represent the space. Correspondingly, each quantum of vacuum changes its wavelength according to the 

dimensional distance enlargement factor       . Thus, the ZPO increases by the factor       . Hence, the 

ZPO experiences the corresponding redshift, and the ZPE is divided by the factor       . Altogether, the ZPE 

of the vacuum,        , is changed by both factors as follows: 

                   
   

     
 

 

      
        (23) 

 

       .  

Fig. 3: Excitation spectrum: The zero-point energy, ZPE, of the quanta of vacuum is shown as a function 

of the dimension that occurred in the course of dimensional phase transitions in the early universe. As 

these phase transitions are founded on laws of physics and geometry, these ZPE represent the spectrum 

of vacuum in a general manner. For instance, that spectrum is essential, when elementary particles form 

in present-day reactions or when elementary interactions take place, such as the electromagnetic 

interaction in present-day electric equipment, see section X. 

 

In particular, the         can be determined by using the             at the dimensional horizon. Hereby, we 

scale with the Planck energy: 

     
         

         
   

       
 

 

        
       (24) 

We use     
         

 

 
: 

    
     

 

 
 

   

       
 

 

        
         (25) 

We apply the dimensional distance enlargement factor        in equations (11, 12, 13): 

    
     

 

 
 

   

       
               

   

       
                (26) 
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In particular, for the case      =301, we obtain the following spectrum of the vacuum: 

    
     

   

   
                 (27) 

The corresponding spectrum in eV is obtained by multiplication by the Planck energy               eV: 

            
        

   

   
     

   

                             eV (28) 

The above term for the energy         of the quanta of vacuum holds according to the laws of physics and 

geometry. Thus, the present-day vacuum can be excited to any of these        . Hence, these         

represent possible excitation states of the present-day vacuum. That spectrum of excitation states of the vacuum 

is presented in figure (3). 
 

IX. GEOMETRIC DERIVATION OF THE DENSITY OF VACUUM  
In order to obtain a test of the spectrum of the vacuum, we use the spectrum of vacuum, in order to derive the 

density    of the present-day vacuum, in this section. Remind the following essential facts about that spectrum: 

Firstly, the spectrum of vacuum represents the complete time evolution of space, ranging from the dimensional 

horizon towards the present-day three-dimensional space at the present-day time   . 

Secondly, the spectrum of vacuum is based on the underlying laws of physics and geometry. Thus, the spectrum 

can be applied to any physical system, in the past, at the present-day time, or in the future. Thereby, the 
spectrum of vacuum is also based on the light horizon, whereby that horizon is a causal horizon (no event 

outside that horizon can cause any influence upon our present-day life or physics). Note that this horizon 

presents a finite range of causality, whereby translation invariance still provides a potentially infinite space. 

Thirdly, the properties of space are not assumed here. In contrast, the properties of space are derived here. 

 

Firstly, we derive the volume      corresponding to a quantum of vacuum with its energy        . At the 

dimensional horizon      , the universe is at the Planck scale. Thus, the corresponding energy is one half of the 

Planck energy. Moreover, an object has the smallest possible extension. So, the extension of an object is the 

length     of the smallest line segment, in each direction. Thus, that length     represents diameters, and the 

smallest object is a hyperball with radius   . Hence the corresponding volume is the volume of a hyperball with 

length      (for details see e.g. [15,16]). For it, we name the volume of a hyperball with radius one by   . At 

a dimension D, the length of the cube has increased by the dimensional distance enlargement factor         . 

          
           

         (29) 

 

Secondly, we derive the density: The density    is equal to the scaled energy     
     in equation (25) 

multiplied by the Planck energy, divided by the above volume and by the square of the velocity of light: 

           
     

  

        
 

 
 

   

       
 

 

        
    

  

  
         (30) 

According to equations (29) and (13), for the present-day dimension    , and for          , with    
    , the above equation represents the following theoretical value for the density of the vacuum: 

         
 

   
 

 

               
  

  
     

  

 

             

             (31) 

 

Thirdly, we prepare a comparison with observed values. According to the Friedmann-Lemaitre equation, and 

corresponding to the fact that the curvature parameter in that equation is equal to zero, the Hubble constant is 

the following function of the density: 

      
  

   

 
                

Hereby, the density has been expressed by the sum of the density of vacuum        and of the density of matter 

    , averaged over the universe. Thereby, the density of radiation has been neglected, as it is negligibly small 

in the range of the usually observed values at redshifts above the redshift of the cosmic microwave background, 

CMB,           [8]. 

Fourthly, equations (15) until (19) show that the dimensional horizon       is a function of the time t after the 

Big Bang, in general. Thus, the dimensional horizon       is a function of the redshift. As a consequence, see 

equation (30), the density of vacuum    is a function of the redshift. So, the above equation takes the following 

form: 

      
     

   

 
                       (32) 

Fifthly, it is essential to realize a very interesting finding: If an observer uses radiation that has been emitted at a 

redshift  , in order to measure the Hubble constant       (z), then the resulting observed value is a function of 

the redshift  . Note that this finding has been obtained at a significance of more than five standard deviations 
[38].  
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According to the Friedmann-Lemaitre equation, and corresponding to the fact that the curvature parameter in 

that equation is equal to zero, the Hubble constant is the following function of the density: 

      
     

   

 
                        (32) 

The observed values of the density of vacuum           are obtained from the observed values          , by 

solving the above equation: 

                
     

 

   
             (33) 

 

Sixthly, the corresponding theoretical values            have been derived by an analysis of the time evolution 

of the dimensional horizon [12,15,16,20,21]: The time evolution of the dimensional horizon provides a time 
evolution of the spectrum in equation (24). Thus, the spectrum of the generated vacuum varies slightly as a 

function of time. Thus, the present-day vacuum is a mixture of quanta of vacuum at slightly different energies 

       . So, the present-day vacuum is a polychromatic vacuum.  

 

Seventhly, we compare theoretical and observed values: In figure (4), the observed densities           are 

presented by marks, the corresponding theoretical densities            are presented by the dashed line, and the 

value derived here on the basis of the actual dimensional horizon         is presented by the dot-dashed line. 

Furthermore, for the case of small redshifts       , the probes used in the measurement have been emitted 

within our local attractor Laniakea. That attractor has an underdensity. So, the density of matter             is 

below the averaged density of the universe     . Hence, the density           is additionally increased by the 

difference                 . That increase is marked by four arrows in figure (4).  

Altogether, the geometric derivation of the density of vacuum applied here provides a value that is clearly 

within the range of measured values, see dot-dashed line in figure (4). Moreover, the geometric derivation of the 

spectrum has been used, in order to derive the theoretical values densities           . These are within the errors 

of measurement of the observed values presented in figure (4). This finding provides additional evidence for the 

spectrum derived here.  

 
 

       .  

Fig. 4: Density of the vacuum   : Probes: X megamaser [24], □surface brightness [31],  

star: distance ladder [25,32,33,38],   gravitational wave [30], o baryonic acoustic oscillations [26,27],  

● weak gravitational lensing [28], Δ strong gravitational lensing [29], pentagon: CMB [8].  

Local under-density of our local attractor Laniakea: arrows [39-45]. 

Theory:              : based on actual dimensional horizon                

             : time evolution of the dimensional horizon          provides polychromatic vacuum.  

Summary: The theoretical values of the density of vacuum are within the errors of measurement.  
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X. OUTLOOK 
In this section, we summarize further essential results that have been derived from the present spectrum of 

vacuum. 

(1) There occur additional excitation states: The transverse ZPOs derived above can be excited to 

longitudinal ZPOs. Moreover, each of these ZPOs can be excited by harmonic oscillations [12,16]. 

(2) Three longitudinal states in item (1) can bind to a triple, in order to form a three-dimensional object in 

three-dimensional space [12]. 

(3) The triples in item (2) include the Higgs boson. Hereby, the mass    of the Higgs boson is derived. 

Thereby, no fit is executed and the theoretical value is within the errors of measurement [12]. 

(4) The Higgs bosons in item (3) can bind to a pair. Such pairs have been observed at a significance of four 

standard deviations. The energy       of that pair has been derived on the basis of the mass    of the 

Higgs boson in item (3). That energy is equal to the energy      of the empirically found vacuum 

expectation value, vev. Thus, the vev has been derived and explained on the basis of the spectra 

derived here. Based on the vev, the Higgs mechanism has been derived and explained on the basis of 

the spectra derived here [37]. 

(5) The sum of the masses of the neutrinos has been derived and explained on the basis of the spectra 

derived here [12]. 

(6) It has been observed that neutrinos violate the symmetry of parity transformations. That fact means that 

neutrinos distinguish between left-handed and right-handed situations. The breaking of that symmetry 
has been derived and explained on the basis of the spectra derived here [37]. 

(7) The elementary particles in items (3) to (6) generate elementary and fundamental interactions such as 

the electromagnetic interaction or the weak interaction. These have been derived and explained on the 

basis of the spectra derived here [37,46]. 

(8) The density of vacuum has been derived by geometric methods here. Alternatively, that density has 

been derived on the basis of the dynamics. Thereby, the dynamics has been represented in the form of a 

differential equation. Hereby, also the theoretical values            have been derived and explained 

[16,12,45]. 

 

XI. DISCUSSION 
The space has expanded since the Big Bang [1,2,8,34]. That expansion has usually been described and 

explained by general relativity, GR, and by the standard model of cosmology, SMC, [5-8]. However, in the early 

universe, distances increased in a very rapid manner, see figure (1). The era of that rapid increase has been 

named era of cosmic ‘inflation’ [13]. However, the concept of that ‘inflation’ is hypothetic and problematic, as 

it causes the ‘reheating problem’ and requires several parameters that are hardly founded in a fundamental 

physical manner [8,9,14]. So, the SMC describes that era in a hypothetic, problematic and hardly fundamental 

manner. Moreover, GR does not describe that era at all. 

 These problems have been solved by physically founded dimensional phase transitions [10-

12,15,16,48-51]. Thereby, the phase transitions have been modeled locally by four mutually independent 

physical models. Moreover, the global geometric properties have been described with models using balls or 

vertices (nodes) and edges [10-12,15,16,52]. Here, we derived general and global geometric and spectral 
properties of these phase transitions in a geometric manner. That geometric derivation presented here provides 

additional evidence and additional clarity: In particular, we derived the following physically founded geometric 

principles:  

(1) There is a smallest length    that can be observed by a single measurement. 

(2) A dimensional phase transition changes the dimension of space. 

(3) A dimensional phase transition does not cause a change of volume. 

(4) If the largest line segments in a volume have the length    , then the dimension of that volume cannot 

be increased. Thus, the dimensional horizon       is reached. At the dimensional horizon      , all 

quantities are at the Planck scale, in particular, each energy is a zero-point energy ZPE equal to one 

half of the Planck energy   . 

(5) At  -dimensional space, a ZPO of vacuum has one direction of propagation,     transverse and 

mutually orthogonal directions of elongation and the volume                   
 

.  

(6) At a dimensional phase transition from a dimension     to a dimension  , there occurs a redshift of 

the ZPO of the vacuum by the factor         , and transverse elongations in the lost dimensions are 

lost. Note that objects within space do not experience a redshift at a dimensional phase transition, as 

they are in space. Whereas the objects of space, the ZPOs of vacuum, instantiate the dimensional 

distance enlargement factor, whereby they experience the corresponding redshift. Note also, that the 

increase of the number of the ZPOs of vacuum does not change any single ZPO of vacuum. But the 
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increase of the number of ZPOs instantiates the expansion of space, so that light and other objects that 

propagate in space do experience a corresponding redshift. 

Moreover, the spectra are founded generally, so they can be applied to the physics at the early universe, to 
elementary particle physics, to the physics of dark energy, to the derivation of the density of the vacuum or to 

any other physical system [12,36,37,46]. 

 We used the derived spectrum of the vacuum, in order to derive the density of vacuum (see also 

[53,54]). Additionally, the density of vacuum as a function of the redshift has been derived from that spectrum. 

Both results are within the errors of measurement, whereby no fit has been executed. These results provide a 

clear evidence for the geometrically derived results.  
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