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ABSTRACT :In this paper an attempt is made to transform Kolomogrov Maximal inequality, Koronecker 

Lemma, Loeve’s Lemma and Kolomogrov’s strong law of large numbers for independent, identically distributive 

fuzzy Random variables.  The applications of this results is extensive and could produce intensive insights on 
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I. Introduction 
 The theory of fuzzy random variables and fuzzy stochastic processes has received much attention in 

recent years [1-12].  Prompted for studying law of large numbers for fuzzy random variables is both theoretical 

since of major concern in fuzzy stochastic theory as in the case of classical probability theory would be the 

different limit theorems for sequences of fuzzy random variables and practically since they are applicable to 

statistical analysis when samples or prior information are fuzzy.  The concept of fuzzy random variables was 

introduced by Kwakernack [4] and Puri and Ralesea [6]. 

 

 In order to make fuzzy random variables applicable to statistical analysis for imprecise data, we need to 

come up with weak law of large numbers, strong law of large numbers and Kolomogorov inequalities.  In the 

present paper we have deduced Kolomogrov maximal inequality, Kronecker’s lemma, and Loeve’s Lemma. 

2. Preliminaries  

 

 In this section, we describe some basic concepts of fuzzy numbers.  Let R denote the real line.  A fuzzy 

number is a fuzzy set 𝑢  :  𝑅 → [0, 1] with the following properties. 

 

1) 𝑢  is normal, i.e. there exists  𝑥 ∈ 𝑅 such that 𝑢  (𝑥) = 1. 

2) 𝑢  is upper semicontinuous. 

3) Supp𝑢 = 𝑐𝑙{𝑥 ∈ 𝑅 ∶  𝑢  𝑥 > 0}  is compact. 

rights reserved. 

4) 𝑢  is a convex fuzzy set, i.e. 𝑢  𝜆𝑥 +  1 − 𝜆 𝑦 ≥  min (𝑢 (x)), 𝑢  (y)) for x, y, ∈ R and 𝜆 ∈ [0, 1].  

 

Let F(R) be the family of all fuzzy numbers.  For a fuzzy set 𝑢 , if we define. 

 

     𝑥: 𝑢  𝑥 ≥ ∝  , 0 < ∝ ≤ 1,     

   𝐿𝑎𝑢  =  

Supp 𝑢 ∝ = 0 

 

Then it follows that 𝑢  is a fuzzy number if and only if 𝐿1𝑢  ≠  ∅ and 𝐿𝑎𝑢  is a closed bounded interval 

for each 𝜆 ∈ [0, 1].   

 

From this characterization of fuzzy numbers, a fuzzy number 𝑢  is a completely determined by the end 

points of the intervals 𝐿𝑎𝑢  = [𝑢𝑥
–
 ,𝑢𝑥

+ ]. 

 

3. Fuzzy Random Variables: 

 Throughout this paper, (Ω, 𝐴, 𝑃) denotes a complete probability space.   
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If 𝑥  : Ω → 𝐹(𝑅) is a fuzzy number valued function and B is a subset of R, then 𝑋–1(𝐵) denotes the fuzzy subset 

of 𝛺 defined by 

𝑋–1 𝐵  𝜔  =  Sup𝑥∈𝐵𝑋 (𝜔)(𝑥) 

for every 𝜔 ∈ 𝛺. The function 𝑋  : Ω → 𝐹(𝑅) is called a fuzzy random variable if for every closed subset B or 

R, the fuzzy set 𝑋–1 𝐵  is measurable when consider as a function from 𝛺 to [0,1].  If we denote 𝑋 (𝜔) =

{ 𝑋𝑥
–
(𝜔), 𝑋𝑥

–1
(𝜔)   0 ≤  ∝ ≤ 1  , then it is a well-known that 𝑋 is a fuzzy random variable if and only if for each  

∝ ∈ [0, 1].   𝑋𝑥
–
 and 𝑋𝑥

+are random variable in the usual sense (for details, see Ref.[11]).  Hence, if 𝜎  𝑋  is the 

smallest 𝜎 − field which makes 𝑋 is a consistent with 𝜎({𝑋𝑥
–
 ,𝑋𝑥

+|0 ≤ ∝ ≤ 1}). This enables us to define the 

concept of independence of fuzzy random variables as in the case of classical random variables. 

 

4. Fuzzy Random Variable and its Distribution Function and Exception  

 

 Given a real number, x, we can induce a fuzzy number 𝑢  with membership function 𝜉𝑥  (r) such that 𝜉𝑥  
(x) < 1 for  r ≠ x (i.e. the membership function has a unique global maximum at x).  We call 𝑢  as a fuzzy real 

number induced by the real member 𝑥 . 
 

A set of all fuzzy real numbers induced by the real number system the relation ~ on ℱℝ as 𝑥 –1 ~ 𝑥 –2 if 

and only if  𝑥 –1and  𝑥 –2 are induce same real number x. Then ~ is an equivalence relation, which equivalence 

classes [𝑥 ] = {𝑎  | 𝑎 ~ 𝑥  }. The quotient set ℱℝ/ ~ is the equivalence classes.  Then the cardinality of ℱℝ/~ is 

equal to the real number system ℝ since the map ℝ → ℱℝ/ ~ by x → [𝑥 ] is Necall ℱℝ/ ~  as the fuzzy real 

number system. 

 

Fuzzy real number system (ℱℝ/ ~ )Rconsists of canonical fuzzy real number we call ℱℝ/ ~ )R as the 

canonical fuzzy real number system be a measurable space and ℝ,ℬ be a Borel measurable space.  ℘(𝐑) (Power 

set of R) be a set-valued function.  According to is called a fuzzy-valued function if {(x, y) : y∈f(x)} is ℳ x ℬ. 

f(x) is called a fuzzy-valued function if f : X → ℱ (the set of all numbers). If  𝑓  is a fuzzy-valued function then 

𝑓 𝑥  is a set-valued function [0, 1].  𝑓  is called (fuzzy-valued) measurable if and only if 𝑓 𝑥  is (set-urable for all ∝∈ 

[0,1]. 

Make fuzzy random variables more tractable mathematically, we strong sense of measurability for 

fuzzy-valued functions.  𝑓 (x) be a closed-fuzzy-valued function defined on X. From Wu wing two statements are 

equivalent.  

 

𝑓 ∝
𝑈  (x) are (real-valued) measurable for all ∝ ∈ [0, 1]. 

 

fuzzy-valued) measurable and one of 𝑓 ∝
𝐿 𝑥  and 𝑓 ∝

𝑈(𝑥) is (real-value) measurable for all ∝∈ [0,1]. 

 

A fuzzy random variable called strongly measurable if one of the above two conditions is easy to see 

that the strong measurability implies measurability.  𝜇) be a measure space and (ℝ,ℬ) be a Borel measurable 

space. ℘(ℝ) be a set-valued function.  For K ⊆ R the inverse image of f. 

 

  = { x ∈ 𝑋 ∶ 𝑓 𝑥  ⋂ 𝐾 ≠ ∅ } 

  

 u) be a complete 𝜎–finite measure space.  From Hiai and Umehaki ing two statements are equivalent.  

 

Borel set K ⊆ ℝ, f
–1

 (K) is measurable (i.e. f
–1

 (K) ∈ ℳ), y∈ 𝑓 𝑥  is ℳ x ℬ - measurable. 

 

If 𝑥 is a canonical fuzzy real number then 𝑥 1
–𝐿

 = 𝑥 1
𝑈 , Let 𝑋 be a fuzzy random variable. 𝑥 ∝

𝐿  and  𝑥 ∝
𝑈  are random 

variables for all x and  𝑥 1
𝑈 .  Let F(x) be a continuous distribution function of a random variable X. Let  𝑥 ∝

–𝐿
 and  

𝑥 ∝
𝑈have the same distribution function F(x) for all ∝∈ [0,1].  For any fuzzy observation 𝑥 of fuzzy random 

variable 𝑋 (𝑋 (𝜔) =  𝑥 ), the ∝-level set 𝑥 ∝ is 𝑥 ∝ = [𝑥 ∝
𝐿  , 𝑥 ∝

𝑈].  We can see that 𝑥 ∝
𝐿and𝑥 ∝

𝑈  are the 

observations of 𝑥 ∝
𝐿  and 𝑥 ∝

𝑈 , respectively.  𝑥 ∝
𝐿(𝜔) =  𝑥 ∝

𝐿  and 𝑥 ∝
𝑈  (𝜔) = 𝑥 ∝

𝑈  are continuous with respect to ∝ for 

fixed 𝜔.  Thus 𝑥 ∝
𝐿 , 𝑥 ∝

𝑈  is continuously shrinking with respect to ∝.  Since [𝑥 ∝
𝐿 , 𝑥 ∝

𝑈] is the disjoint union of [𝑥 ∝
𝐿 , 

𝑥 ∝
𝐿] and (𝑥 1

𝐿, 𝑥 ∝
𝑈] (note that 𝑥 1

𝐿 = 𝑥 1
𝑈), for any real number x ∈ [𝑥 1

𝐿, 𝑥 ∝
𝑈], we have x = 𝑥 𝛽

𝐿 or F (𝑥 𝛽
𝑈) with x.  If we 

construct an interval 
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 A∝ = [min { inf∝≤𝛽≤1F(𝑥 𝛽
𝐿), inf∝≤𝛽≤1F(𝑥 𝛽

𝐿) } 

 

  max {sup∝≤𝛽≤1F(𝑥 𝛽
𝐿), sup∝≤𝛽≤1F(𝑥 𝛽

𝐿)}] 

 

then this interval will contain all of the distributions. (values) associated with each of x ∈ [𝑥 ∝
𝐿 , 𝑥 ∝

𝑈], We denote 

𝐹  𝑥  the fuzzy distribution function of fuzzy random variable 𝑋 .  Then we define the membership function of  

𝐹 (𝑥 ) for any fixed 𝑥 by   

 

 𝜉𝐹 (𝑥 ) (r) = sup0≤∝≤1 ∝ | A , (r) 

 

via the form of “Resolution Identity” . we also say that the fuzzy distribution function 𝐹 (𝑥 ) is induced by the 

distribution function F(x).  Since F(x) is continuous .we can rewrite Aα as  

 

 A∝ = [min { inf∝≤𝛽≤1F(𝑥 𝛽
𝐿), min∝≤𝛽≤1F(𝑥 𝛽

𝐿) } 

 

  max {max∝≤𝛽≤1F(𝑥 𝛽
𝐿), max∝≤𝛽≤1F(𝑥 𝛽

𝐿)}] 

 

In order to discuss the convergence in distribution for fuzzy random variables in Section 4, we need to claim 

𝐹 (𝑥 ) is a closed-fuzzy-valued function.  First of all, we need the following proposition, 

 

We shall discuss the strong and weak convergence in distribution for fuzzy random variables in this section.  We 

propose the following definition. 

 

Definition 3.1 Let 𝑋  and {𝑥 𝑛} be fuzzy random variables defined on the same probability space (Ω 𝒜  𝒫 ). 

i) We say that {𝑋 𝑛} converges in distribution to 𝑋 level-vise if (𝑥 𝑛)𝛼
𝐿  and (𝑥 𝑛)𝛼

𝑈  converge in distribution to 𝑋 
𝛼

𝐿
 

and 𝑋 
𝛼

𝑈
 respectively for all α.  Let (𝑥 ) and 𝐹 (𝑥 ) be the respective fuzzy distribution functions of 𝑋 

𝛼
 and 𝑋 .  

We say that {𝑋 𝛼}converges in distribution to 𝑋  strongly if 

lim
𝑛→∝

𝐹 
𝑛
 𝑥  

𝑠
 𝐹  𝑥   

 

ii) We say that {𝑋 𝑛} converges in distribution to 𝑋 weakly if 

 

lim
𝑛→∝

𝐹 
𝑛
 𝑥  

𝑤
 𝐹  𝑥   

 

From the uniqueness of convergence in distribution for usual random variables.We conclude that the above 

three kinds of convergence have the unique limits.  

 

5. MAIN RESULTS 

 

THEOREM 5.1  (KOLMOGOROU CONVERGENCE THEOREM) 

 

 Let {Xn} be independent fuzzy random variables with  

 

 EXn = 0 and 𝜎𝑛
2= E𝑋𝑛

2<∝, n > 1 

 

 If   E𝑋𝑛
2∞

𝑛=1 <∝   then   𝑋𝑛
∞
𝑛=1  converges a.s. 

 

Proof :  For ∈ > 0 

 

  ∈2P   [| 𝑚
𝑘=𝑛  ∝∈(0,1 ∝[ (  (Xk)∝ – v (𝑋𝑘)∝

+ ] ≥ ∈  | ] 

 

   ≤   𝑚
𝑘=𝑛  E ( ∝∈(0,1] ∝[ ((Xk

2)∝
–

) v (Xk
2)∝

+ ]  

 

   <∈3  if  m, n ≥ no 

 

  Therefore 
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   P  [|  𝑚
𝑘=𝑛  ∝∈(0,1]  α  [(Xk )∝

–
 – v  (𝑋𝑘)∝

+ ] ≥ ∈  ] ≤ ∈ 

 

 i.e.  

 

   P  [| ∝∈(0,1]  α  [(Sm )∝
–

 –  (𝑆𝑛–1)∝
–

  V (Sm )∝
–

] ≥ ∈  ]  

 

       ≤  ∈ 

 

      if m,n ≥ n0 

 

   i.e,  {Sn} is a calculcy sequence in probability. 

   

 

  @ Sn

𝑃
→ S Say.    Hence by Levys Theorem 

 

  Sn S    a.s. 

 

  i.e.   ∞
𝑛=1  Xn  conveyes a.s. 

 

Definition 5.1: 

 

 Two sequences of Fuzzy random variables {Xn}  

 

 and {Yn} are said to be tail equivalent if 

 

   ∞
𝑛=1  P (Xn≠ Yn ) < α 

 

 

THEOREM 5.2 :  

 

 Suppose that  {𝑋𝑛 }𝑛=1
𝛼  be a sequence of independent fuzzy random variables.   

 

Let  

 

 𝑋𝑛
1=   

𝑋𝑛    𝑖𝑓     𝑋𝑛    ≤   1

0    𝑖𝑓     𝑋𝑛  >   1
    for all n ≥ 1 

 

 

  Then the series   𝑋𝑛  converges a.s. if the following series converges. 

 

 

 

  (a)    ∞
𝑛=1  P (w : | 𝑋𝑛 𝑤 / >  1 ) <∞ 

 

  (b)    ∞
𝑛=1  E (𝑋𝑛

1 ) ) converges and 

 

  (c)    ∞
𝑛=1 𝜎𝑋𝑛1

2 <α 

 

Proof 

 

 Suppose that the three conditions hold.  Because of  byKolmogorov Khintchic theorem. 

 

  ∞
𝑛=1  ∝[((Xn

1 )∝
–

–  E(𝑋𝑛
1)∝) v ((Xn

1 )∝
+ – E (Xn

1 )∝
+ ) ]     

 

 Conveys a.s.  Then (if) implies 
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  ∞
𝑛=1   ((Xn

1 )∝
–

 v (Xn
1 )∝

+  converges a.s. 

 

 By (a) and Borel Can telli lemma 

 

  P ( | ∝∝∈(0,1]   [(Xn )∝
–

 v (Xn )∝
+ ] > 1   i.o. ) = 0 

 

 So   | ∝∝∈(0,1]   [(Xn )∝
–

 v (Xn )∝
+ ] | ≤ 1 a.s. 

 

 Thus  

 

  ∞
𝑛=1  ∝∝∈(0,1]   [(Xn )∝

–
 v (Xn )∝

+ ]  Converges a.s. 

 

 Conversely  

 

 if     𝑛   ∝∈(0,1] ∝[(Xn )∝
–

v (Xn )∝
+] 

 

 Converges a.s. then the fuzzy random variables 

 

 Xn 0  a.s. 

 

 Hence P ( | ∝∈(0,1] ∝ ( Xn  
∝

–
 v (Xn )∝

+ ) > 1  i.o. ) = 0 

 

 

 This implies (a) byBorel Zero one law.  Now 

 

 {𝑋𝑛 }𝑛=1
∞ and {𝑋𝑛}𝑛=1

∞  are tail equivalent sequences 

 

 So it is clear that   ∞
𝑛=1  ∝∝∈ 0,1  [(Xn

 1)∝
–

 v (Xn
1 )∝

+ ]  

 

 converges a.s. when  ∞
𝑛=1  ∝∝∈ 0,1  [(Xn )∝

–
 v (Xn )∝

+ ]  

 

 converges a.s. 

 

 Now[  ∝∈(0,1] ∝  [(Xn
1 )∝

–
 v (Xn

1 )∝
+ ]𝑛=1

∞  is a sequence 

 

 of uniformly bounded indepdent fuzzy random variables 

 

 Let   𝑆𝑛
1 =   𝑛

𝑗=1  ∝∈(0,1]  α  ((Xj
1 )∝

–
 – v  (Xj

1 )∝
+ )  

 

 Since    ∞
𝑗=1  ∝∈(0,1]  α  [(Xn

1 )∝
–

 –  (Xn )∝
–

 )] converges a.s. 

 

 lim𝑛→∞ 𝑃( Sup𝑚≥𝑛 |  ∝∈(0,1]  α [((Sm
1 )∝

–
 – (Sn

1 )∝
–

 )  V  ((Sm
1 )∝

+ – (Sm
1 )∝

+ ) ≥ ∈] = 0 

 

 By the lower bound of Kolmogovovs inequality  

 

       P (Sup𝑚≥𝑛 |  ∝∈(0,1]  α [((Sm
1 )∝

–
 – (Sn

1 )∝
–

 )  V  ((Sm
1 )∝

+ – (Sm )∝
+ ) ≥ ∈ 

 

 

      ≥  1 –  
(2+∈)2

 𝜎
X j

1 
2∞

𝑗=1

 

 Now if  
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    𝜎
Xj

2∞
𝑗=1  = ∞, then we have 

 

 

 P (Sup𝑚≥𝑛 |  ∝∈(0,1]  α [((Sm
1 )∝

–
 – (Sn

1 )∝  )
–
  V  ((Sm

1 )∝
+ – (Sm

1 )∝
+ ) ≥ ∈ ) = 1   

 

 

 This contradicts the contention (1) 

 

 So   𝜎
Xj

2∞
𝑗=1 <∞ proving (c)  

 

 The Khintchine – Kolmogoroves theorem implies 

 

  

  1
𝑛  ∝∈(0,1]  α  ((Xn

1 )∝
–

 – E(Xn
1 )∝

–
 )) V ((Xn

1 )∝
+ – E(Xn

1 )∝
+ ))  

 

 converges a.s. 

 

 Now Since   𝑋𝑛
1∞

𝑗=1   converges a.s. 

 

 We have   (𝑋𝑛
1∞

𝑛=1 ) convergent proving (b) 

 

  

THEOREM  5. 3 (KOLMOGOROVS INEQUALITY) 

 

 Let  X1   X2  . . . . . .   Xn  . . . .  be independent fuzzy random variables and 

 

 E(𝑋𝑖
2)<∞,  i ≥ 1.   If Sn =  𝑋𝑖

𝑛
𝑖=1   and 

 

 ∈> 0  then 

 

 a) ∈2P (max1≤𝑘≥𝑛  ∝∈(0,1] α | ((S𝑘 )∝
–

 – E(S𝑘 )∝
– 

 ) | V | ((S𝑘 )∝
+ – E(S𝑘 )∝

+ |) ≥ ∈ ≤  𝜎𝑘
2∞

𝑘=1  

 

 and if moreover 

 

  ∝∈(0,1] α [ | (X𝑘 )
–

 – (X𝑘 )+ |  ≤ C < ∞ a.s. 

 

 then 

 

 b) 1– 
(2+∈)2

 𝜎𝑘
2𝑛

𝑘=1
≤P (max1≤𝑘≥𝑛  ∝∈(0,1] α (|(S𝑘 )∝

–
 – E(S𝑘 )∝

– 
  | V | ((S𝑘 )∝

+ – E(S𝑘 )∝
+ |) ≥ ∈ 

 

 

Proof : 

 

 We assume   EXk =0 ,  k ≥ 1. 

 

 Define a fuzzy random variables + by 

 

  

+  
1𝑠𝑡 𝑘,  𝑛 ≥ 𝑘 ≥ 1
𝑛 + 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    such that 𝑆𝑘
2 ≥ ∈2  if there is such a k. 

 

 Then (max 𝑘≤𝑛  ∝∈(0,1] α [(S𝑘 )∝
–

 –V(S𝑘 )∝
+ ] ≥ ∈] = [ t ≤ n ] and [t = k] ∈ −𝐵(x1x2. .xk) 

 

 Hence  



Fuzzy random variables and Kolomogrov’s… 

www.ijesi.org                                                          51 | Page 

 

  
[𝑡=𝑘]

 ∝∈(0,1] α [(S𝑘 )∝
–

 ((S𝑛 )∝
–

  – (S𝑘 )∝
–

) V (S𝑘 )∝
+ ((S𝑛 )∝

–
  – (S𝑘 )∝

+)) d P 

 

   =  E  ∝∈(0,1] α [(S𝑘 )∝
–
𝐼𝑡=𝑘  ((S𝑛 )∝

–
  – (S𝑘 )∝

–
) V ((S𝑛 )∝

+  – (S𝑘 )∝
+)]  

 

   =  E [ Sk𝐼[𝑡=𝑘]  E  (((S𝑛 )∝
–

  – (S𝑘 )∝
–

) V ((S𝑛 )∝
+  – (S𝑛 )∝

+)]  

 

 

   = 0 

 

Therefore, 

 

  
[𝑡=𝑘]

(S𝑛 )∝
2   d P 

 

  =  
[𝑡=𝑘]

((S𝑘 )∝
–

  +  ((S𝑛 )∝
–

  – (S𝑘 )∝
–

)
2
  V  ((S𝑘 )∝

+  + ((S𝑛 )∝
+  – (S𝑘 )∝

+2) d P 

 

  =  
[𝑡=𝑘]

((S𝑘 )∝
–2

  +  ((S𝑛 )∝
–

  – (S𝑘 )∝
–

)
2
  V  ((S𝑘 )∝

+2  + ((S𝑛 )∝
+  – (S𝑛 )∝

+2)   

 

     +2 ((S𝑛 )∝
–

  – (S𝑘 )∝
–

)  (S𝑘 )∝
–

)  V  (S𝑛 )∝
+  – (S𝑘 )∝

+  – (S𝑘 )∝
+) d P 

 

 

  =  
[𝑡=𝑘]

(S𝑘 )∝
–2

  – (S𝑘 )∝
+2)  d P   

 

  ≥∈2 P(t = k)         (5.1) 

 

Therefore  

 

  ∈2  P (t≤n) =  ∈2  𝑛
1  P (t = k) 

 

          ≤     𝑛
𝑘=1  

[𝑡=𝑘]
(S𝑘

 –
)∝

2   V (S𝑛
+)∝

2 )  d P   

 

          =      
[𝑡≤𝑛]

(S𝑘
 –

)∝
2   V (S𝑛

+)∝
2 )  d P     

 

          =      (S𝑛
 –

)∝
2   V (S𝑛

+)∝
2 )  d P     

 

    =  E (S𝑛
2)       (   5.2) 

 

 But  

  

  ES𝑛
2   =      𝑛

𝑘=1  E (X𝑘
 –

)∝
2   V (X𝑘

+)∝
2 )    

 

  Let  X1   X2  . . . . . .   Xn  . . . .  be independents.  

 

 𝜎𝑘
2

𝑛

𝑘=1

 

 

So from (3) and (1) 

 

  ∈2  P  [max 1≤𝑘≤𝑛 S𝑘   ≥ ∈ ] ≤   𝜎𝑘
2𝑛

𝑘=1  
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 To prove the lower bound of Kolmogorovs inequality let fk = I [t>k].  Then fk  Sk and Xk+1 are independent 

for k = 0, 1, . . .  n-1. 

 

 Now [t>k] =  [t ≤ k]
c∈  B, (x1 . . . xk) since 

 

 [t ≤ k] ∈  B, (x1 . . . xk).  Therefore 

 

 E (fk Sk Xk+1) = E (fk Sk) 

 

 E (Xk+1) = 0 

 

 Now  

 

  = E ((S𝑘
– 

)∝
2 (f𝑘−1)∝

–
  V  (S𝑘

+)∝
2   + (f𝑘−1)∝

+ )  

 

  = E ((S𝑘
– 

)∝
2 (f𝑘−1)∝

–
  V  (S𝑘

+)∝
2   + (f𝑘−1

    + )∝
2  )  

 

  = E ((S𝑘−1
      – 

)∝ (f𝑘−1
     –

)∝   V  (S
𝑘–1
   + )∝   + (f𝑘−1

    + )∝  

 

     +  (X𝑘
– 

)∝ (f𝑘−1
     –

)∝  V (X𝑘
+)∝ + (f𝑘−1

    + )∝  )
2
 

 

 

  = E ((S𝑘−1
      – 

)∝
2 (f𝑘−1

     –
)∝   V  (S

𝑘–1
   + )∝

2   + (f𝑘−1
    + )∝  ) 

 

     +  E ((X𝑘
– 

)∝
2 (f𝑘−1

     –
)∝   V  (X𝑘

+)∝
2   + (f𝑘−1

    + )∝  ) 

 

 

  = E ((S𝑘−1
      – 

)∝
2 (f𝑘−1

     –
)∝   V  (S

𝑘–1
   + )∝

2 (f𝑘−1)∝
+  ) 

 

     +  E ((X𝑘
– 

)∝
2   V  (X𝑘

+)∝
2  

 

      E ((f𝑘−1
     –

)∝   V (f𝑘−1
    + )∝  ) 

 

 

  = E ((S𝑘−1
      – 

)∝
2 (f𝑘−1

     –
)∝   V  (S

𝑘–1
   + )∝

2   + (f𝑘−1
     +)∝  ) 

 

   +  E ((X𝑘
– 

)∝
2   E (f𝑘−1

     –
)∝ VE ((X𝑘

+ )∝
2 E(f𝑘−1

    + )∝  ) 

 

 

  = E ((S𝑘−1
      – 

)∝
2 (f𝑘−1

     –
)∝   V  (S

𝑘–1
   + )∝

2   + (f𝑘−1
     +)∝  ) 

 

   +  E ((X𝑘
– 

)∝
2   V (X𝑘

+ )∝
 2 ) P (t > k-1)    (5.3) 

 

Again 

 

  E ((S𝑘
–

)∝
2 (f𝑘−1

     –
)∝   V  (S𝑘

+)∝
2   + (f𝑘−1

     +)∝  ) 

 

   +  E ((S𝑘
– 

)∝
2 (f𝑘

–
)∝   V (S𝑘

+ )∝
 2 ) (f𝑘

+)∝ )     

 

   +  E ((S𝑘
– 

)∝
2  I [𝑡=𝑘]  V (S𝑘

+ )∝
 2 ) I [𝑡=𝑘]   (5.4) 
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From (5.3) and (5.4) 

 

  E ((S
𝑘–1

    –
)∝

2 (f𝑘−1
     –

)∝   V  (S𝑘−1
    + )∝

2   + (f𝑘−1
     +)∝  ) 

 

     +  E ((X𝑘
– 

)∝
2   V (X𝑘

+ )∝
 2 ) P (t > k-1)     

 

   =  E ((S𝑘
– 

)∝
2 (f𝑘−1

     –
)∝ V (S𝑘

+ )∝
 2 ) (f𝑘−1

    + )∝ )     

 

   =  E ((S𝑘
– 

)∝
2 (f𝑘

–
)∝  V (S𝑘

+ )∝
 2 ) (f𝑘

+)∝     

 

     +  E ((S𝑘
– 

)∝
2  I [𝑡=𝑘]  V (S𝑘

+ )∝
 2 ) I [𝑡=𝑘]  

 

Since  | (X𝑘
– 

)∝   V (X𝑘
+ )∝  | ≤ C  for all K 

 

 and | (X𝑘
– 

)∝  – E (X𝑘
– 

)∝   V (X𝑘
+ )∝  – E (X𝑘

+ )∝  | ≤ 2C    

 

  E  ((S
𝑘–1

    –
)∝

2 (f𝑘−1)∝   V  (S𝑘−1
    + )∝

2   + (f𝑘−1)∝  ) 

 

    +  E ((X𝑘
– 

)∝
2   P (t ≥ k) V (X𝑘

+ )∝
 2 ) P (t ≥ k)     

 

  ≤  E ((S𝑘
–

)∝
2 (f𝑘 )∝   V  (S𝑘

+)∝
2 (f𝑘

–1
)∝  ) 

 

    +    (∈ +2C)2 P (t ≥ k)      (5.5) 

 

Summing over (6) for k=1 to n and after cancellation we get 

 

  

 

  𝑛
𝑘=1  E ((X𝑘

– 
)2   V (X𝑘

+ ) 2  ) P (t ≥ k)  

 

  ≤  E ((S𝑘
– 

)∝
2 (f𝑛

–
)∝ V (S𝑛

+ )∝
 2 ) (f𝑛

+)∝ )   

 

    +    (∈ +2C)2 P (t ≤ n)       

     

 Now  𝑆𝑛
2𝑓𝑛

2≤  ∈2   By definition of t 

 

and  P(t > n) < P(t ≥ k)   if k ≥ n imply 

  

  𝑛
𝑘=1  E ((X𝑘

– 
)𝛼 

2   P(t ≥ k)  V E ((X𝑘
+ )𝛼 

2   P(t ≥ n) 

 

   ≤ ∈2 E ((f𝑛
 –

)∝   V (f𝑛
+)∝ )  

 

   + (∈ +2C)2 P (t ≤ n)   

 

 Or 

 

  𝑛
𝑘=1  E ((X𝑘

– 
)𝛼 

2   V  ((X𝑘
+ )𝛼 

2   P(t > n) 

 

   ≤ ∈2 P(t > n) + (∈ +2C)2 P (t ≤ n)   

 

   ≤  (∈ +2C)2 P (t ≤ n)  +  (∈ +2C)2 P (t > n) 
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   = (∈ +2C)2 

 

 Hence  

 

 1 – P (t ≤ n) ≤  (∈ +2C)2 /  𝑛
𝑘=1  E ((X𝑘

– 
)𝛼 

2   V  ((X𝑘
+ )𝛼 

2  

 

 

  =  
(∈+2C)2

 𝜎𝑘
2𝑛

𝑘=1
 

 

 implies  P (t ≤ n) ≥  1 – (∈ +2C)2 /  𝑛
1 𝜎𝑘

2 

 

 

LEMMA 5.1 : (KRONECKER’S LEMMA) 

 

 For sequences {an} and {bn} of fuzzy real numbers and  ∞
1 an converges  

 

 and bn↑
1

bn
 

 

  𝑛
𝑘=1 bk ak→ 0    as n   → ∞ 

 

 

Proof :  Since  ∞
1  an converges  Sn =  𝑛

1 ak S  (say) 

 

 
1

bn
 𝑛

𝑘=1 [(b𝑘
– 

)∝ (a𝑘
–

)∝ V (b𝑘
+ )∝ (a𝑘

+)∝  

  

 

  =  
1

bn
 𝑛

𝑘=1 [(b𝑘
– 

)∝ ((S𝑘
–

)∝   – (S𝑘−1
     – 

)∝  

  

– (b𝑘
+)∝   ((S𝑘

+)∝   – (S𝑘−1
    + )∝ )] 

 

  =  
1

bn
  (  𝑛

1 (b𝑘
– 

)∝ (S𝑘
–

)∝   𝑉(b𝑘
+ )∝ (S𝑘

+)∝  

  

–  𝑛
1 (b𝑘

–
)∝ (S𝑘−1

      –
)∝   𝑉(b𝑘

+)∝ (S𝑘−1
     +)∝  ) 

 

 

  =  
1

bn
  (  𝑛

1 (b𝑘
– 

)∝ (S𝑘
–

)∝   𝑉(b𝑘
+ )∝ (S𝑘

+)∝  

  

–  𝑛−1
1 (b𝑘+1

      –
)∝ (S𝑘

–
)∝   𝑉(b𝑘+1

+ )∝ (S𝑘
+)∝  ) 

 

 

  =  
1

bn
  (((b𝑛

– 
)∝ (S𝑛

–
)∝   𝑉(b𝑛

+ )∝ (S𝑛
+)∝  

  

–  (𝑛−1
1 (b𝑘

–
)∝  –  (b𝑘+1

–
)∝ (S𝑘

–
)∝  ) 

 

𝑉 ((b𝑘
+)∝  – (b𝑘+1

+ )∝ ) (S𝑘
+)∝  

 

  =  (S𝑛
–

)∝   𝑉(S𝑛
+)∝

1

bn
 𝑛−1

1 ((b𝑘
–

)∝  –  (b𝑘+1
–

)∝  ) (S𝑘
–

)∝  ) 

  

𝑉 ((b𝑘
+)∝  – (b𝑘+1

+ )∝ ) (S𝑘
+)∝  
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→  S – S = 0 

 

 

 Since   =  
1

bn
 (𝑛−1

1 (b𝑘
– 

)∝ – (b𝑘+1
–

)∝  ((S𝑘
–

)∝  – (S
–

)∝ ) 

 

𝑉 ((b𝑘
+)∝  – (b𝑘+1

+ )∝ ) ((S𝑘
+)∝  – (S

–
)∝ ) 

 

 

(S
–

)∝

(b𝑛
–

)∝

  (𝑛−1
1 (b𝑘

– 
)∝ – (b𝑘+1

–
)∝   V  

 
(S+ )∝

(b𝑛
+)∝

  𝑛−1
1 (b𝑘

+)∝ – (b𝑘+1
+ )∝  

 

  =  
1

bn
  [𝑛−1

1 (b𝑘
–

)∝  – (b𝑘+1
–

)∝ ](S𝑘
–

)∝  

 

𝑉
1

(b𝑛
+)∝

  [

𝑛−1

1

(b𝑘
+)∝  –  (b𝑘+1

+ )∝ ](S𝑘
+)∝  

 

Now  

 

(S
–

)∝

(b𝑛
–

)∝

  𝑛−1
1 (b𝑘

–
)∝ – (b𝑘+1

–
)∝  

 

  𝑉
(S+ )∝

(b𝑛
+)∝

 𝑛−1
1 (b𝑘

+)∝  –  (b𝑘+1
+ )∝  

 

 

(S
–

)∝

(b𝑛
–

)∝

 ((b1
–
)∝ – (b𝑛

–
)∝  )    

 

  𝑉
(S+ )∝

(b𝑛
+)∝

  ((b1
+)∝  – (b𝑛

+)∝  

 

 → – ((S
–

)∝  𝑉 (S+ )∝  ) 

 

   as bn↑ ∞ 

 

 and 

 

 =  
1

(b𝑛
–

)∝

  (𝑛−1
1 (b𝑘

–
)∝  – (b𝑘+1

–
)∝ )( S𝑘

–
 
∝

 –  (S𝑘
–

)∝  

 

𝑉
1

(b𝑛
+)∝

  (𝑛−1
1 (b𝑘

+)∝  –  (b𝑘+1
+ )∝ )((S𝑘

+)∝   – (S+ )∝  

 

 → 0 as n → ∞ 

 

Since 

 

 |
1

(b𝑛
–

)∝

  (𝑛−1
1 (b𝑘

–
)∝  – (b𝑘+1

–
)∝ )( S𝑘

–
 
∝

 –  (S𝑘
–

)∝  
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𝑉
1

(b𝑛
+)∝

  (𝑛−1
1 (b𝑘

+)∝  –  (b𝑘+1
+ )∝ )((S𝑘

+)∝   – (S+ )∝   ) | 

 

 

 |
1

(b𝑛
–

)∝

 |    |   (𝑛0
𝑘=1 (b𝑘

–
)∝  –  (b𝑘+1

–
)∝ )  S𝑘

–
 
∝

 –  (S𝑘
–

)∝  

 

𝑉 | 
1

(b𝑛
+)∝

 |    | (𝑛0
𝑘=1  b𝑘

+ ∝  –  (b𝑘+1
+ )∝ )((S𝑘

+)∝   – (S+ )∝   ) | 

 

 |
1

(b𝑛
–

)∝

 |      (𝑛−1
𝑛0+1 (b𝑘

–
)∝  –  (b𝑘+1

–
)∝ ) (  S𝑘

–
 
∝

 –  (S𝑘
–

)∝  

 

𝑉 | 
1

(b𝑛
+)∝

 |     (𝑛−1
𝑛0+1  b𝑘

+ ∝  – (b𝑘+1
+ )∝ )((S𝑘

+)∝   – (S+ )∝   ) | 

 

for  n > n0 

 

 

 ≤∈ + 
(b𝑛0+1

–
)∝ (b𝑛

–
)∝

(b𝑛
–

)∝

 

 

  V  + 
(b𝑛0+1

+ )∝ – (b𝑛
+)∝

(b𝑛
+)∝

∈ 

 

 if n > n0 

 

LEMMA 5.2 : (Loeve) 

 

 Let X be a fuzzy random variables and  

 

 q(t)  =  P { |  𝑋∝
–
  V  𝑋∝

+ | > t  }   =   1  –  F(t)  =  F  (t) 

 

 

 For every y > 0, x > 0 we have 

 

 𝑥𝑟  ∞
𝑛=1 q (𝑛𝑙/𝑟x )  ≤   E ( | 𝑋∝

–
 |𝑟   V  | 𝑋∝

–
 |𝑟  

 

    ≤   𝑋𝑟 + V 𝑋𝑟  ∞
𝑛=1 q (𝑛𝑙/𝑟x )   

 

 

Proof : 

 

 E (| 𝑋∝
–

 |𝑟   V  | 𝑋∝
+ |𝑟  

 

  =  
∞

0
 +  d P  ( | 𝑋∝

–
 |   V  | 𝑋∝

–
 |𝑟  ≤  t ) 

 

  =   –   
∞

0
 +  t

r 
 dq (t)  

 

  =   –    ∞
𝑛=1  

𝑛1/𝑟𝑥

(𝑛−1) 1/𝑟𝑥)
  t

r 
 dq (t) ,  x > 0 

 

 Now  –   
𝑛

1
𝑟𝑥

(𝑛−1)
1
𝑟𝑥

   t 
r  

dq (t)  

 

  ≤nx
r
 [ q  𝑛 − 1 

1

𝑟𝑥  –  q (𝑛
1

𝑟𝑥)] 
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 and   

 

  –   
𝑛

1
𝑟𝑥

(𝑛−1)
1
𝑟𝑥

   t 
r  

dq (t)  

 

  ≤  (n-1)x
r
 [ q  𝑛 − 1 

1

𝑟𝑥  –  q (𝑛
1

𝑟𝑥)] 
 

 

 If   E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  ) = ∞    the proof is obvious. 

 

and if   E (| 𝑋∝
–
 |𝑟   v  | 𝑋∝

+ |𝑟  ) <∞    then 

 

x
r
 Nq  (𝑁

1

𝑟𝑥) → 0  as  N → ∞ 

 

 

In fact,  

 

 ∞ >  E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  ) 

 

 ≥   E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  )  I  (| 𝑋∝

–
 |   v  | 𝑋∝

+ | >  x N
1

𝑟] 

 

 =   Nx
r 
P [ | 𝑋∝

–
 |𝑟   v  | 𝑋∝

+ |𝑟>N
1

𝑛  𝑥 ] 

 

 =   Nx
r 
q [ N

1

𝑟  𝑥 ] 

 

 

If    E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  )  <∞    by absolute continuity.  

  

of integral Nx
r 
q [ N

1

𝑟  𝑥 ]  → 0  as  N → ∞ 

 

on the other hand. 

  

 E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  )  <∞ 

 

  ≥   𝑛
𝑛=1  (n – 1) x

r
 [ q (𝑛 − 1) 

1

𝑟𝑥  – q (𝑛
1

𝑟  )𝑥  ] 
 

 

  –   𝑁
𝑛=1   x

r
  [ q (𝑛) 

1

𝑟𝑥 ] – (N–1)x
r
  q (𝑛

1

𝑟  )𝑥    
 

 Since  

 

  Nq (𝑛
1

𝑟𝑥) → 0   the right hand side of the last inequality tends to  

 

   ∞
𝑛=1 x

r
  q (𝑛

1

𝑟  𝑥 ) 

 

   

Now  if     ∞
1 q (𝑛

1

𝑟  𝑥 )<∞ 

 

then    nq (𝑛
1

𝑟  𝑥 ) → 0    and 
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E (| 𝑋∝
–

 |𝑟   v  | 𝑋∝
+ |𝑟  )    

 

 ≤     lim𝑁→∞  𝑁
𝑛=1   nx

v 
 [ q (𝑛 − 1) 

1

𝑟𝑥  – q (𝑛
1

𝑟  𝑥) ] 
 

 ≤     lim𝑁→∞ x
v 
 ( 1 +  𝑁−1

1  q (𝑛 
1

𝑟𝑥 )  – Nq (𝑛
1

𝑟  𝑥) ) 

 

 ≤     x
v 
 ( 1 +  ∞

1  q (𝑛 
1

𝑟𝑥 )) 

 

 which completes the proof.  

 

 

THEOREM  5.4:  (KOLMOGOROVS STRONG LAW OF LARGE NUMBERS for independent identicals 

distributed r.v.s.) 

 

  

 Let  {xn} be a sequence of indendent identically distributed fuzzy random variables then 

 

 
𝑆𝑛

𝑛
→ 𝐶 <  ∞    a.s. 

 

if and only if   E (| (𝑋1)∝
–

 v  | (𝑋1)∝
–

 )  <∞ 

 

and then  C = E (X1) 

 

Proof  

 

 For the only if part let  An =  (| 𝑋
∝
–  | v | 𝑋

∝
+ ) ≥ n 

 

 then   ∞
1  ∑  E (| (𝑋1)∝

–
 v  | (𝑋1)∝

–
+  P   ∞

1  𝐴𝑛   (5.7) 

 

 Now     P(An)  = P (| 𝑋
∝
–  | v | 𝑋

∝
+ ≥  n) 

 

   = P (| (𝑋1)
∝
–

 v | (𝑋1)∝
+ ≥  n) 

 

 
𝑆𝑛

𝑛

𝑎.𝑠.
  <  ∞  

 

 then    
(𝑋𝑛 )∝

–

𝑛
   V   

(𝑋𝑛 )∝
+

𝑛
    =     

(𝑆𝑛 )∝
–

𝑛
   V   

(𝑆𝑛 )∝
+

𝑛
 

 

– 
(𝑛−1)

𝑛

(𝑆𝑛−1)∝
–

𝑛−1

(𝑆
𝑛–1

)∝
+

𝑛−1
  

 

 

 →   𝐶 – 𝐶 = 0    𝑎. 𝑠. 
 

 

Hence   P ( |
(𝑋1)∝

–

𝑛
|  V  |  

(𝑋1)∝
+

𝑛
>

1

2
 i.o. ) 

 

 By Borel 0 – 1 Law   ∞
𝑛=1  P (| (𝑋𝑛)

∝
–

 | v | (𝑋𝑛
+ )∝ ≥ 

n

2
) 

 

 i.e.    ∞
𝑛=1  P (| (𝑋1)

∝
–

 v (𝑋1 )∝
+  ) ≥  

n

2
)  <∞ 
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  ∞ >  𝑛  P [ |(𝑋1)
∝
–

 v (𝑋1 )∝
+  ) ≥  

n

2
)    

 

 ≥ 𝑛  P (An) 

 

    𝑛  P (An) <∞ 

 

 So from (1) E (| (𝑋1)
∝
–

 v (𝑋1 )∝
+  ) )  <∞ 

 

Conversely let 

 

  E ((𝑋1)
∝
–

 v (𝑋1 )∝
+  ) <∞ 

 

 and  C = E ((𝑋1)
∝
–

 v (𝑋1 )∝
+  )  

 

 Define  (𝑋𝑘
–
)∝
∗  V (𝑋𝑘

+)∝
∗  

 

  =  ((𝑋)∝
–

v  (𝑋)∝
+)  I   [ | 𝑋 𝑘  | ≤  k ]  k=1,2,3, . . . 

 

 and (𝑆𝑛 )∝
–∗

 V (𝑆𝑛 )∝

∗
+ 

 

  =  ( 𝑋 ∝
–∗

v   𝑋 ∝
+∗   +  𝑋2

–
 
∝

∗

v   𝑋2
–
 
∝

+∗

 

 

   + . . . .  𝑋𝑛
–
 
∝

∗

v   𝑋2
+ ∝

∗  

 

 

 Then  Xk ,  k=1, 2, . . . .  n  are independent 

 

 and  |(𝑋𝑘)
∝
∗

 v (𝑋𝑘 )∝
∗ | ≤  k  

 

Now 

 

  ∞
𝑘=1  P [ (𝑋𝑘)

∝
–

 v (𝑋𝑘 )∝
+  ≠ (𝑋𝑘)

∝
–∗

 v (𝑋𝑘 )∝
+∗  

 

 =    ∞
1  P ( |(𝑋𝑘)

∝
–

 v (𝑋𝑘 )∝
+  | > k) 

 

 ≤    ∞
1  P (Ak)  <∞ 

 

 @  P [ (𝑋𝑘)
∝
–

 v (𝑋𝑘 )∝
+  ≠ (𝑋𝑘

–
)∝
–∗

  v (𝑋𝑘 )∝
+∗ i.o. 

 

 

Hence   
𝑆𝑛

𝑛
 and 

𝑆𝑛
∗

𝑛
  trends to the same limit a.s. if they converge at all in. 

 

 

(𝑆𝑛)∝
–  v (𝑆𝑛)∝

+   –   (𝑆𝑛
∗)∝

–   v  (𝑆𝑛
∗)∝

+

𝑛
→   0  𝑎. 𝑠. 

 

  𝑎𝑠   𝑛 → ∞   
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 So it is enough to prove that   
𝑆𝑛
∗

𝑛
→ E ((𝑋1)

∝
–

 v (𝑋1 )∝
+ ) <∞ 

 

 

Now  𝑋𝑛
∗  are independent but may be necessarily be identically distributed, we shall show that 

 

  ∞
𝑛=1

𝜎2   ((𝑋𝑛 )
∝
–∗  v (𝑋𝑛 )∝

+∗ )

𝑛
<∞ 

 

 and that will imply 
𝑆𝑛
∗

𝑛
→ E (

𝑆𝑛
∗

𝑛
 ) converges to zero almost surely. 

 

  

 E ( 𝑋𝑛 ∝
–∗

v   𝑋𝑛
+ ∝

∗  ) 

 

 =  E ( 𝑋𝑛 ∝
+ v   𝑋𝑛  

∝

–
 )   I  [ | 𝑋𝑛 ∝

–
v   𝑋𝑛  

∝

+
 ) ≤ n ] 

 

 

 =  E ( 𝑋1 ∝
–

v   𝑋𝑛  
∝

+
 )   I  [ | 𝑋1 ∝

–
v   𝑋𝑛  

∝

+
 ) ≤ n ] 

 

 →   E ( 𝑋1 ∝
–

v   𝑋1  
∝

+
 )   G.S. 

 

Therefore 

 

 E  (
(𝑆𝑛 )∝

–∗
 V (𝑆𝑛 )∝

∗
+

𝑛
) →  E  ( | 𝑋1 ∝

–
v   𝑋1  

∝

+
 ) 

 

  𝜎2∞
1 (

(𝑋𝑛 )∝
–∗

𝑛
   V  

(𝑋𝑛 )∝
+∗

𝑛
) 

 

 ≤    ∞
1 E (

(𝑋𝑛
 –

)∝
∗2   𝑉 (𝑋𝑛

+)∝
∗2

𝑛2 ) 

 

 

=    ∞
1

1

𝑛2  
[| 𝑋1 ∝

–
v   𝑋1  

∝

+
≤𝑛]

((𝑋𝑛 )∝
–2

  𝑉 (𝑋𝑛 )∝
+2) dP 

 

 

=    ∞
1

1

𝑛2
 𝑛

𝑘=1  
[k−1< | 𝑋𝑛  ∝

–
v   𝑋𝑛  

∝

+
 ] ≤𝑘

((𝑋𝑛 )∝
–2

  𝑉 (𝑋𝑛 )∝
+2) dP 

 

 

=    ∞
1

1

𝑛2
 𝑛

𝑘=1  
[k−1< | 𝑋1 ∝

–
v   𝑋1  

∝

+
 ] ≤𝑘

((𝑋1 )∝
–2

  𝑉 (𝑋1 )∝
+2) dP 

 

 

=    ∞
𝑘=1  

1

𝑛2
∞
𝑛=𝑘  

[k−1< | 𝑋1 ∝
–

v   𝑋1  
∝

+
 ] ≤𝑘

((𝑋1 )∝
–2

  𝑉 (𝑋1 )∝
+2) dP 

 

 

≤  2  ∞
𝑘=1

1

𝑘
   k

2
 P [k − 1 <  | 𝑋1 ∝

–
v   𝑋1  

∝

+
 ]  ≤ 𝑘 ] 
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=  2   ∞
𝑘=1 k P [ (k − 1) <  | 𝑋1 ∝

–
v   𝑋1  

∝

+
< 𝑘 ] 

 

=  2   ∞
𝑘=1 (k–1)P [ k − 1 < (| 𝑋1 ∝

–
v   𝑋1  

∝

+
≤ 𝑘 ] + 2 

 

≤  2   ∞
1  

[k−1< ( | 𝑋1 ∝
–

v   𝑋1  
∝

+
 ] ≤𝑘

((𝑋1 )∝
–

  𝑉 (𝑋1 )∝
+)  +2 

 

=  2 ( E ( | 𝑋1 ∝
–

v   𝑋1  
∝

+  1 
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