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Abstract: Conic optimization has been applied optimal power flow (OPF) problem recently. Present conic 

relaxation OPFs only consider for the continuous decision variables, and the transformer tap ratios have not 

been treated as optimization variables. Based on angle relaxed branch power flow, an extended branch power 

flow model with tap-changer transformers is proposed. The tap-changer transformers were modeled with 

bilinear functions. Then the McCormick envelopes were deployed to exactly reformulate the bilinear functions 

with linear constrains. The effectiveness of the proposed method is demonstrated by the simulation results 

obtained in the test systems. 
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I. Introduction 

The tap-changer transformers are widely used in power systems to realized voltage regulation. Traditionally the 

transformer tap ratios are set by automatic voltage regulators based on local voltage measurements or OPFs 

where the tap ratios are optimization variables to improve system efficiency. Since the OPFs could obtain 

certain overall system operational objectives, the tap ratios are included as discrete variables expanding the 

OPFs to mix-integer optimization (MIP) problems in this paper. 

Due to the nonconvex nature of AC power flow equations, the MIP problems are always NP-hard to solve. By 

relaxing the relationship between voltages, the conic optimization was firstly deployed in [1] to solve the OPFs. 

Another conic relaxation method was proposed in [2], and the relationship between quadratic relaxations was 

also demonstrated. 

While the above conic relaxations were all based on bus injection power flow, the authors in [3] proposed a 

novel conic relaxation by rewriting the power flow equations based on the branch power flow. And this method 

would always obtain   much tighter results in radial networks [4]. 

However, all these conic relaxations had not taken the transformers’ tap ratios as optimization variables. The 

traditional methods in OPFs to optimize the tap ratios were mostly based on bus injection power flow by fixing 

the admittance matrix. While according to our knowledge, in conic relaxed branch power flow, how to model 

the transformer tap ratios as decision variables still remains to be urgent and has not been well studied. 

By modeling the tap-changer transformers in angle relaxed power flow, a convex envelope based relaxation for 

the transformers is proposed in this paper. 

 

II. Angle Relaxed Power Flow Model 
The angle relaxed branch power flow represented by linear equality functions and conic functions for radial 

power networks are shown as follows [3]: 
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wherePG,iand QG,iare the active and reactive power outputof the i-thgenerator,PL,iand QL,iare the active and 

reactive power consumption of the i-th user, Vi is the voltage magnitude at busi, vi:=V
2 

i , rijandxijre theresistance 

and reactance on line (i,j), Iijis the complex current flowingfrom busi to j, lij:=|Iij|
2
, PijandQijare the active and 

reactive power from bus i to bus j, 
i

G and 
i

L are the set of generations and users connecting to the i-th bus,  is 

the set of buses, E is the set of branches. 
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III. Tap-Changer Transformer Models 
3.1 Exact Model 

Atypical tap-changer transformer could be represented as impedance
i j i j

r jx in series with an ideal 

transformerrepresenting the tap ratio : 1
i j

k as shown in Fig. 1 [1].The impedance
i j i j

r jx  of transformer (i, j) 

is calculated with a specific tap ratio, i.e., kij=1. 
By introducing a virtual node x at the primary side of transformer, the KCL and KVL equationsfor node xand 

transformer (i, j) could be represented as following: 
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where is the set of transformers. Since the transformer is ideal, there is no power loss on the transformer. 

When node x and j are integrated to one super node j, the KCL equations for node i and j stay the same with (1a) 

- (1b), while the KVL equation for transformer (i, j)should be modified as the following equation: 
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Fig.1  Tap-changing transformer model 

 

3.2 Relaxed Model 

The difficulty to reformulate the transformer model lies in the bilinear functionw=kv, which resulting in the non-

linear and non-convex of equation (2d). Since the tap ratios could not be adjusted continuously, the following 

constrains should hold for the tap ratios: 
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wherei is the set of states of transformer tap ratios,{k
0 

1 ,k
0 

2 ,… }; ai is a binary variable which represents whetherk 

is k
0 

i or not. And (3b) is the SOS-1 type constrain. Then the bilinear function w=kv could be represented by the 

following equation: 
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As shown in equation (3c), there still exist bilinear terms at each state. The traditional methods to transfer 

bilinear equations to linear constrains are linear reformulation technique, McCormick inequalities [5] and so 

on.In this paper, the McCormick inequalities are deployed to linearize the binary bilinear items in (3c) as 

following: 
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where v  and v  are the lower and upper boundary of v. 

Proposition 1: Equations (3d)-(3g) are the exact linear relaxation of equation (3c). 

Proof: When representingwi by aik
0 

i v, it means the following disjunctive function: 
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Whenai=0, wi inequations (3d)-(3g) equals 0. And when ai=1, wi in equations (3d)-(3g) equalsk
0 

i v. Then there is 

no loss by representing (3c) with (3d)-(3g). 

Then the bilinear functionw=kvcould be exactly reformulated withlinear equations (3a) -(3b) and (3d) -(3g), 

which completes the proof. 

 

IV. Example 
The simulation is implemented on MATLAB version 8.2, using the YALMIP[6]with the commercialsolver 

Gurobi [7] on an Intel Corei5-3320M CPU at 2.6 GHz and 8 GB of RAM computer. A modified 69-bus test 

system was deployed to demonstrate the effectiveness of the method. The branch and load data could be 

obtained from [8], and branch 1, 9 and 59 are replaced with three tap-changer transformers with tapratios 

varyingfrom 0.9p.u. to 1.05 p.u. (0.01 p.u. each step). 
The objective is to minimize the real power losses. Compared with the result (0.2111MW) obtained from the 

bus injection flow by the solver BONMIN [9], the optimal losses is 0.1983MW, reduced by 6.44%. And the 

solving time has significantly reduced from 85.1955s to 0.3054s. The maximum value of 
2 2

-
i i j i j i j

v l P Q in (1d) is 

1.0687e-06. 

Future, three distributed generations are integrated to bus 3, 6 and 19 with the same active and reactive output 

range [0, 1] MW and [-0.3, 1] MVar, respectively. The real power losses would reduce to 0.1527MW, and the 

solving time remains almost the same in our method.While in the IEEE-33 bus test system, the solving time 

reduces to 0.1565s with three tap-changer transformers and three DGs integrated. 
 

V. Conclusion 
This paper presents a relaxation method for incorporating tap-changer transformers in a branch power flow 

based OPFs. 
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