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Abstract: In this paper, we consider the oscillatory behavior of the functional difference inequality of 

the form  
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2m , z  is a natural number, }1,,{=)( 000  nnnNn  and )[0,=  i  with 1=1 k   . The 

sequence )(np  is not identically zero and the sequence   :ig  are such that 
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. The 

propose of this paper is to study oscillations of solutions of inequality )( zE  generated by general 

deviating arguments ig  (not necessarily delay or advanced arguments). Some specific comparison to 

known results will be made in the text of the paper.  
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I. Introduction 

In this paper, we are considered with the oscillatory behavior of the functional difference inequality of the form  
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 where z  is a natural number, 2m  and   is the forward difference operator defined by )(1)(=)( nxnxnx   

and 1,2,=)),((=)(
1

inxnx
ii 

 . 

We assume the following conditions on the inequality )( zE    

    1.  )[0,=  i  with 1=21 k   .  

    2.  The real sequence )(np  is not identically zero in every neighborhood of infinity.  

    3.  The sequence of integers   :ig  ),1,2,=( ki   are such that 
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For all ),(=  r  and s  a nonnegative integer, the factorial expression is defined as  
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By a solution of inequality )( zE  we mean a real sequence )}({ nx  which is defined for all )( 0nNn   and 

satisfies the inequality )( zE  for all sufficiently large )( 0nNn  . Our attention is restricted to those solutions 

which are nontrivial in the seme that 0>}|:)({|sup Nnnx   for any 0> nN . Such a solution is said to be 

oscillatory, if it is neither eventually positive nor eventually negative and non-oscillatory otherwise. 

The aim of this paper is to study oscillatory of all solutions of )( zE  generated by general deviating arguments 

(not necessity delay or advanced arguments). The main results of this paper are new and are independent of the 
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analogous ones known for delay and advanced difference equations. Some specific comparisons to known 

results will be made in the text of the paper. 

The problem of oscillation and non-oscillation of solutions of difference equations / inequalities has received a 

considerable attention during the last few years. Among numerous papers dealing with the subject, we refer in 

particular [2, 3, 5-13, 15-23] and references citied therein. However, it seems that very little work has been done 

on the oscillating behavior of difference inequalities. 

 The following notations will be used throughout this paper.  

 },1,2,=,)(:{ = kinngnD i    

 },1,2,=,)(:{ = kinngnA i    

 Let 
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To obtain our main results we need the following two lemmas.  

Lemma 1.1 [1] Let )( nx  be a sequence of real numbers. Let )}({ nx  and )( nx
m

  be of constant sign with 

)( nx
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 Lemma 1.2 [14] Let )( nx  be a non-oscillatory solutions of )( E  satisfying the inequality (N) with 

1},{1,2,  ml   and zlm   even. In addition, let  
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II. Main Results 
 We begin this section with the following theorem.  

Theorem 2.1  Consider the difference inequality )(
z
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Then [(i)]  

    1.  for m  even, every solution of )( 1E  is oscillatory.  

    2.  for m  odd, every solution of )( 1E  is either oscillatory, or )(lim nx
j

n





, 1),0,1,2,=( mj   monotonically  

    3.  for m  odd, every solution of )( 2E  is either oscillatory or 
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j

n

, 1),0,1,2,=( mj   

monotonically  
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    4.  for m  even, every solution of (E) is either oscillatory, or 0=)(lim nx
j

n




 or 
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, 
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Proof. Suppose that the inequality )(
z

E  has a non-oscillatory solution 0)( nx  for 
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nn  . Therefore for 

sufficiently large 
1

nn   by Lemma 1.1, there exists an integer },{0,1,2, ml   with zlm   even, such 

that )( nx  satisfies the inequalities )(
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Case I: In this case m  is even, then we have 1=z  and odd 1)}(,{1,3,  ml  . We observe that (4) and 
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 From the above inequality for },{1,2, lj   and 
1

nn   we get  

 i
i

li
l

i

k

i

lm

n

n
j

g
j

j

l

sgxlmsgsps

ng

ngx
lml


|))((|])([)()(

)(

|))((|
)!(!

*11)(*

1=

1)(

1

)(
*

*

*1








   

 i
i

li
l

i

k

i

lm

n

sgxlmsgsps

|))((|])([)()(

*11)(*

1=

1)( 



       (5) 

 since 
n

nx
l 1

|)(|
1




 is non-increasing for 11  ml  and 
1

nn   by (3) we obtain for ]),([
*

nngs
j

  

and },{1,2, ki    

 .|))((|

)(

)(
|))((|

*1

*

*

*1
sgx

ng

sg
sgx i

l

i

i

i

l 
        (6) 

 Therefore from (5) and (6), in view of the increasing character of |)(|
1

nx
l 

  we derive for 
1

nn    

            )()(

)(

|))((|

)(

|))((|
)!(!

1)(

1

)(
*

*

*1

1=

*

*1

sps

ng

ngx

ng

ngx
lml

lm

n

n
j

g

i

j

i

lk

ij

j

l






























 

 i
i

li
l

i

k

i

ngxlmsg

|))((|])([

*1*

1=




i
l

i

k

i

lm

n

lmsgsps
1)(*

1=

1)(
])([)()(





    (7) 

 for 1)}(,{1,2,  ml  , the following inequalities hold for 
1

ns  ,  

i
l

i

k

i

mi
l

i

k

i

lm

s

lmsg
slmsgs



















 
 

 )(
)( =])([)(

*

1=

1)(*

1=

1)(  

                                 
i

m

i

k

i

m

s

lmsg
s

1)(
*

1=

1)( )(
)( 



















 
   

                   

i
m

i

k

i

lmsg
1)(*

1=

])([=


       (8) 

 and  

 .])([])([)(
2)(*

1=

1)(*

1=

1)( i
m

i

k

i

i
l

i

k

i

lm
lmsglmsgs

 
       (9) 

 Using now (8) and (9) in (7), we get  
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 Raising both sides of the above inequality to 
j

  and then multiplying the resulting inequalities, we have  
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 which contradicts (4). 

Case II: Then )( nx  satisfies the inequalities )(
z

I  of 1},{0,2,4,  ml  . By arguments similar to those 

in the proof of Case (I), we prove the case 1},{2,4,  ml   is impossible. Therefore )( nx  satisfies )(
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 But this gives a contradiction, since (4) implies that  
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 Case III and Case IV: Then )( nx  satisfies )(
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 From the above inequality and (11), we get 
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Corollary 2.1  Consider the difference equation with general deviating argument  
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 Raising both sides of the above inequality ot 
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  and then multiplying, we obtain  
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Remark 2.2 A condition similar to that in Corollary 2.2 for delay difference equation can be found in [4]. From 

the result it follows that every bounded solution of )( mE  is oscillatory if  
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 We note that the condition (21) of Corollary 2.2 is better than (22).  

Theorem 2.3  Let 3m  be odd. Consider the difference inequality )(
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E  subject to the conditions (4) and 

(16). Then every solution of )(
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Proof. The above theorem follows from Theorems 2.1 and 2.2.                                                                            ▀ 
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 Raising both sides of the above inequality ot 
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  and then multiplying the resulting inequalities, we get  
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Suppose now that (26) holds. Then in view of (23) and (26), the assumptions of Lemma 1.2 are satisfied. 

Therefore, by arguments similar to those in the proof of Theorem 2.1 we obtain the inequality (7). Since 
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 Proceeding as in the corresponding part of the proof of Theorem 2.1, we get a contradiction with the 

assumption (23). Thus the inequalities (23) cannot hold. This completes the proof.                                              ▀ 

  

Theorem 2.5  Let m  be even. Consider the difference inequality )(
2

E  subject to the conditions (16) and (24). 

In addition, let for 4m   
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 Then every solution of )(
2

E  is oscillatory.  

  

Proof. Let )( nx  be a non-oscillatory solution of )(
2

E  for 
0

nn  . Thus by Lemma 1.1, )( nx  satisfies the 

inequalities )(
z

I  with }2),(,{0,2, mml   . The case 0=l  and ml =  are impossible, by the 

assumptions  (16), (24) and Theorem 2.2 and Theorem 2.4 respectively. 

Suppose now that 2)}(,{2,  ml   which is possible only if 4n . Therefore by arguments similar to 

those in the corresponding part of the proof of Theorems 2.1 and 2.4, we obtain the inequalities (7), (30) and  

(31). Combining (30) and  (31) with (7) and using the fact that 22  ml , we have  
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 From this inequality, similarly as in the proof of Theorem 2.4, we obtain a contradiction with the assumption 

(32). Thus 2))(,(2,4,  ml   and the proof is complete.          ▀ 

  

III. Final Remarks 
The For simplicity, we consider the linear difference equation with a deviating argument  

     )())(()(=)( Lngxnpnx
m

  

 where m  is even, )( np  is a positive real sequence and g  is nondecreasing and 



=)(lim ng

n

. 

Let ))(,(min=)(* ngnng  ))(,(max=)(
*

ngnng  }<)(:{= nngxD    and }>)(:{= nngnA   . 

It is known that in the case of ordinary difference equation, that is nng =)( , the equation (L) always has non-

oscillatory solutions satisfying the inequalities )(
0

I  and )(
m

I . The situation is different when nng )( . For 
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example, in view of Theorem 2.1 and Theorem 2.2 every solution of (L) is either oscillatory or 




|=)(|lim nx
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 1))(,0,1,=( ml   monotonically if the following conditions hold  
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 and for some 1))(,0,1,(  ml  ,  
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 On the basis of Theorems 2.1 and 2.4, we can prove that every solution )( nx  of (L) is either oscillatory or 

0=)(lim nx
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From Theorem 2.5, if follows that every solution of (L) is oscillatory fi (34) and (35) hold. In addition, when 

4m  the following inequality is satisfied  
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