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I. Introduction and Preliminaries 
The series function in the Hardy-Sobolev space if its derivatives lie in the real Hardy space𝐿1

′ , means 

that a maximal series function of the derivatives is integrated. One of the aims of this paper is, how to define the 

maximal series function of the derivatives of𝑓𝑟 .  

For a locally integrated series function 𝑓𝑟  on 𝑀 define the gradient in the sense of distributions, implies 

  ∇𝑓𝑟 , φ ≔ −   𝑓𝑟  𝑑𝑖𝑣 𝜑 𝑑𝑓𝜇
𝐶

∞

𝑟=1

∞

𝑟=1

 .                                                 (1) 

For all smooth vector fields φ of compact support. Here 𝑑𝑖𝑣 𝜑 is the divergence, defined via 𝑧∗ acting on 1-

forms. Following the ideas from the scalar case see [4,17], a natural grand maximal a series functions would be to 

take, at a point 𝑥𝑖 ∈ 𝑀,  

sup    𝑓𝑟  𝑑𝑖

𝑟

𝑣 𝜑 𝑑𝜇
𝑀

 , 

where the supermom is taken over some family 𝒯1 𝑥𝑖  of test vector fields 𝜑. In [3] defined in terms of 

atomic decomposition, with an 𝐿1−𝜀-Sobolev space defined by Hajłasz (𝐻1
1) [8], we identified 𝑑𝑓 for 𝑓𝑟 ∈ 𝐻1

1 

with elements of the particulate L (Hardy space) of differential forms defined in [1] and use the usual maximal 

function characterization of 𝐻1 (see [4, 15, 12]). 

Out of order to do this; we need to extend the notion of divergence to a broader class of test vector 

fields. Here we defined a maximal a series functions ∇𝑓𝑟 
+, where the test vector fields were, in a sense, only 

Lipschitz continuous. Furthermore, it was explained that for 𝑓𝑟 ∈ 𝐿loc
1  𝑀 ,  ∇𝑓𝑟 

+ ≤ 𝑁𝑓𝑟 , at every point of 𝑀, 

and therefore a series function 𝑓𝑟  in the homogeneous Hajłasz Sobolev space𝐻 𝐿1−𝜀 , (see [11]) characterized by 

the condition 𝑁𝑓𝑟 ∈ ℒ, also satisfies ∇𝑓𝑟 
+ ∈ ℒ.  

There is difficulty getting the converse, namely, introduce that a series function 𝑓𝑟  with  ∇𝑓𝑟 
+ ∈

𝐿1−𝜀 𝑀  belongs 𝐻 𝐿1−𝜀 , either by controlling 𝑁𝑓𝑟  or via an atomic decomposition. In appointed, when effort to 

do this, the trouble here of writing a given test a series functions 𝜂𝑟 , with 𝜂𝑟 = 0, as the divergence of enough 

smooth vector field of compactness support. In the Euclidean setting, this can be done by a simple well-known 

construction including reprised integration with respect to the coordinates (see [4, 5]) which preserves the 

smoothness with no gain. However, adapting such a construction to a manifold with constants which are 

independent of the local coordinates is not evident. In addition, if one wants to have a gain of derivatives, the 

case of𝜏 − 0, which corresponds to starting with 𝜂𝑟 ∈ 𝐿1 and obtaining a vector field whose components have 

bounded derivatives, is not possible ([18]).  

In Part 2, we define a new Hardy-Sobolev maximal a series functions  ∇𝑓𝑟 
+, which coincides with that 

 ∇𝑓𝑟 
+ used in [2] to define Hardy-Sobolev spaces on Lipschitz domains inℝ𝑛 , and use it to define the 

homogeneous maximal Hardy-Sobolev space 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1 . In Part 3, we compare this space with the homogeneous 
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Hajłasz Sobolev space𝐻 𝐿𝑝 . We showed main result, Theorem (3.4), the proof of that, based on Proposition (4.1) , 

is contained in part 4. 

We work on completeness, non-compactness Riemannian manifold𝑀. With the distance a series 

functions 𝜌𝑟  and the measure 𝜇 (volume) given by the Riemannian ℝ𝑛  structure, we view  𝑀, 𝜌𝑟 , 𝜇  as a metric 

measure space, and use 𝐵 𝑥𝑖 , 𝑠  to denote the metric ball of radius 𝑠 > 0 centered at 𝑥𝑖 ∈ 𝑀. Denote by  ∙,∙ 𝑥𝑖
 the 

Riemannian metric on the tangent space𝛵𝑥𝑖
𝑀, let 𝛵𝑥𝑖

∗ 𝑀 be the cotangent space at 𝑥𝑖 , and 𝑑 the exterior derivative. 

For a smooth a series functions𝑓𝑟 , the gradient ∇𝑓𝑟  can be viewed as the image of the 1-form 𝑑𝑓𝑟  under the 

isomorphism between 𝛵𝑥𝑖
∗ 𝑀 and𝛵𝑥𝑖

𝑀, (see [4, 18]).  

   A series functions will be called Lipschitz continuous, denoted𝑓𝑟 ∈ Lip 𝑀 , if there exists 𝐶 < ∞ such that  

  𝑓𝑟 𝑥𝑖 − 𝑓𝑟 𝑥 𝑖−1   

𝑟

≤  𝐶𝜌𝑟 𝑥𝑖 , 𝑥 𝑖−1  

𝑟

    ∀𝑥𝑖 , 𝑥 𝑖−1 ∈ 𝑀. 

The smallest such constant 𝐶 will be denoted by 𝑓𝑟 Lip . By Lip0 𝑀  we will mean the space of compactly 

supported Lipschitz functions. 

We will assume the measurable 𝜇 on 𝑀 satisfies the following. 

Definition 1.1.  Let 𝐶 > 0, for 𝑀 be a Riemannian manifold, such that for all balls 𝐵 𝑥𝑖 , 𝑠 , 𝑥𝑖 ∈ 𝑀, 𝜎 > 0 we 

have 

𝜇 𝐵 𝑥𝑖 , 2𝜎  ≤ 𝐶𝜇 𝐵 𝑥𝑖 , 𝜎  .                                                    (2) 

Notice that if  𝑀 satisfies (2) then  

dim 𝑀 < ∞  ,   𝜇 𝑀 < ∞. 
Lemma 1.2.  (see [3, 4]) Let 𝑀 be a Riemannian manifold satisfying (2), 𝜏 = 𝑙𝑜𝑔1𝐶2 , 𝜗 ≥ 1. Then for 

all 𝑥𝑖 , 𝑥 𝑖−1  ∈ 𝑀, 

𝜇 𝐵 𝑥𝑖 , 𝜗𝑅  ≤ 𝐶𝜗𝜏𝜇 𝐵 𝑥𝑖 , 𝑅  . 

We show definition concern to Poincare inequality on𝑀. 

Definition 1.3. (see [4]) Let 𝑀 a Riemannian manifold admits a Poincare inequality (2) for some 𝜀 ≥ 0 if there 

exists a constant 𝐶 > 0 such that, for every ball 𝐵 so 𝑠 > 0. 

    𝑓𝑟 −  𝑓𝑟 𝐵 1−𝜀+𝛿𝑑𝜇
𝐵

 

1 (1−𝜀+𝛿 )

𝑟

≤  𝐶𝜎    ∇𝑓𝑟  
1−𝜀+𝛿𝑑𝜇

𝐵

 

1 (1−𝜀+𝛿 )

𝑟

                            (3) 

Whenever 𝑓𝑟  and its distributional gradient ∇𝑓𝑟  are (1 − 𝜀)-integrated on 𝐵.  

 

II. New definition of maximal Hardy – Sobolev Space 

From [4], we define a new Hardy-Sobolev space maximal a series functions. Let us first recall the following 

definition.       

Definition  2 .1. (See [4]).  Let 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
′  𝑀 , we define its great maximal a series functions, that means by  

 ∇𝑓𝑟 
+  as pursued: 

  ∇𝑓𝑟 
+   𝑥𝑖 

𝑟

≔ sup    𝑓𝑟𝜑𝑟𝑑𝜇

𝑟

 ,                                           (4) 

so 𝜑 ∈ Lip0 𝑀  such that for some ball 𝐵 ≔ 𝐵 𝑥𝑖 , 𝑠  includes backing 𝜑, 

     𝜑 ∞ ≤
1

𝜇 𝐵 
,        ∇𝜑 ∞ ≤

1

𝑠𝜇 𝐵 
,                                         (5) 

where 

 𝜑 ∞ ≤ 1. 
Now we define the divergence𝑑𝑖𝑣 𝜓 ∈ 𝐶∞ 𝑀 , by given a smooth vector field 𝜑 with compactness support, so 

that 

   ∇𝑓𝑟 , 𝜑 𝑥𝑖
𝑑𝜇

𝑟𝑀

= −   𝑓𝑟  𝑑𝑖𝑣 𝜓 𝑑𝜇

𝑟𝑀

, 

 and extend this to a locally integrated a series functions 𝑓𝑟  on 𝑀, in order to define ∇𝑓𝑟 , in the sense of dividend, 

wherein (1). If this divisional slope coincides with a measurable vector-field valued a series functions, which we 

again denote by∇(𝑓𝑟), we can take its length in the Riemannian metric, ∇𝑓𝑟  𝑥𝑖
≔  ∇(𝑓𝑟)𝑥 , ∇𝑓𝑟 𝑥𝑖

, and compute the 

semi-norms,    

         

  ∇𝑓𝑟 1+𝛿−𝜀

𝑟

≔     ∇𝑓𝑟  
1+𝛿−𝜀𝑑𝜇

𝑀

 

1 1+𝛿−𝜀 

𝑟

,       𝛿 − 𝜀 ≥ 0. 

  See quantity to 𝜑 and𝜓, so 
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  ∇(𝑓𝑟 
+   𝑥𝑖 

𝑟

≔ sup      ∇𝜑, 𝜓 𝑥𝑖
+ 𝜑 𝑑𝑖𝑣 𝜓 𝑑𝜇

𝑟

 ,                               (6) 

  where𝑠 𝐵  , is the radius of the ball𝐵, we have 

sup 𝜑 ⊂ 𝐵,     𝜑 ∞ ≤
1

𝜇 𝐵 
,    ∇𝜑 ∞ ≤

1

𝑠𝜇 𝐵 
                                     (7)   

Observed to both 𝜑, 𝜓 are smooth, the quantity   ∇𝜑, 𝜓 𝑥𝑖
+ 𝜑 𝑑𝑖𝑣 𝜓 , idealizes the divergence of the product 

𝜑𝜓. See [4, 15, 12] consider fractional derivatives. 

Definition 2.2.   Let𝑔𝑟 ∈ 𝐿∞ 𝜒 , 𝜒 denote to domain in 𝑀, and 𝜓 be a vector field in 𝐿∞ 𝜒, 𝜄𝑀  we say that  in 

the distributional sense if there exists 𝑔𝑟 ∈ 𝐿∞ 𝜒  and 𝜇 𝜒 < ∞, such that  

  𝑓𝑟𝑔𝑟𝑑𝜇

𝑟𝜒

= −    ∇𝑓𝑟 , 𝑔𝑟 𝑥𝑖
𝑑𝜇

𝑟𝜒

,                                       (8) 

 for  all 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  𝑀 , with and its distributional gradient ∇𝑓𝑟   integrable on𝜒. 

 Remarks 2.3.  (i) If 𝑀 is a completeness non-compactness Riemannian manifold satisfying in (2) then 𝜇 𝑀 =

∞ and𝐻 𝐿1−𝜀 ⊂ 𝑆1
1. 

(ii)𝐿𝑚𝑎𝑥
′  𝑀 =  𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐

′  𝑀 :  𝑓𝑟 
+ ∈ 𝐿1−𝜀 𝑀  , when we used lebesgue theorem deduce 𝐿𝑚𝑎𝑥

′  𝑀 ⊂

𝐿1−𝜀 𝑀 . The divergence 𝑑𝑖𝑣 𝜓 ∈ 𝐶∞ 𝑀  so that define, 

   ∇𝑓𝑟 , 𝜓 𝑥𝑖
𝑑𝜇

𝑟𝑀

= −   𝑓𝑟𝑑𝑖𝑣 𝜓 𝑑𝜇

𝑟𝑀

, 

that 

    𝑓𝑟𝑑𝑖𝑣 𝜓 ∞

𝑟

≤
1

𝑠
. 

 (See   [4, 16]). 

 Corollary 2.4.   Once 𝑀  satisfies see Definition 1.3, τ < 0. 

Implies, 

    𝑓𝑟(𝑥) − 𝑓𝑟(𝑥)𝐵 1−𝜖𝑑𝜇
𝐵

 

1 𝜏 

𝑟

≤ 𝐶𝜎     𝛻𝑓𝑟(𝑥) 1−𝜖𝑑𝜇
𝐵

 

1 𝜏 

 , 𝜏 < 0 

𝑟

. 

      The maximal a series functions characterization of the Hardy-Sobolev space 𝐿1−𝜀
′ , shown:  a series functions 

in the Hardy-Sobolev space in order to Euclidean case if its derivatives lie in the real Hardy space𝐿1
′ , in the sense 

that a maximal a series functions of the derivatives is integral. 

   The homogeneous Hardy-Sobolev space 𝐻 𝐿1−𝜀
′  in the Euclidean case includes of all locally integrated a series 

functions (𝑓𝑟)𝑥  such that∇(𝑓𝑟)𝑥 ∈ 𝐿 ℝ , some definitions can be displayed for this. 

 

Definition 2.5.  Let 𝜙 be vector fields, 𝜙 ∈ 𝜂 𝑥𝑖  for some ball 𝐵,𝑠 𝐵  its radius  

𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1 ≔  𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐

1 : 𝑁 ∇𝑓𝑟 ∈ 𝐿 . 

So 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1  denote to maximal homogeneous Hardy-Sobolev space, where 𝑁 ∇(𝑓𝑟)𝑥  is given by 

 𝑁 ∇(𝑓𝑟)𝑥  ∇(𝑓𝑥)𝑥 

𝑟

≔ sup    (𝑓𝑟)𝑥div 𝜙𝑑𝜇

𝑟

 . 

That is𝜙 ∈ 𝐿 𝐵, 𝑇𝑀 , 

 𝜙 ∞ ≤
1

𝜇 𝐵 
,                             𝑁 ∞ ≤

1

𝜎𝜇 𝐵 
. 

We equip this space with the semi-norm 

  𝑓𝑟 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1

𝑟

=   𝑁 ∇𝑓𝑟(𝑥)  𝑥𝑖

𝑟

. 

Note that the definition of 𝑁 ∇𝑓𝑟  coincides with that of the maximal functions series 𝑁 𝑥 𝑓𝑟   used in [8], to 

define Hardy-Sobolev spaces on Lipschitz domains inℝ𝑛 . 

   We control the maximal a series functions  ∇𝑓𝑟 
+ 𝑥𝑖  and incline of 𝑓𝑟  in the Point wise sense. Shown 

following: 

 

Proposition 2.6.  Let 𝑓𝑟 ∈ 𝐿1−𝜀,𝑚𝑎𝑥  𝑀  and  ∇𝑓𝑟 
1 ∈ 𝐿1−𝜀 𝑀  primarily defined by (1), is given by a series 

functions and gratifies, 

  ∇𝑓𝑟  𝑥𝑖

𝑟

≤ 𝐶   ∇𝑓𝑟 
+ 𝑥𝑖 

𝑟

              𝜇 − 𝑎. 𝑒. 𝑥𝑖 . 

Consequently,  
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𝐻 𝐿1−𝜀
′ ⊂ 𝑆1

1, 
with 

  (𝑓𝑟)𝑥 𝑆1
1

𝑟

≤ 𝐶   ∇(𝑓𝑟)𝑥 𝐻 𝐿1−𝜀
′

𝑟

. 

   The non-homogeneous Sobolev space 𝐻𝐿1−𝜀
′  is then defined as the space of 𝑓𝑟  in 𝐿𝜖 𝑀, 𝜇  with 

  ∇(𝑓𝑟)𝑥 𝑥𝑖𝑟 < ∞. Similarly, we can define the homogeneous space 𝐻  by taking only 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  𝑀  

with ∇(𝑓𝑟)𝑥 𝑥𝑖
< ∞, and considering the resulting space modulo constants. Show define the new maximal 

homogeneous Hardy-Sobolev space 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
′  

 

Definition 2.7.  Let 𝑄 is constant for supremum that is 𝜓 ∈ 𝐿∞ 𝐵, 𝜄𝑀  to some𝐵 ≔ 𝐵 𝑄, 𝑠 , follows 

𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1 ≔  𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐

1 : ℳ+ ∇𝑓𝑟 ∈ 𝐿1 , 

where ℳ+ ∇(𝑓𝑟)𝑥  is given by 

 ℳ+ ∇𝑓𝑟  𝑥 

𝑟

≔
sup

𝑄 ∈ 𝑥𝑖
   𝑓𝑟𝑑𝑖𝑣 𝜓 𝑑𝜇

𝑟

 𝑄. 

We equip this space with the semi-norm 

  (𝑓𝑟)𝑥 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
′

𝑟

=   ℳ+ ∇(𝑓𝑟)𝑥  𝑄

𝑟

,      𝑄 ≤ 1. 

In the introduction we have already notice that  ℳ+ ∇(𝑓𝑟)  coincides with that of the maximal series function 

𝑀 1 (𝑓𝑟)  used in [2,4], to define Hardy-Sobolev spaces on Lipschitz domains in ℝ𝑛 . 

 

III. The maximal Hardy-Sobolev space comparison with Haj łasz Sobolev space 

As in the homogeneous case, 𝐻 𝐿1−𝜀
′ ⊂ 𝑆1

1, first we define that on metric measurable space  𝑋, 𝑑1−𝜀 , 𝑚 : 

Definition 3.1.  (Hajłasz). Let𝜖 ≥ 0. The homogeneous Sobolev space 𝐻 𝐿1−𝜀
′   is the set of all a series functions 

𝑢2 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  such that thereexists a measurable a series functions𝜏 ≥ 0, 𝜏 ∈ 𝐿1−𝜀 , satisfying 

  𝑢2 𝑥𝑖 − 𝑢2 𝑥 𝑖−1   ≤ 𝑑   𝑥𝑖 , 𝑥 𝑖−1   𝜏 𝑥𝑖 + 𝜏 𝑥 𝑖−1   ,     𝜏 − 𝑎. 𝑒.                                 (9) 

We equip 𝐻 𝐿1−𝜀
′  with the semi-norm 

 𝑢2 𝐻 𝐿1−𝜀
′ =

inf
𝜏 satisfies(9)

 𝜏 1−𝜀 ,   𝜖 ≤ 0. 

A non-homogeneous version 𝐻 
1−𝜀
1 = 𝐿′ ∩ 𝐻 

1−𝜀
1  can be defined using the norm 𝑢2 𝜏 +  𝑢2 𝐻 1−𝜀

1 . For 𝜏 > 1 these 

spaces can be identified with the usual Sobolev spaces in the Euclidean case , see [8] ,and are part of a more 

general theory of Sobolev spaces on metric-measurable spaces , (see [9] and [10]).  

Hardy-Sobolev spaces on domains in ℝ𝑛  can be defined see [13]. These Hardy spaces can also be characterized, 

as was done in [7], via a type of maximal function used by [6].  

We define this latter maximal function series, which we call a Sobolev sharp maximal a series functions to the 

case of one derivative in ℒ. 

Definition 3.2.  Let 𝑁 𝑓𝑟 , that  𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1 , where 𝑠 𝐵  is the radius of the ball 𝐵, define 𝑁𝑓𝑟  by 

 𝑁(𝑓𝑟) 𝑥𝑖 

𝑟

=
sup 

𝐵: 𝑥𝑖 ∈ 𝐵
1

𝑠 𝐵 
   𝑓𝑟  −   𝑓𝑟 𝐵 𝑑𝜇

𝑟𝐵

. 

The above definition is makes sense in any metric-measurable space.  

Theorem 3.3.  Let 𝜇 is the doubling measurable and 𝑚 denote metric on a metric space, cf [11]. 

𝐻1𝐿1−𝜀 =  𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1 : 𝑁𝑓𝑟 ∈ ℒ , 

with 

 𝑓𝑟 𝐻1𝐿1−𝜀
∼  𝑁𝑓𝑟 1 . 

As 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  and 𝑁(𝑓𝑟) ∈ ℒ then (𝑓𝑟)𝑥  satisfies 

  𝑓𝑟 𝑥𝑖 − 𝑓𝑟 𝑥 𝑖−1   

𝑟

≤ 𝐶𝑚   𝑥𝑖 , 𝑥 𝑖−1   𝑁𝑓𝑟 𝑥𝑖 + 𝑁𝑓𝑟 𝑥 𝑖−1   

𝑟

                           (10) 

     We have the following theorem. 

Theorem 3.4.  For 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1 , at every point of 𝑀, that 

 ℳ+ ∇𝑓𝑟 

𝑟

≤  𝑁𝑓𝑟

𝑟

.                                                         (11) 

Therefore 

𝐻1𝐿1−𝜀 ⊂ 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1 , 

with 
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  (𝑓𝑟)𝑥 𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1

𝑟

≤ 𝐶   (𝑓𝑟)𝑥 𝐻 𝐿1−𝜀

𝑟

, 

then 

ℳ+ ∇𝑓𝑟 ≈ 𝑁𝑓𝑟  

and 

𝐻 𝐿1−𝜀,𝑚𝑎𝑥
1 = 𝐻 𝐿1−𝜀 . 

 

IV. Proof of Theorem 3.4: 
Let 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐

1  and 𝑥𝑖 ∈ 𝑀. Take 𝜓 ∈ 𝒯1 𝑥𝑖  as in Definition 2.7, associated to a ball 𝐵 containing𝑥𝑖 .  

  𝑓𝑟𝑑𝑖𝑣 𝜓 𝑑𝜇

𝑟

= 0. 

So we can write 

   𝑓𝑟div 𝜓 𝑑𝜇

𝑟

 =     𝑓𝑟 −  𝑓𝑟 𝐵 div 𝜓 𝑑𝜇

𝑟𝐵

 

≤
1

𝑠𝜇 𝐵 
   𝑓𝑟 −  𝑓𝑟 𝐵 𝑑𝜇

𝑟𝐵

≤  𝑁𝑓𝑟 𝑥𝑖 

𝑟

. 

Here 𝑠 is the radius of 𝐵.Taking the supremum over all such𝜓. We get (11). 

We proceed now to the proof of the reverse inequality. For this we will need the following. 

 

Proposition 4.1. Let 𝑀 is a complete Riemannian manifold satisfying (1) and (2). Let 𝐵 a ball of 𝑀, 

𝑔𝑟 ∈ 𝐿0
∞ 𝐵 ≔  𝑔𝑟 ∈ 𝐿∞ 𝐵 :  𝜏𝑑𝜇 = 0

𝐵

 . 

Then there exists 𝜓 ∈ 𝐿∞ 𝐵, 𝑇𝑀  such that div 𝜓 = 𝑔𝑟 , 
Holds in the sense of Definition 2.2 (with𝜒 = 𝐵), and  𝜓 ∞ ≤ 𝐶𝑠 𝑔𝑟 ∞ . 
Where 𝐶 is the constant appearing in (2) and is independent of 𝐵 and𝜀. Before proving the proposition, we 

conclude the proof of Theorem 3.4. Again take 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1 ,  𝑥𝑖  ∈ 𝑀 and 𝐵 a ball of radius  𝑠 containing 𝑥𝑖 . If 

𝑔𝑟 ∈ 𝐿0
∞ 𝐵 ,  𝑔𝑟 ∞ ≤ 1 and we solve div 𝜓 = 𝑔𝑟  with 𝜓 as in Proposition 4.1, then, 

𝜓 ≔
𝜓

𝐶𝑠𝜇 𝐵 
∈ 𝒯1 𝑥𝑖 , 

and 

   𝑓𝑟  𝑔𝑟  𝑑𝜇

𝑟𝐵

 =    𝑓𝑟div 𝜓 𝑑𝜇

𝑟𝐵

 = 𝐶𝜎𝜇 𝐵    (𝑓𝑟)𝑥div  𝜓  𝑑𝜇

𝑟𝐵

 , 

thus 
1

𝑠𝜇 𝐵 
   𝑓𝑟 −  (𝑓𝑟)𝑥 𝐵 𝑑𝜇

𝑟𝐵

=
1

𝑠𝜇 𝐵 
sup

𝜏 ∈ 𝐿0
∞ 𝐵 ,  𝜏 ∞ ≤ 1

   (𝑓𝑟)𝑥  𝜏 𝑑𝜇

𝑟𝐵

 

≤ 𝐶 sup

𝜓 ∈ 𝒯1 𝑥𝑖 

   (𝑓𝑟)𝑥div  𝜓  𝑑𝜇

𝑟

 

= 𝐶  ℳ+ ∇(𝑓𝑟)𝑥  𝑥𝑖 

𝑟

. 

Taking the supermom on the left over all balls 𝐵 containing𝑥𝑖 , we get 𝑁(𝑓𝑟)𝑥 𝑥𝑖 ≤ 𝐶ℳ+ ∇(𝑓𝑟)𝑥  𝑥𝑖 .  

 

Proof of Proposition 4.1.   Let 𝐵 be a ball and 𝜏 ∈ 𝐿0
∞ 𝐵 .Consider 

𝑕 ≔  ℋ ∈ ℒ 𝐵, 𝑇𝑀 : ∃ 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  𝑀 , ℋ = ∇(𝑓𝑟)𝑥    on 𝐵 . 

We view 𝑕 as a subspace of ℒ 𝐵, 𝑇𝑀  with the norm 

 ℋ ℒ 𝐵,𝑇𝑀 =   𝑕 𝑥𝑖
 𝑑𝜇

𝐵

. 

Define a linear functional on 𝑕 by 

Λ ℋ = −   𝑔𝑟𝑓𝑟𝑑𝜇

𝑟𝐵

    if  ℋ = ∇𝑓𝑟 ∈ 𝑕. 

Λ Is well defined since  𝜏𝑑𝜇
𝐵

= 0 and is bounded on 𝑕 thanks to the Poincare inequality (2), 
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  Λ ℋ  =    𝑔𝑟 𝑓𝑟 −  𝑓𝑟 𝐵 𝑑𝜇

𝑟𝐵

 ≤ 𝐶𝜎   𝑔𝑟 ∞

𝑟

   ∇𝑓𝑟  𝑑𝜇

𝑟𝐵

= 𝐶𝜎   𝑔𝑟 ∞ ℋ ℒ 𝐵,𝑇𝑀 

𝑟

. 

The Hahn-Banach theorem shows that Λ can be extended to a bounded linear functional on ℒ 𝐵, 𝑇𝑀  with norm 

no greater than 𝐶𝜎 𝑔𝑟 ∞ . By duality, there exists a vector field 𝜓 ∈ ℒ∞ 𝐵, 𝑇𝑀  such that 

   𝜓, ∇𝑓𝑟 𝑥𝑖
𝑑𝜇

𝑟𝐵

=  Λ ∇𝑓𝑟 

𝑟

= −   𝑔𝑟𝑓𝑟𝑑𝜇

𝑟𝐵

. 

For all 𝑓𝑟 ∈ 𝐿1−𝜀,𝑙𝑜𝑐
1  𝑀  for which∇𝑓𝑟 ∈ ℒ 𝐵, 𝑇𝑀 . By Definition 2.2, this means div 𝜓 = 𝑔𝑟  on𝐵. Moreover 

 𝜓 ∞ ≤ 𝐶𝜎   𝑔𝑟 ∞

𝑟

. 
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