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ABSTRACT: The field of in silico drug design is a rapidly growing area in which many successes have 

occurred in recent years. The explosion of bioinformatics, cheminformatics, genomics, proteomics, and 

structural information has provided hundreds of new targets as well as new ligands. Therefore, in silico drug 

design represents computational methods and resources that are used to facilitate the opportunities for future 

drug lead discovery. This review reported a brief history of drug design and summarized the most important 

steps of in silico drug design strategy for the discovery of new molecular entities. The workflow of the entire 

virtual designing campaign is discussed, from the choice of a target, the evaluation of a structure of that target, 

ligand search, receptor theory to molecular docking, virtual high-throughput screening, the pivotal questions to 

consider in choosing a method for drug lead discovery and evaluation of the drug leads.  

KEYWORDS – in silico drug design, computational modelling, virtual screening, molecular docking, drug 

lead discovery. 

 

I. INTRODUCTION 
Drug discovery process is a critical issue in the pharmaceutical industry since it is a very costly and time 

consuming process to produce new drug potentials and enlarge the scope of diseases incurred [1]. Two different 

methods are widely used in the pharmaceutical industry for finding hits are: high throughput screening and 

virtual screening. In high throughput screening (HTS), the chemical compounds are synthesized, and screened 

against protein based or cell based assays. This process is commonly used in all major pharmaceutical 

industries. However, the cost in synthesis of each compound, in vitro testing and low hit rate are posing huge 

problems for pharmaceutical industries. Current efforts within the industry are directed to reduce the timeline 

and costs. Besides, HTS campaigns to identify compounds exerting a desired phenotype or entire pathways, 

many of these drugs are failing in clinical development either because of poor pharmacokinetic characteristics or 

to intolerable side effects, which may reflect insufficient specificity of the compounds [2]. At present, hundreds 

of thousands to millions of molecules have to be tested within a short period for finding novel hits, therefore, 

highly effective screening methods are necessary for today's researchers.  

In view of the above problems in finding new drugs by HTS; cost effective, reliable virtual screening 

procedures are in practice. The so-called in silico approaches, using computational environments as their 

experimental laboratories [3].This review is intended to provide an overview of the process of in silico drug 

design from the selection of a target to the generation and evaluation of lead compounds. An in-depth discussion 

or evaluation of the computational methods involved in drug discovery will not be provided here, since that 

subject has been covered in reviews elsewhere [4–9]. 

 

II. DRUG DISCOVERY 
Drugs are chemicals that prevent disease or assist in restoring health to diseased individuals. As such 

they play an indispensable role in modern medicine. Medicinal chemistry is that branch of science that provides 

these drugs either through discovery or through design. The classical drugs of antiquity were primarily 

discovered by empirical observation using substances occurring naturally in the environment. During the last 

two centuries, drugs increasingly were also prepared by chemical alteration of natural substances. In the century 

just past many novel drugs were discovered entirely by chemical synthesis. In the third millennium, all of these 

techniques are still in use and a researcher of drug design and development must appreciate their relative value. 

Added to this picture are novel opportunities made possible by deeper understanding of cell biology and 

genetics [10]. Drug discovery is one of the most crucial components of the pharmaceutical industry's Research 

and Development (R&D) process and is the essential first step in the generation of any robust, innovative drug 

pipeline [11]. The process of drug development aims towards the identification of compounds with 

pharmacological interest to assist in the treatment of diseases and ultimately to improve the quality of life. The 

compounds used in pharmacology are mainly small organic molecules (ligands) which interact with specific 

biomolecules (receptors) [12]. 



In silico Drug Design: Prospective… 

www.ijesi.org                                                           61 | Page 

2.1 Traditional Drug Discovery Limitations 

In the distant past, designing a new drug by changing the molecular structure of an existing drug was a 

slow process of trial and error. Now, a computer can display the molecular structure of any drug from a list of 

thousands in a database. With only very slight molecular changes, the original drug may be significantly 

changed in a variety of ways that influence absorption, metabolism, half-life, therapeutic effect, or side effects. 

The computer can also identify those chemicals that would probably not be successful in treating a particular 

disease before time and money are invested in extensive testing. Using computers to manipulate chemicals at the 

molecular level and design new drugs is based on molecular pharmacology, the study of the chemical structures 

of drugs and their interactions at the molecular level within a cell and even within DNA in the nucleus. 

Traditionally, drugs are discovered by synthesizing compounds in a time consuming multi-step process against a 

battery of in vivo biological screens and further investigating the promising candidates for their pharmacokinetic 

properties, metabolism and potential toxicity. Such a development process has resulted in high attrition rates 

with failures attributed to poor pharmacokinetics (39%), lack of efficacy (30%), animal toxicity (11%), adverse 

effects in humans (10%) and various commercial and miscellaneous factors [13]. 

There are an estimated 35,000 open reading frames in the human genome, which, in turn, generate an 

estimated 500,000 proteins in the human proteome. About 10,000 of those proteins have been characterized 

crystallographically. In the simplest terms, that means that there are about 490,000 unknowns that may 

potentially foil any scientific effort. This means that drug design is a very difficult task. A pharmaceutical 

company may have from 10 to 100 researchers working on a drug design project, which may take from 2 to 10 

years to get to the point of starting animal and clinical trials. Even with every scientific resource available, the 

most successful pharmaceutical companies have only one project in ten succeed in bringing a drug to market. 

Drug design projects can fail for a myriad of reasons. Some projects never even get started because there are no 

adequate assays or animal models to test for proper functioning of candidate compounds. Some diseases are so 

rare that the cost of a development effort would never be covered by product sales (as in the case of orphan 

drugs). Even when the market exists, and assays exist, every method available may fail to yield compounds with 

sufficiently high activity. On the other hand, compounds that are active against the disease may be too toxic, not 

bioavailable, or too costly to manufacture. Recent estimates of how much it costs to bring a drug to the market 

have ranged from $300 million to $1.7 billion. A single laboratory researcher’s salary, benefits, laboratory 

equipment, chemicals, and supplies can cost in the range of $200,000 to $300,000 per year. Some typical costs 

for various types of experiments are listed in Table 1, owing to the enormous costs involved, the development of 

drugs is primarily undertaken by big pharmaceutical companies. Indeed, the dilution of investment risk over 

multiple drug design projects pushes pharmaceutical companies to undertake many mergers in order to form 

massive corporations. Because of all these reasons, it is necessary to effectively leverage every computational 

tool that can help to achieve successful results [14]. 

Table 1. Typical costs of experiments [14]. 

Experiment Typical Cost per Compound ($) 

Computer modeling 10 

Biochemical assay 400 

Cell culture assay  4,000 

Rat acute toxicity 12,000 

Protein crystal structure 100,000 

Animal efficacy trial 300,000 

Rat 2-years chronic oral toxicity 800,000 

Human clinical trial 500,000,000 

 

2.2 Drug Design 

Drug design, sometimes referred to as rational drug design (or more simply rational design), is the 

inventive process of finding new medications based on the knowledge of biological targets [11]. Rational drug 

design can be broadly divided into two categories: development of small molecules with desired properties 

toward targets, biomolecules (proteins or nucleic acids), whose functional roles in cellular processes and 3D 

structural information are known. This approach in drug design is well established, being applied extensively by 

the pharmaceutical industries. Another approach is development of small molecules with predefined properties 

toward targets, whose cellular functions and their structural information may be known or unknown [15] 

In the most basic sense, drug design involves design of small molecules that are complementary in shape 

and charge to the biomolecular target to which they interact and will, therefore, bind to it. The identification of a 

potential drug target is valuable and significant in the research and development of drug molecules at early 

stages. Due to the limitation of throughput, accuracy and cost, experimental techniques cannot be applied 
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widely. Therefore, the development of in silico target identification algorithms, as a strategy with the advantage 

of fast speed and low cost, has been receiving more and more attention worldwide. It has been of great 

importance to develop a fast and accurate target identification and prediction method for the discovery of 

targeted drugs, construction of drug-target interaction network as well as the analysis of small molecule 

regulating network [16]. 

III. IN SILICO DRUG DESIGN 
3.1 In Silico Drug Design 

In silico is a term that means “computer aided”. The phrase was coined in 1989 as an analogy to the Latin 

phrases in vivo, in vitro, and in situ. So in silico drug design means rational design by which drugs are 

designed/discovered by using computational methods. According to Kubinyi [17], most of the drugs in the past 

were discovered by coincidence or trial and error method, or in other words, serendipity played an important 

role in finding new drugs. 

Current trend in drug discovery is shifted from discovery to design, which needs understanding the 

biochemistry of the disease, pathways, identifying disease causative proteins and then designing compounds that 

are capable of modulating the role of these proteins. This has become common practice in biopharmaceutical 

industries. Both experimental and computational methods play significant roles in the drug discovery and 

development and most of the times run complementing each other [18]. 

The main aim of computer aided drug design (CADD) is to bring the best chemical entities to 

experimental testing by reducing costs and late stage attrition [19]. CADD involves:  

a. Computer based methods to make more efficient drug discovery and development process.  

b. Building up chemical and biological information databases about ligands and targets/proteins to 

identify and optimize novel drugs.  

c. Devising in silico filters to calculate drug likeness or pharmacokinetic properties for the chemical 

compounds prior to screening to enable early detection of the compounds which are more likely to fail in 

clinical stages and further to enhance detection of promising entities.  

There are various computational techniques which are capable of producing the desired effect at various 

stages of the drug discovery process [20]. The two major disciplines of CADD which can manipulate modern 

day drug discovery process and which are capable of accelerating drug discovery are bioinformatics and 

cheminformatics. In general: 

a. Bioinformatic techniques hold a lot of prospective in target identification (generally 

proteins/enzymes), target validation, understanding the protein, evolution and phylogeny and protein modeling 

[21]. 

b. Cheminformatic techniques hold a lot of prospective in storage management and maintenance of 

information related to chemical compounds and related properties, and importantly in the identification of novel 

bioactive compounds, and further in lead optimization. Besides, cheminformatic methods are extensively 

utilized in in silico ADME (Absorption, Distribution, Metabolism and Elimination) prediction and related issues 

that help in the reduction of the late stage failure of compounds [20]. 

3.2 Why Computer Aided Drug Discovery? 

Besides the significant costs and time associated in bringing a new drug to the market [22], some of the 

major reasons for the pharmaceutical industries to look for alternative or complementary methods to 

experimental screening are: 

a. In a survey study, five of the 40,000 compounds tested in animals reach human testing and only 

one out of these five reaching the clinical trials is finally approved [19]. 

b. On the other hand, the tremendous increment in chemical space and target proteins/receptors 

increases the demand for the HTS and will in turn call for new lead identification strategies (rational 

approaches) to reduce costs and enhance efficacy. 

c. Advances in computing technologies on software and hardware have enabled reliable 

computational methods. 

IV. OVERVIEW OF THE PROCESS 
The process of in silico drug design is an iterative one (see Fig. 1) and often proceeds through multiple 

cycles before an optimized lead goes into clinical assay. The first cycle includes the cloning, purification and 

structure determination of the target protein or nucleic acid by one of three principal methods: X-ray 

crystallography, nuclear magnetic resonance (NMR), or homology modeling. Using computer algorithms, 

compounds or fragments of compounds from a database are positioned into a selected region of the structure 

(docking). These compounds are scored and ranked based on their steric and electrostatic interactions with the 

target site, and the best compounds are tested with biochemical assays. In the second cycle, structure 

determination of the target in complex with a promising lead from the first cycle, one with at least micromolar 

inhibition in vitro, reveals sites on the compound that can be optimized to increase potency. Additional cycles 

include synthesis of the optimized lead, structure determination of the new target: lead complex, and further 
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optimization of the lead compound. After several cycles of the drug design process, the optimized compounds 

usually show marked improvement in binding and, often, specificity for the target [23]. 

 

Figure 1. The iterative process of in silico drug design. 
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V. STRATEGIES OF IN SILICO DESIGN 
In silico drug design can be applied by either of two strategies of design depending on the knowledge of 

the target, presence of the primary sequence and 3D structure. These two strategies are: 

5.1 Structure Based Drug Design 

Structure based drug design (SBDD) is one of the earliest techniques used in drug design. Drug targets 

are typically key molecules involved in a specific metabolic or cell signaling pathway that is known, or 

believed, to be related to a particular disease state. Drug targets are most often proteins and enzymes in these 

pathways. Drug compounds are designed to inhibit, restore or otherwise modify the structure and behavior of 

disease related proteins and enzymes. SBDD uses the known 3D geometrical shape or structure of proteins to 

assist in the development of new drug compounds. The 3D structure of protein targets is most often derived 

from X-ray crystallography or NMR techniques. X-ray and NMR methods can resolve the structure of proteins 

to a resolution of a few angstroms [1]. 

However structure based drug design is not a single tool or technique. It is a process that incorporates 

both experimental and computational techniques. This is generally the preferred method of drug design, since it 

has the highest success rate. In the drug design stage of SBDD, docking is the preferred tool for giving a 

computational prediction of compound activity [14]. The following steps are mostly used in SBDD: 

Target Determination 

Drug Target: is a biomolecule which is involved in signaling or metabolic pathways that are specific to a 

disease process. Biomolecules play critical roles in disease progression by communicating through either 

protein–protein interactions or protein–nucleic acid interactions leading to the amplification of signaling events 

and/or alteration of metabolic processes. In structure based drug design, a known 3D structure of the target is the 

initial step in target identification. This is usually determined either by X-ray crystallography or by NMR to 

identify its binding site, the so called active site [15]. 

Homology Modelling: if crystallographic coordinates or a 2D NMR models are not available, then a 

homology model is usually the next best way for determining the protein structure. A homology model is a 

three-dimensional protein structure that is built up from fragments of crystallographic models. Thus, the shape 

of an α-helix may be taken from one crystal structure, the shape of a β-sheet taken from another structure, and 

loops taken from other structures. These pieces are put together and optimized to give a structure for the 

complete protein. Often, a few residues are exchanged for similar residues, and some may be optimized from 

scratch. Homology models may be very accurate or very marginal, depending upon the degree of identity and 

similarity that the protein bears to other proteins with known crystal structures. Since the homology model 

building process is dependent upon utilizing crystal structure coordinates for similar proteins (called the 

template), a crucial factor to consider is how similar the unknown sequence should be to the template protein. A 

number of metrics have been suggested for this. One of the most conservative metrics suggests that there should 

be over 70% sequence identity (not similarity) with the template, in order to get a homologous model that can be 

trusted. Other metrics suggest having over 30% or 40% sequence identity with the template. One study showed 

that having 60% or more sequence identity gave a success rate greater than 70%. With higher sequence 

identities, the percent of error is decreased, where as many as 10% of homology models may have a root mean 

square deviation (RMSD) greater than 5A° (which represent error cutoff) [14]. In order to clarify the seemingly 

disparate metrics mentioned in the previous paragraph, Rost carried out an extensive study looking at how much 

sequence identity is needed to get a good homology model as a function with the number of aligned residues. 

For a small sequence of 25 aligned residues, 60% identity was necessary. For a large region of 250 aligned 

residues, templates with over 20% identity could give good homology models [24]. The metrics used by Rost 

are somewhat less conservative than some of the other metrics. Rost’s results also reflect improvements in 

homology model software and methodology compared with earlier work. Percent similarity is also a useful 

metric to examine. If several potential templates have essentially the same percent identity, then the one with the 

highest percent similarity may be chosen. Researchers may also choose the one in which the crystal structure 

has the best resolution [14]. 

Protein Folding: another method for target identification is protein folding. This is a difficult process 

which starts with the primary sequence only and runs a calculation that tries an incredibly large number of 

conformers. This is an attempt to compute the correct shape of the protein based on the assumption that the 

correct shape has the lowest energy conformer. This assumption is not always correct, since some proteins are 

folded to conformers that are not at the lowest energy with the help of chaperones. It is also difficult to write an 

algorithm that can determine when disulfide bonds should be formed. So, sometimes protein folding gives an 

accurate model, and sometimes it gives a rather poor model. The real problem with protein folding is that there 

is no reliable way to tell whether it has given an accurate model. There are only some checks that provide some 

circumstantial evidence that the model might be good or bad. For example, one can check if hydrophilic 

residues are on the exterior of the protein and hydrophobic residues are on the interior. So, pharmaceutical 
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companies can be justifiably hesitant to spend millions of dollars on research and development based on a 

folded protein model when there is no way to have confidence in the accuracy of that model. For this reason, 

protein folding tends to be the last resort for building three-dimensional protein models. Homology model 

building has two important advantages over protein folding. First, it is more accurate on average. Second, and 

more importantly, the researcher can get a better estimate of whether the homology model is likely to be 

qualitatively and quantitatively accurate, based on the degree of similarity to a known structure. The role and 

reliability of homology model building is increasing as the number of available crystal structures increases. 

Knowing the three-dimensional structure of a protein is only the beginning of understanding it. It is also 

important to understand the mechanism of chemical reactions involving that protein, where it is expressed in the 

body, the pharmacophoric description, and the mechanism of binding with chemical inhibitors [14]. 

Ligands Search 

Much of drug design is a refinement process. In this process, successive changes are made on molecular 

structures in order to improve activity. However, the process needs to get started with some compounds having 

at least marginal activity. There are often a couple of known inhibitors from previous studies on the target, or 

very similar targets. There often needs to be at least one known inhibitor in order to provide a reference for the 

development of an assay [14].  

In silico screening of chemical compound databases for the identification of novel chemotypes is termed 

as Virtual Screening (VS). VS is generally performed on commercial, public or private 2-dimensional or 3-

dimensional chemical structure databases. Virtual screening is employed to reduce the number of compounds to 

be tested in experimental stages, thereby allowing focusing on more reliable entities for lead discovery and 

optimization [25-28]. The costs associated with the virtual screening of chemical compounds are significantly 

lower when compared to screening of compounds in experimental laboratories. Virtual screening methods are 

mainly driven by the availability of the existing knowledge. Depending on already existing knowledge on the 

drug targets and potential drugs, these methods fall mainly in these two categories (Fig. 2):  

a. Structure based virtual screening (SBVS).  

b. Ligand based virtual screening (LBVS).  

 

Figure 2. Schematic representation of virtual screening methods [29]. 

In the absence of receptor structural information and when one or more bioactive compounds are 

available, ligand based virtual screening (LBVS) is generally utilized [30-32]. This screening method can be 

carried out by either of the following approaches:  

a. Similarity search: similarity searching is performed when a single bioactive compound is 

available. The basic principle behind similarity searching is to screen databases for similar compounds with the 

backbone of the lead molecule. 

b. Pharmacophore-based virtual screening: pharmacophore is the three-dimensional geometry of 

interaction features that a molecule must have in order to bind in a protein’s active site. These include such 
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features as hydrogen bond donors and acceptors, aromatic groups, and bulky hydrophobic groups. When one or 

several bioactive compounds are available, pharmacophore-based virtual screening is performed. The principle 

behind the pharmacophore is a set of chemical features; their arrangement in a 3-Dimensional space is 

responsible for the bioactivity of the compound [14]. By utilizing the chemical features of already known 

bioactive compounds, a pharmacophore model is built, which later is used to screen against database of 

unknown compounds for finding chemical compounds with similar chemical features (Fig. 3). 

 

Figure 3. Example of a pharmacophore model [33]. 

Molecular Docking 

Docking is an automated computer algorithm that determines how a compound will bind in the active site 

of a protein. This includes determining the orientation of the compound, its conformational geometry, and the 

scoring (Fig. 4). The scoring may be a binding energy, free energy, or a qualitative numerical measure. In some 

way, every docking algorithm automatically tries to put the compound in many different orientations and 

conformations in the active site, and then computes a score for each. Some programs store the data for all of the 

tested orientations, but most only keep a number of those with the best scores [14]. In general, there are two key 

components of molecular docking [29], as follows: 

a. Accurate pose prediction or binding conformation of the ligand inside the binding site of the target 

protein.  

b. Accurate binding free energy prediction, which later is used to rank the order of the docking 

poses.  

 

Figure 4. Example of molecular docking between chemical compound and a protein. 

The docking algorithm usually carries out the first part of the docking (predicting binding conformation) 

and the scoring function associated with the docking program carries out the second part that is binding free 

energy calculations. The key components of molecular docking are further displayed below. 

a. Pose prediction: docking algorithms usually perform pose predictions which aim to identify 

molecular features that are responsible for molecular recognition. Pose predictions are very complex and often 

difficult to understand when simulated on a computer [34].  

b. Activity prediction: after the pose prediction by docking algorithm, the immediate step in the 

docking process is activity prediction, which is also termed scoring. Docking score is achieved by the scoring 

functions associated with the particular docking software. Scoring functions are designed to calculate biological 

activity by estimating the interactions between the compound and protein target. During the early stages of the 
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docking experiments, scoring was performed based on the simple shape and electrostatic complementarities. 

However, currently, the docking conformers are often treated with sophisticated scoring methods that include 

the Van der Waals interactions, electrostatic interactions, solvation effects and entropic effects [35], [14]. 

Docking Algorithms 

Depending on the flexibility of protein and ligand, docking algorithms can be divided into 3 types [36], 

as follows: 

a. Rigid docking: protein and ligand are consider to be rigid 

b. Semi-flexible docking: protein is fixed and ligand is flexible 

c. Flexible docking: both protein and ligand are flexible 

Based on the principle of conformation generation, the search methods are categorized into: 

a. Stochastic 

b. Systematic 

c. Deterministic 

The search algorithm positions molecules in various locations, orientations, and conformation within the 

active site. Some of the earliest docking programs positioned a molecule in the active site, holding it rigid with 

respect to conformational changes, but all modern docking algorithms include ligand conformational changes. 

The choice of search algorithm determines how thoroughly the program checks possible molecule positions, and 

how long it takes to run. The search algorithm does not determine whether the docking program gives accurate 

results. But the scoring function is responsible for determining whether the orientations chosen by the search 

algorithm are the most energetically favorable, and is responsible for computing the binding energy. Thus, a 

search algorithm that does not sample the space thoroughly will give inaccurate results if the correct orientation 

is not sampled. However, most search functions will sample the space adequately if they are given the correct 

input parameters. Many search algorithms have been developed depending on the principles of conformation 

generation. One of the earliest used algorithms was Monte Carlo search algorithm, which is built around a 

random number generator. In the simplest implementation, position, orientation, and conformation are all 

chosen at random. Sometimes, position and conformation are checked independently. Thus, a position is chosen 

and many conformations are tested while in that position; then a new position is chosen, and the process repeats.  

Another important algorithm is the tabu search algorithm. Most tabu searches are implemented as a modified 

version of the Monte Carlo search. Like the Monte Carlo search, the tabu search chooses orientations and 

confirmations randomly. However, the Monte Carlo algorithm utilizes no knowledge of what positions have 

already been sampled, and thus sometimes results in recomputing positions that have already been computed. 

The tabu algorithm keeps track of which positions have already been sampled, and avoids sampling those 

positions again. Thus, it can give the same results with fewer iterations, by eliminating any duplication of work. 

Genetic algorithms can sample a space thoroughly, if the parameters are chosen wisely, and can run very 

quickly. Many docking algorithms were originally developed to simulate the ligand binding in a crevice in the 

surface of the folded protein. Some programs have difficulty in docking compounds in the active site that is 

completely enclosed. This can happen when the protein folds down over the active site or the entire active site 

opens and closes via a clam shell movement of two large sections of the protein. When this occurs, additional 

inputs are needed that will allow the docking program to function correctly with an encapsulated active site [14]. 

Scoring Functions 

One of the two important components of molecular docking is scoring. While docking aims at 

reproducing binding conformation close to the X-ray crystal structure, the aim of scoring is to quantify the free 

energy associated with protein and ligand in the formation of the protein-ligand interactions. Most of the 

docking softwares are equipped with scoring functions, which enable computing free energy associated with 

protein-ligand interactions (docking score). The docking score is used to rank the chemical compounds in a 

virtual screening campaign. Wide ranges of scoring functions are available to calculate the binding between the 

protein and virtual ligand. These methods range from estimating binding by a simple shape and electrostatic 

complementarities to the estimation of free energy of protein and ligand complex in aqueous solutions. Only few 

of them are capable of addressing the thermodynamic process involved in the binding process. However, 

methods based on thermodynamic parameters require an extensive simulating time, and consequently significant 

central processor unit (CPU) time. Therefore, these methods are restricted to a smaller set of compounds, 

making it impractical to use them in large-scale virtual screening experiments. Currently, three main types of 

scoring functions are applied: force field-based, empirical scoring functions and knowledge based scoring 

functions [37].  

Force field-based scoring functions: This type relies on the molecular mechanics methods. Force field-

based methods calculate both the protein-ligand interaction energy and ligand internal energy and later sum both 

the energies. The following represents total energy equation based on force field: 
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Etotal = Ebonded + Enonbonded where the components of the covalent and non-covalent contributions are 

given by the following summations: 

Ebonded = Ebond + Eangle + Edihedral 

Enonbonded = Eelectrostatic + EVan der Wals 

where:  

Ebond represent potential energy of covalent bonds.  

Eangle represent potential energy between angled bonds.  

Edihedral represent potential energy of tortion of bonded atoms.  

Eelectrostatic represent potential energy of electrostatic forces.  

EVan der Waals represent potential energy of Van der Waals forces. 

Different force field functions are based on different force field parameter sets. For example, AutoDock 

relies on the Amber force field and G-Score relies on the Tripos force field [37]. Van der Waals and electrostatic 

energy terms describe both the internal energy of the ligand and the interactions between the protein and ligand. 

The van der Waals energy term is described by the Lennard Jones potential. Electrostatic terms are described by 

the Coulombic formula with a distance dependent dielectric constant for charge separation. Advantages of force 

field-based scoring functions include accounting of solvent, and disadvantages include over-estimation of 

binding affinity [37] and arbitrarily choosing non bonded cutoff terms [34]. 

Knowledge based scoring functions: It uses atom pair interaction potentials as in potential of mean force 

(PMF). Atom pair interaction potentials are usually derived from structural information stored in the databases 

(ChemBridge structural database and Protein Data Bank) of protein-ligand complexes. It relies on the 

assumption that repeated occurrence of close intermolecular interactions between certain types of functional 

groups or atom types are energetically more favorable than the randomly occurring interactions, thus 

complementarily contribute to the binding affinity. The robust nature of this scoring function makes it usable in 

virtual screening. Knowledge based scoring functions rely on existing intermolecular interaction databases. One 

major limitation of this method is the limited availability of such structural information in the intermolecular 

interaction databases. D-score [38] and PMF scoring functions rely on knowledge based scoring functions [39].  

Empirical scoring functions: The score in the empirical scoring function is derived from the individual 

energy contributions of each component involved in the intermolecular interactions, as shown in the equation 

below: 

ΔGbind = ΔGdesolvation + ΔGmotion + ΔGconfiguration + ΔGinteraction 

where:  

desolvation – enthalpic penalty for removing the ligand from solvent.  

motion – entropic penalty for reducing the degrees of freedom when a ligand binds to its receptor.  

configuration – conformational strain energy required to put the ligand in its "active" conformation.  

interaction – enthalpic gain for "resolvating" the ligand with its receptor [40]. 

Empirical scoring functions are easier to apply and are subjected to less computational error. For 

example, Kuntz in his early work emphasized on the molecular shape, because shape complementarity is 

certainly essential for a ligand to be placed in the binding site and can be easily and accurately computed. 

However, in his later work he added chemical information, molecular mechanical energies, and empirical 

hydrophobicities to make the scoring function more accurate [41-42]. Bӧhm developed another empirical 

scoring function that takes into account hydrogen bonding, ionic interactions, lipophilic contact surface and a 

number of rotatable bonds [40], [2]. Due to their robust nature, empirical scoring functions are widely used in 

virtual screening experiments along with knowledge based scoring functions. One of the major limitations of the 

empirical scoring function is that it works very well with rigid ligands, but the results are not satisfying with 

flexible ligands. This is because most of the empirical scoring functions ignore the internal energy of the ligand. 

Scorings such as ChemScore (docking tool) [43] and Ludi (de novo design tool) [40] rely on the empirical 

scoring function. 

5.2 Ligand Based Drug Design 

In the past century many drug’s target proteins were unknown. This is still fairly common, although it is 

slowly becoming less so as the body of knowledge about biological systems expands. The success of the design 

is greater if the target is known and a structure-based drug design process can be followed. However, there are 

times when there is a good reason for using a drug design without a known target. For example, cell surface 

receptors make excellent drug targets, but are very difficult to crystallize. So if homology modelling was 

unreliable or low identity score for the homolog protein was observed, in this case the techniques used for 

structure-based drug design cannot be used. Pharmacophore models and 3D-QSAR models can be used instead. 

A 3D-QSAR is a computational procedure used for quantitatively predicting the interaction between a molecule 

and the active site of a specific target. The great advantage of a 3D-QSAR is that it is not necessary to know 

what the active site looks like. Thus, it is possible to use this technique when the target is unknown. A 3D-

QSAR is a mathematical attempt to define the properties of the active site without knowing its structure. This is 
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done by computing the electrostatic and steric interactions that an imaginary probe atom would have if it were 

placed at various positions on a grid surrounding a known active compound. In some cases, other interactions, 

such as hydrogen bonding, will also be included. After doing this for multiple active compounds, a partial least 

squares algorithm can be used to determine what spatial arrangement of features there could be in an active site 

that interacts with the known active molecules [14]. 

VI. CONCLUSION 

In silico drug design is a powerful method, especially when used as a tool within an apparatus, for 

discovering new drug leads against important targets. After a target and a structure of that target are defined, 

new leads can be designed from chemical principles or chosen from a subset of small molecules that scored well 

when docked in silico against the target. After a preliminary evaluation of bioavailability, the candidate leads 

continue in an iterative process of reentering structural determination and reevaluation for optimization. Focused 

libraries of synthesized compounds based on in silico strategy can create a very promising lead which can 

continue to clinical trials. As structural genomics, bioinformatics, cheminformatics, proteomics and 

computational power continue to explode with new advances, further successes in in silico drug design are 

likely to follow. Each year, new targets are being diagnosed, structures of those targets are being determined at 

an amazing rate, and our capability to capture a quantitative picture of the interactions between macromolecules 

and ligands is accelerating. 
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