Comparison Between Wind And Seismic Load On Different Types Of Structures

¹, Sanhik Kar Majumder, ², Prof. Priyabrata Guha

¹ M.Tech (Structural Engineering) Narula Institute of Technology ² Narula Institute of Technology Agarpara, Kol-109, W.B., India

ABSTRACT—It is very important for considering the effects of lateral loads from wind and earthquakes for design of reinforced concrete structures, especially for high-rise buildings. Some cases the effect of earthquake is found more critical than wind effect. It depends on some factors defined by codes. In this study the both effects will be considered and compared according to the Code IS: 875(PART - 3) and IS:-1893-2002(PART-1) and IS:875(PART-1 AND PART-2). A software program is developed to analyze the different types of structures under wind pressure and earthquake effect considering all factors from the codes. Some recommendations are suggested to develop different types of structures with respect to lateral loads.

KEYWORDS—*Types of structures, Wind pressure,Seismic preassure,Dead Load,Live Load, Zone factor, Load Combination, Importance factor.*

INTRODUCTION

My project involves Effect And Comparission Between Wind And Seismic Loads On Different Types Of Building Structures [G + 7] using design software STAAD.ProV8i.

The advantages of this software are given below:

I.

1. Easy to use, 2. Provisions of Indian standard codes 3. different natures of solving any types of problems, 4. Perfection of accuracy.STAAD.ProV8i is more effective software for concrete, steel, aluminium and cold-formed steel design, culverts, tunnels, bridges, timber, piles etc. than other softwares. Generally, STAAD.ProV8i used to generate different types of models easily and also analysis and design is completed very significantly.

STAAD.Pro is a general purpose of structural analysis and design program with applications in the commercial buildings, highway structures, industrial structures, chemical plant structures, dams, retaining walls, turbine foundations and other embedded structures, etc. This program hence consists of the following facilities :

1.Beam and column members are represented by lines. Walls, slabs and panel type entities are represented using triangular and quadrilateral finite elements. Solid blocks are represented using brick elements.

2. Analysis engines for performing linear elastic and pdelta analysis, finite element analysis, frequency extraction, and dynamic response (spectrum, time history, steady state, etc.).

3. Design engines for code checking and optimization of steel, aluminum and timber members. Reinforcement calculations for concrete beams, columns, slabs, Design of shear and moment connections for steel members.

4. Result verification and report generation tools for examining displacement diagrams, bending moment and shear force diagrams .

II. LOADS CONSIDERED:

2.1 <u>**DEAD LOADS**</u>: Dead loads shall be calculated on basis of unit weights which shall be established taking into consideration the materials specified for construction. This consist of walls, partitions, floors, roofs including the weights of all other permanent structures. It may be calculated on the basis of unit weights of materials given in IS 875(part -1).

2.2 <u>IMPOSED LOADS</u>: Imposed loads are produced from the weight of movable partitions of buildings, uniformly distributed and concentrated loads. For structures carring live loads which induced impact and vibration. Imposed loads shall be assumed in accordance with IS 875(part -2).

2.3 <u>WIND LOAD</u>: The IS 875(part -3) deals with wind loads to be considered when designing building , structures and components thereof.

Wind load depends upon wind speed and pressure -

a) Basic wind speed (Vb):

IS 875(part-3), fig-1 gives basic wind speed map of India, as applicable to 10m height above mean ground level for different zones of the country.

b) Design Wind Speed (Vz):

The basic wind speed (Vb) for any site shall be obtained and shall be modified to include the following effects of design wind velocity at any height (Vz) for the chosen structure:

a) Risk level;

b) Terrain roughness, height and size of structure; and

c) Local topography.

It can be mathematically expressed as follows:

Vz = Vb * k1 * k2* k3

Vb = design wind speed at any height z in m/s;

K1= probability factor (risk coefficient)

K2 = terrain, height and structure size factor and

K3= topography factor

As per this study,

Vb = 50 m/s, K1=1, k2= 0.85, k3=1

c)<u>Design Wind Pressure</u> – The design wind pressure at any height above mean ground level shall be obtained by the fallowing relationship between wind pressure and wind velocity : $Pz = 0.6 Vz^2$ Where,

 $Pz = Disign wind pressure in N/m^2$ at height z , and

Vz = Design wind velocity in m/s at height z

2.4 SEISMIC LOAD: The seismic forces shall be calculated in accordance with IS 1893(part-1). This code deals with assessment of seismic load on various structures and earthquake resistant of design of buildings. Seismic load depends upon the following criteria:

a) <u>Design horizontal acceleration co-efficient (A_h) </u>: It is a horizontal acceleration co-efficient that shall be used for design of structures.

 $A_{h} = ZIS_a / 2Rg$

Where, Z= Zone factor

I = Importance factor

R = Response reduction factor

 $S_{a^{\!/}}\,g=Avg.$ response acceleration co-efficient

b) **Design Lateral Force**: It is the horizontal seismic force prescribed by this standard, that shall be used to design a structure.

c) <u>Design Seismic Base Shear</u>: The total design lateral force or design seismic base shear (Vb) along shall be determined by the following expression: Vb = Ah W Where, Ah = horizontal acceleration spectrum W = seismic weight of all the floors.

*d) Fundamental natural period***(T_1):** *It is the first longest model time period of vibration.*

e) <u>*Time History Method:*</u> *Time history method of analysis shall be based on an appropriate ground motion and shall be performed using accepted principles of dynamics.*

f) <u>*Response Spectrum Method:*</u>- The representation of the maximum response of idealized single degree fredom systems having certain period and damping during earthquake ground motion.

III. PHYSICAL PARAMETERS OF BUILDING:-

Length = 3 bays @ 4.0m = 12.0m Width = 3 bays @ 4 m = 12.0m Height = 3m + 6 stories @ 3.0m = 21m (1.0m parapet being non-structural for seismic purposes, is not considered of building frame height) Live load on the floors is 1kN/m2 & Dead load on the roof Is 2kN/m2

Grade of concrete and steel used:-

Used M30 concrete and Fe 415 steel. All columns = 0.40 * 0.40 m, All beams = 0.3 * 0.3 m, All slabs = 0.10 m thick

4m 4m	4m	4m	4m	4m
4m 4m	4m	4m	4m	4m
4m 4m 4m	4m	4n	4m 1 4m	4m

Plan of the G+7 storey building

BUILDING TYPE-1(EFFECT OF WIND LOAD)

BUILDING TYPE-1(EFFECT OF SEISMIC LOAD

BUILDING TYPE-1

BUILDING TYPE-2(EFFECT OF SEISMIC LOAD)

Comparison Between Wind And Seismic Load On Different Types Of Structures

BUILDING TYPE-3(EFFECT OF WIND LOAD)

BUILDING TYPE -3(EFFECT OF SEISMIC LOAD)

BUILDINGTYPE-3

BUILDING TYPE-5

BUILDING TYPE-6

BUILDING TYPE-7

BUILDING TYPE-8

BUILDING TYPE-9

BUILDING TYPE-10

• LOAD COMBINATION OF DEAD LOAD AND LIVE LOAD

LOAD COMBINATION OF DEAD LOAD AND LIVE LOAD AND WIND LOAD

- LOAD COMBINATION OF DEAD LOAD, LIVE LOAD AND SEISMIC LOAD
- 4. <u>RESULTS:-</u>
- > EFFECT OF WIND LOAD:-

TABLE -1:-

	Fy (kN)	Fz (Kn)	My (kNm)	Mz (kNm
CASE 1	35.77	21.356	33.933	42.293
CASE 2	36.752	21.455	34.125	43.225
CASE 3	41.22	21.34	33.995	52.589
CASE 4	38.452	24.928	41.741	47.573
CASE 5	36.465	21.708	34.83	43.772
CASE 6	40.743	25.303	42.296	53.409
CASE 7	36.157	21.334	36.093	52.759
CASE 8	52.692	27.105	39.693	72.524
CASE 9	50.845	22.41	40.406	61.797
Case10	37.271	22.089	37.85	44.371

TABLE -2:-

BEAM NO.	NODE NO.	STEEL AREA(samm)
CASE-1		
609	274	702.82
386	164	1280
589	164	1280
608	172	706.53
CASE- 2		
609	274	739.19
386	164	1280
589	164	1280
608	172	729.3
CASE-3		
617	278	2070.33
386	164	6004.5
589	164	6004.5

617	278	2070.33
CASE- 4		
688	194	823.77
825	276	1280
510	172	1280
688	194	823.77
CASE-5		
617	185	738.72
386	164	1280
581	157	1280
617	185	738.72
CASE- 6		
705	217	982.64
817	279	1280
567	191	1280
705	283	982.64
CASE- 7		
617	185	716.8
379	157	1280
530	234	1280
467	234	988.05
CASE- 8		
681	271	864.54
845	303	1280
814	275	1280
410	176	882.56
CASE-9		
729	253	864.54
502	171	2400
502	183	2400
808	297	864.54
CASE- 10		
689	275	757.61
814	271	1280
813	267	1280
680	182	760.33
	. ~-	

• LOAD CASE DIAGRAM(EFFECT OF WIND LOAD):-

> EFFECTOFSEISMIC LOAD:-

TABLE:- 1						
		Fy kN	Fz kN	My kNm	Mz kNm	
	CASE 1	26.412	9.137	13.857	23.119	
	CASE 2	31.118	14.01	20.735	32.421	
	CASE 3	555.49	467.187	825.135	990.137	
	CASE 4	27.116	10.584	14.684	24.677	
	CASE 5	27.138	-10.714	15.039	24.74	
	CASE 6	27.569	10.209	17.707	25.208	
	CASE 7	27.665	11.725	27.001	43.718	
	CASE 8	38.197	11.596	16.015	35.144	
	CASE 9	42.054	17.371	33.613	53.221	
	CASE 10	27.087	10.529	13.455	24.321	
			TABLE :-2			
BEA	M NO	NODE	ENO	STEEL	AREA(samm)	
CAS	E. 1	HODI		01LLL		
CILD	609		274		702.82	
	328		30		1280	
	596		266		1280	
	609		200		702.82	
CAS	F -2		214		102.02	
CAS	617		278		736 37	
	386		164		1280	
	580		164		1280	
	696		206		638.48	
CAS	F- 3		200		030.40	
CAD	<u>822</u>		304		4736	
CAS	F -4		504		4750	
CAD	705		217		648 3	
	379		157		1280	
	588		265		1280	
	705		203		648.3	
CAS	F 5		217		040.5	
CAD	632		208		584 37	
	386		164		1280	
506			266		1280	
	632		200		584 37	
CAS	F- 6		200		504.57	
CAD	705		283		982 64	
	386		164		1280	
534			187		1280	
705			283		982.64	
CAS	E - 7					
	633		209		604.9	
	531		234		1280	
530			234		1280	
467			234		988.05	
CAS	E- 8					
	689		275		864.54	
	386		164		1280	
	816		283		1280	
	462		219		864.54	
CAS	CASE- 9					
	729		253		864.54	
	866		253		2400	
	866	İ	253		2400	
	808		297		864.54	
CAS	E- 10					
	689		275		757.61	
	386		164		1280	
	589		164		1280	
	689		275		757.61	

LOAD CASE DIAGRAM(EFFECT OF SEISMIC LOAD)

V. CONCLUSION: -

It is concluded form this study that: 1.Wind forces affect any building are as well as the intensity of wind defined by the code according to its the location. 2 For any building, earthquake forces as well as the intensity of earth quake defined by the zone factor through its location, the importance of the building, the structural element, the period coefficient which depends on the dimensions and weight of the building and the soil coefficient. 3. In case of Load cases 5,2 and1, the structures will be more flexible and economical depending upon basic wind speed(50m/s) and zone factor(zone-2). 4. When basic wind speed and zone factor in any region of India will be changed, which structures will be more economy for those cases, that will be further analysed.

REFERENCES:-

- [1] T. Kijewski, D. Kwon, A. Kareem, E-Technologies for Wind Effects on Structures, Proceedings of 11th International Conference on Wind Engineering, Vol.2, 2003. pp. 2217-2224.
- [2] ASCE, ASCE 7-98: Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, 2000.
- [3] Bungale S. Taranath , Wind and Earthquake resistant buildings: Structural analysis and design, CRC press, 2nd edition May 2012.
- [4] Ming Ju, (2009), Study on Wind loads and responses of tall buildings and structures, November 8-12, 2009, The Seventh Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan.
- [5] Simiu, E., and Scanlan, R., (1996), Wind effects on structures: Fundamentals and applications to design, 3rd edition, Wiley, New York.
- [6] Gajbhiye S.D. and Pande A.M.Critical "study of wind load effect on high rise building," M. Tech. Thesis, submitted to Nagpur University in 2011.
- [7] Davenport, A.G. 1971. "The Response of Six Building Shapes to Turbulent Wind". Philosophical Transactions of the Royal Society of London. 269 (1199), 385-394.
- [8] Shunsuker, O. Japanese seismic design of high-rise reinforced concrete buildings-An example of performance based design code and state of practices. 13th world conference on earthquake engineering Vancouver, B.C., Canada. 2004. paper No. 5010.
- [9] Boggs, D.W. and Peterka, J.A., 1989, "Aerodynamic Model Tests of Tall Buildings, Journal of Engineering Mechanics, American Society of Civil Engineers, Vol. 115, No. 3, pp. 618 - 635
- [10] Seminar on Wind Effects on Buildings and Structures, University of Toronto Press, Toronto, Canada, 1968. Haldar, A. and S. Mahadevan. Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons, Inc.,
- [11] Michael, R. L. and Majid B. Seismic design of building structures. Professional publications, Inc. Belmont, CA, USA, Eighth edition. 2001.
- [12] Wood, D. R and Whittaker, D. Seismic design of high-rise structures in Dubai, UAE. 8 th pacific conference on earthquake engineering, Singapore 2007. paper No. 053.
- [13] Merrick, R and Bitsuamlak, G. Shape effects on the wind-induced response of high-rise buildings. Journal of wind and engineering, 2009. vol.6, No. 2, pp 1-18.
- [14] Gupta, S., A. Gupta, P. Bose and A. Verma (2003), A Comprehensive Study of Evaluation of Design Through Changes in Indian Standard Codes IS: 456 and IS: 1893, Proc. of Workshop on Retrofitting of Structures, I.I.T., Roorkee, 135-142.
- [15] IS: 1893-2002 (Pt. 1), Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi, India.
- [16] 16. IS: 875(Part3): Wind Loads on Buildings and Structures -Proposed Draft & Commentary By Dr.Prem Krishna Dr. Krishen Kumar Dr. N.M. Bhandari.