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I. INTRODUCTION 
We have already seen the concept of symmetric doubly stochastic matrices.  In this paper the 

symmetric doubly stochastic matrix is developed in real matrices. Recently Hill and Waters[2] have developed a 

theory of k-real matrices as a generalization of s-real matrices. Ann Lee[1] has initiated the study of secondary 

symmetric matrices, that is matrices whose entries are symmetric about the secondary diagonal.  Ann Lee[1] has 

shown that the matrix A, the usual transpose A
T
 and secondary transpose A

S
  are related as  A

S
 = VA

T
V and A

T
 

= VA
S
V where V is a permutation matrix with units in the secondary diagonal. 

 

II. PRELIMINARIES AND NOTATIONS 
A

T
 - Transpose of A 

Let k be a fixed product of disjoint transpositions in Sn and „K‟ be the permutation matrix associated with k.  

Clearly K satisfies the following properties. K 
2
 = I, K

T
 = K. 

 

III. DEFINITIONS AND THEOREMS 
DEFINITION: 1 

             A matrix A  R
n x n

 is said to be symmetric doubly stochastic matrix if A = A
T
 and  

          = 1, j = 1, 2, ………n 

 and = 1, i = 1, 2, ………n  and all a ij ≥ 0. 

If A is doubly stochastic and also symmetric then it is called a symmetric doubly stochastic matrix. 

 

DEFINITION: 2 

             A matrix A  R
n x n

 is said to be k-symmetric doubly stochastic matrix if A = K A
T 

K 

 

THEOREM: 1 

               Let A  R
n x n

 is k-symmetric doubly stochastic matrix then A = K A
T 

K. 

Proof: 

 K A
T 

K = KAK where A
T
 = A 

              = AKK where AK = KA 

                     = AK
2
  = A where K

2
 = I 

THEOREM: 2 

               Let A
T
  R

n x n
 is k-symmetric doubly stochastic matrix then A

T
 = KAK. 

Proof: 

   K A
 
K  = KA

T
K where A = A

T
 

               = A
T
KK where K A

T
 = A

T
 K   

                    = A
T
 K

2
  = A

T
 where K

2
 = I 
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THEOREM: 3 

 Let A, B  R
n x n

 is k-symmetric doubly stochastic matrix then (A + B) is k-symmetric doubly 

stochastic matrix. 

Proof: 

Let A and B are k-symmetric doubly stochastic matrix if A = K A
T 

K and B = KB
T
K. 

To prove (A + B) is k-symmetric doubly stochastic matrix we will show that  

(A + B) = K (A + B)
T
 K 

Now  K (A + B)
T
 K = K (A

T
 + B 

T
) K =  K (A

T
 + B 

T
) K =  (KA

T
 + KB 

T
) K =  (KA

T
 K+ KB 

T
 K)  

               = (A + B) where K A
T 

K = A and KB
T
K = B 

THEOREM: 4 

 Any k-symmetric doubly stochastic matrix can be represent as sum of k-symmetric doubly stochastic 

matrix and skew k-symmetric doubly stochastic matrix. 

Proof: 

To prove that  (A + KA
T
K)  and  (A - KA

T
K)  are k-symmetric doubly stochastic matrices the we 

will show that  (A + KA
T
K)  = K (A + KA

T
K)

T
 K and (A - KA

T
K) = K (A - KA

T
K)

T
 K. 

K (A + KA
T
K)

T
 K =  (A + KA

T
K) using theorem 3 and  K (A - KA

T
K)

T
 K =  (A - KA

T
K). 

Then  (A + KA
T
K) +  (A - KA

T
K) = 2A/2 = A. Hence the theorem is proved. 

 

THEOREM: 5 

 If A and B are k-symmetric doubly stochastic matrices then AB is also k-symmetric doubly stochastic 

matrix. 

Proof: 

Let A and B are k-symmetric doubly stochastic matrix if A = K A
T 

K and B = KB
T
K. 

Since A
T 

and B
T 

are also k-symmetric doubly stochastic matrices then A
T
 = KAK and B

T
 = KBK.   

To prove A B is k-symmetric doubly stochastic matrix we will show that  

AB= K (A B)
T
 K 

Now  K (A B)
T
 K= KB

T
A

T
K = K(KBK)(KAK)K where A

T
 = KAK and B

T
 = KBK.   

        = K
2
B K

2
A K

2
  = BA where K

2 
= I 

       = AB where BA = AB 

 

THEOREM: 6 

 If A and B are k-symmetric doubly stochastic matrices and K is the permutation matrix,  

k = {(1), (2 3)} then KA is also k-symmetric doubly stochastic matrix. 

Proof: 

Let A and B are k-symmetric doubly stochastic matrix if A = K A
T 

K and B = KB
T
K. 

Since A
T 

and B
T 

are also k-symmetric doubly stochastic matrices then A
T
 = KAK and B

T
 = KBK.   

To prove K B is K-symmetric doubly stochastic matrix we will show that KA= K (KA)
T
 K 

Now  K (KA)
T
 K= K(A

T
K

T 
)K = KA

T
K

T
K = KA

T
 where K

T
 K = I .   

       = KA where KA
T
 = KA 

 

RESULT: 

 For A R
n x n

 is symmetric doubly stochastic matrices for the following are holds. 

[1] A = K A
T
 K 

[2] KA is symmetric doubly stochastic matrix. 

[3] AK is symmetric doubly stochastic matrix. 

 

Example:
 
  

A =         A
T
 =   and  k = (1) (2   3) =   
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(i)   K A
T
 K =     = A 

       Similarly KAK = A
T
  

(ii)   KA =  =  = (KA)
T
  

  KA is symmetric doubly stochastic matrix. 

Similarly KA
T
 is also symmetric doubly stochastic matrix.  

 

(iii)  AK =   =  = (AK)
T
 

        AK is symmetric doubly stochastic matrix.  

Similarly A
T
 K is also symmetric doubly stochastic matrix. 

 

DEFINITION: 3 

              A matrix A  R
n x n

 is said to be s-symmetric doubly stochastic matrix if A
S
 = V A

T 
V 

where V is a permutation matrix with units in the secondary diagonal. 

 

THEOREM: 7 

             Let A  R
n x n

 is s-symmetric doubly stochastic matrix then A
S
 = V A

T 
V. 

Proof: 

 V A
T 

V = V (VA
S 

V) V = V
2
A

S 
V

2
  

              = A
S
 where V

2
 = I 

 

THEOREM: 8 

              Let A
T
  R

n x n
 is s-symmetric doubly stochastic matrix then A

T
 = VA

S
V. 

Proof: 

 V A
S 

V = V (VA
T 

V) V =V
2
A

T 
V

2
  

                          = A
T
 where V

2
 = I 

 

THEOREM: 9 

Let A, B  R
n x n

 is s-symmetric doubly stochastic matrix then (A + B) is s-symmetric doubly 

stochastic matrix. 

Proof: 

Let A and B are s-symmetric doubly stochastic matrices if A
S
 = V A

T 
V and B

S
 = VB

T
V. 

To prove (A + B) is s-symmetric doubly stochastic matrix we will show that  

(A + B)
S
 = V (A + B)

T
 V 

Now  V (A + B)
T
 V = V (A

T
 + B

T
 ) V =  V(A

T
 + B

T
 ) V =  (VA

T
 + VB

T
) V=  (VA

T
 V+ VB

T
 V) 

                                      = (A
S
 + B

S
) where V A

T 
V = A

S 
and VB

T
V = B

S
 

             = (A + B)
S
     

THEOREM: 10 

 If A and B are s-symmetric doubly stochastic matrices then AB is also s-symmetric doubly stochastic 

matrix. 

Proof: 

Let A and B are s-symmetric doubly stochastic matrices if A
S
 = V A

T 
V and B

S
 = VB

T
V. 

Since A
T 

and B
T 

are also s-symmetric doubly stochastic matrices then A
T 

= VA
S
V and B

T
= VB

S
V.   

To prove A B is s-symmetric doubly stochastic matrix we will show that  

(AB)
S 

= V(A B )
T
 V 

Now  V (A B)
T
 V= VB

T
A

T
V = V(VB

S 
V)(VA

S
V)V where A

T
 = KA

S
K and B

T
 = KB

S
K.   

        = V
2
 B

S
V

2
A

S 
V

2
 = B

S
 A

S 
where V

2 
= I 

       = (AB)
S
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THEOREM: 11 

             If A is s-symmetric doubly stochastic matrix and V is a permutation matrix with units in the secondary 

diagonal then VA is also s-symmetric doubly stochastic matrix. 

Proof: 

Let A is s-symmetric doubly stochastic matrices if A
S
 = V A

T 
V. Since A

T  
is s-symmetric doubly 

stochastic matrices then A
T 

= VA
S
V. To prove VA is s-symmetric doubly stochastic matrix we will show that  

(VA)
S
= V(VA)

T
 V 

Now  V (VA)
T
 V = V(A

T
V

T 
)V= V(VA

S
V)

 
V

2
   

        = A
S 

V
 S  

where V
2 
= I 

       = (VA)
S
  

 

RESULT:  

              For A R
n x n

 is s-symmetric doubly stochastic matrix for the following are holds. 

[1] A
S
 = V A

T
 V 

[2] VA is symmetric doubly stochastic matrix. 

[3] AV is symmetric doubly stochastic matrix. 

 

Example:
 
  

A =          A
T 

= A
S
 =    V =   

 

(i)  V A
T
 V =   =A

S 

       Similarly VA
S
V = A

T
  

(ii) VA =  =  = (VA)
T
 

  VA is symmetric doubly stochastic matrix. 

Similarly VA
T
 is also symmetric doubly stochastic matrix.  

 

(iii)  AV =   =  = (AV)
T
 

        AV is symmetric doubly stochastic matrix. 

     Similarly A
T
 V is also symmetric doubly stochastic matrix. 

 

DEFINITION: 4 

              A matrix A  R
n x n

 is said to be s-k-symmetric doubly stochastic matrix if  

[1] A = KVA
T
VK 

[2] A
T 

= KVAVK 

[3] A = VKA
T
KV 

[4] A
T 

= VKAKV 

 

Where V is a permutation matrix with units in the secondary diagonal and K is a permutation matrix and 

 k = {(1) (2    3)}. 

 

THEOREM: 12 

             Let A  R
n x n

 is s-k-symmetric doubly stochastic matrix then   

[1] A
S
 = KVA

T
VK 

[2] A
T 

= KVA
S
VK 

[3] A
S
 = VKA

T
KV 

[4] A
T 

= VK A
S
 KV 
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Proof: 

                     (i)  KVA
T
VK  = K(VA

T
V)K 

                                             = KA
S 

K where VA
T
V

  
 = A

S
 

                                             =K(A
T
)

T 
K = K A

T 
K where A

T
 = A 

                                             = A = A
S
 where KA

T 
K = A and A = A

S
  

                    (ii)  KVA
S
VK = K(VA

S
 V)K = K A

T 
K where VA

S
V

  
 = A

T 

                                             = A where K A
T 

K = A   

                                             =  A
T
 where A = A

T
  

                   (iii)  VKA
T
KV  = V(KA

T
K)V 

                                             = VAV where KA
T 

K = A 
 

                                             = VA
T
V where A = A

T 

                                                                     
 = A

S
 where VA

T
V = A

S
  

                   (iv)  VKA
S
KV   = V(KA

S
K)V = V (K(A

T
)

T 
K)V 

                                             = VA
T
V where K(A

T 
)

T
K

  
 = A

T
 

                                             = A
S
 where V A

T
 V= A

S 

                                                                      
= (A

T 
)

T
 = A

T
 where A = A

T 

THEOREM: 13 

             Let A, B  R
n x n

 is s-k-symmetric doubly stochastic matrix then  (A + B ) is s-k-symmetric doubly 

stochastic matrix. 

Proof: 

             Let A and B are s-k-symmetric doubly stochastic matrix if A =KV A
T 

VK and B = KVB
T
VK. 

To prove  (A + B ) is s-k-symmetric doubly stochastic matrix we will show that  

(A + B ) = KV  (A + B )
T
 VK 

Now  KV  (A + B )
T
 VK = K( V (A + B )

T
 V)K  =  K  (A + B )

S
 K using theorem (9) 

                    = K  (A + B )
T
 K = (A + B ) using theorem (3)    

THEOREM: 14 

 If A and B are s-k-symmetric doubly stochastic matrix then AB is also s-k-symmetric doubly stochastic 

matrix. 

 

Proof: 

             Let A and B are  s-k-symmetric doubly stochastic matrix if A =KV A
T 

VK and B = KVB
T
VK. 

Since A
T 

and B
T 

are also s-k-symmetric doubly stochastic matrices A
T 

= KVAVK  and B
T 

= KVBVK. 

To  prove  A B is s-k-symmetric doubly stochastic matrix we will show that  

AB
 
= KV(A B )

T
 VK 

Now  KV(A B )
T
 VK = K(V(A B )

T
 )VK = K(A B )

S
K using theorem (10) 

              = K(A B )
T
K = AB using theorem (5)   

 

RESULT: 

             For A R
n x n

 is s-k-symmetric doubly stochastic matrix the following are equivalent. 

(i)  A = KVA
T
VK (ii)  A

T 
= KVAVK (iii)  A = VKA

T
KV          (iv)  A

T 
= VKAKV 

Example:
 
  

A =       K =              V =   

 (i)   KVA
T
VK =    = A 

 

(ii)   KVAVK =     = A
T 
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(iii) VKA
T
KV =  = A

 

 

(iv)  VKAKV =  = A
T 
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