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ABSTRCT: In this paper we have extended some basic results of  Nevanlinna theory to  Euler’s gamma 

function which is known to be a meromorphic function. 
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Preliminaries: 

By a meromorphic function we shall always mean a transcendental meromorphic function in the plane. 

If f is a meromorphic function, C a   and r > 0, we use the following notations of frequent use in Nevanlinna 

theory with their usual meaning: 
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As usual, if a = , then by a zero of f-a, we mean a pole of f. 

 

Introduction:  The Euler’s Gamma function )z(  is given by 
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)nlogk(lim  is Euler’s constant. 

Clearly )z(  is meromorphic function with simple poles  at 


 0k}k{  and 0)z(   for z .C  

 

 

 In [3], Zhuan Ye has proved the following. 

Theorem A:  with usual notations, 
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(2) )o,( = 1),(  , 0)a,(   for a  0,  . 

 

We wish to obtain some other results of Nevanlinna theory related to  Euler’s Gamma function 

 and prove the following result. 

 

Theorem 1 : Suppose )z(  is the Euler Gamma – function as defined in (1) and let )z(i   

(i=1, 2, …… p) be p (2 < p <  ) distinct small meromorphic functions of finite order  
ir

  satisfying T(r, i ) = 

o {T (r,  )}  ( r  ). If p = +  , then for any >0 , there exists a positive integer q such that K(Lq ( )) < 
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We require the following Lemma in our proof. 

Lemma [1] Let the differential equation w
(k)

 + a k-1 w
(k=1)

 +…..+a0 w = 0 be satisfied in the complex plane by 

linearly independent meromorphic functions f1, f2….. fk. 
 

Then the co-efficients aj(j=0, 1, …, k-1) are meromorphic in the plane with the property 

 m(r, aj) = O 
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Proof of Theorem : 

 First we, consider the p = +  . 

 Let F(z) = 
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Then, by an earlier result we know that, 
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for any positive integer q <  . 

 

 

Now,  N(r, ai) = 
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and m(r, ai) = o{T(r,  )} , by the above Lemma. 

Also, We have 
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Hence, We have m 
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Therefore, 
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Thus, we obtain 
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on the other hand, 
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using the First Fundamental Theorem. 

Hence, 1 – K(Lq, ( ))  >  
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Further, for any 0, there exists a positive integer. 

  q0 (0 < q0 < +  ) and 
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Thus, we have,  
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Hence, we have K(Lq0 ( )) < 1 - 





1i

i ),(  +   for a positive integer q0.  

If p is finite, then in the above discussion we may take q = q0 = p.  

This proves the result. 
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