Optimal Service Control in a Discrete Time Service Facility System with Inventory

Selvakumar, C. ${ }^{1}$, Elango, C. ${ }^{2}$
1,2 Cardamom Planters' Association College, Bodinayakanur- 625513. Corresponding Auther: Selvakumar, C

Abstract

In this article we considered a service facility system with inventory maintained for service completion. Number of customers arrival and service completion follow a general distributions $f(\cdot)$ and $g(\cdot)$ respectively. Assume that the arriving customers enter the server are else if it inside join the queue. Demands occurs throughout the period and $(0, M)$ policy is adopted for replenishing of inventory with zero lead time. At each decision epoch, the controller observes the number of customers in the system and selects the service rate from the set of probability distributions with service rate parameter. The problem is formulated as a MDP and policy iteration algorithm is used to get optimal policy. Numerical examples are provided to enhance the insight into the problem domain. And simulations are studied to compare the system with general queuing system.

Keywords (11Bold) Discrete time Markov Decision Process, inventory management, , service control, Service facility system

Date of Submission: 18-05-2018
Date of acceptance: 04-06-2018

I. INTRODUCTION

The introduction of the paper should explain the nature of the problem, previous work, purpose, and the The control of customers arrival / and service rates in a single queue service facility is well studied in the last decades. Although this assumption is realistic for production/manufacturing industries, it becomes unrealistic for service facilities where inventory is necessary to perform the service. In such systems, inventory is depleted according to the demand rate when there are no customers waiting and according to the service rate when there are customers queued up for service. Examples where inventory is used in the provision of service include installing car tires at car service stations.

Modelling of inventory systems maintained at a service facility has received considerable attention in the last two decades. Berman et al. (1999) [2] introduced the concept of deterministic inventory management system with a service facility using one item of inventory for each service.

Berman and sapna (1998) [5,6] analyzed a problem in a stochastic environment where customers arrive at service facilities according to a Poisson process. The service times are exponentially distributed with mean inter-arrival time assumed to be larger than the mean service time. The optimal policy is derived given that the order quantity is known. A logically related model has been studied by He et al. (1998) [5], who analyzed a Markovian inventory production system.

Berman and Kim (1999) [2] analyzed the problem in a stochastic environment where customers arrive at service facilities according to a Poisson process and service times are exponentially distributed. The paper deals with the case of lead time that is Erlang-distributed. The main result of the papers is that, under both the discounted cost case and the average cost case, the optimal policy of both the finite and infinite time horizon problems is a threshold ordering policy. In their papers, optimal policies to are derived given that the order quantity is known. They suggested a simple heuristic to obtain the optimal order quantity. Berman and Sapna $(2000,2001)[5,6]$ dealt with inventory control problems at service facilities where customers arrive for service according to a Poisson process and there is a finite waiting space having capacity N (an arriving customer who sees N customers ahead is forced to balk). Berman Sapna (2000) [3] considered a system where items in inventory have infinite lifetimes and service times are independently and identically distributed random variables with a general distribution function. The objective of that paper was to determine the optimal stocking level S that minimizes the long-run expected cost function when lead times are zero. The problem of determining the service rates to be employed as a function of the inventory level and number of customers in the system when service times and lead times have exponential distribution and lifetime is infinite is presented in Berman Sapna (2001). Selvakumar. C et al., and Maheswari. P et al., (2017) [6,8] are deals with Discrete MDP problem with Admission and Inventory Control in Service Facility Systems and Optimal Admission and Service Control in a Discrete time Service Facility Systems: MDP Approach and

In their paper, they try to control both the admission and service in a service facility system under periodic review (equally spaced time epochs). The queue before the server is divided into eligible queue and potential queue. Here, we use policy iteration method to optimize the expected total reward. In the last section a numerical example is provided to illustrate the model

In this paper we deal with a system having service facility system with inventory maintained for service completion. We assume that customers arrive according to a general probability distribution to the facility which has unlimited waiting space. There is no lead time for orders and customers are served on an FCFS basis. Our objective is to determine optimal mean service times (or optimal service rates) to be employed each time a customer finishes service for a general service probability distribution. These decisions are based on the number of customers in the system.

The paper is organized as follows. Section 2 presents the model description. Section 3 contains the MDP formulation, Section 4 description of the analysis, Section 5 deals with cost analysis, Section 6 contains cost analysis, Section 7 present the policy iteration algorithm and Section 8 deals with numerical examples and also sensitively analysis and system simulation results.

II. MODEL DESCRIPTION

(i) The system is observed every $\eta>0$ unit of time and the decision epochs are $0, \eta, 2 \eta, \ldots, \mathrm{U} \eta, U<\infty$ (Finite horizon).
(ii) Service is controlled by selecting the service rate from the set of probability mass functions indexed by elements of a set B , depends on the number of customers in the system. ($B=\left\{b_{1}, b_{2}, \cdots b_{r}\right\}$).
(iii) Assume that the maximum capacity of inventory is M (finite).
(iv) Arriving customers to service facility system follows a probability mass function $f(\cdot)$ Possible number of service completion follows a probability mass functions $g_{b}(\cdot)$
(v) All serviced customers take unit item from inventory and depart the system at end of the period.
(vi) The arrivals during a period do not receive service in that period (arrival at period ' t ') $Z(t)$ get service only a period ' $t+1$ '.
(vii) The $(0, \mathrm{M})$ policy is adopted for replenishing inventory instantaneous replenishment when the inventory level 0 at the decision epoch is for the sufficient quantity to pull back the level to M, else don't order.
(viii) Decision to order additional stock is made at the beginning of each period and delivery occurs instantaneously.

III. MDP FORMULATION

We consider the problem as MDP having five components (tuples) $\left(T, S, A_{s}, \mathrm{p}_{t}(\cdot \mid), r_{t}()\right)$

Decision Epochs:

$$
T=\{0, \eta, 2 \eta, \ldots, \mathrm{U} \eta\}, U<\infty
$$

State space:

S_{1} - the number of customers in the system
S_{2} - the number of items in stock
$S_{3^{-}}$possible service rate.
State space $-S=\{0,1,2, \ldots\} \times\{0,1,2, \ldots, M\} \times B=S_{1} \times S_{2} \times S_{3}$,
Actions: $A_{\left(s_{1}, s_{2}, s_{3}\right)}=B=\left\{b_{1}, b_{2}, \cdots, b_{r}\right\}$

Transition Probability:

$p_{t}\left(\left(\mathrm{~s}, \mathrm{a}^{\prime}\right) \mid(\mathrm{s}, \mathrm{a}), \mathrm{a}^{\prime}\right)=\sum_{n=1}^{s_{1}-1} \mathrm{~g}_{a^{\prime}}(\mathrm{n}) \mathrm{g}\left(s_{1}{ }^{\prime}-s_{1}+n\right)+\left[\sum_{n=s_{1}}^{\infty} \mathrm{g}_{a^{\prime}}(\mathrm{n})\right] \mathrm{f}\left(s_{1}{ }^{\prime}\right)$. where $s=\left(s_{1}, s_{2}, s_{3}\right), \quad s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right)$.

Cost:

$c_{t}\left(s, a^{\prime}\right)=l\left(s_{1}\right)+h\left(s_{2}\right)+c\left(a, a^{\prime}\right), \quad a^{\prime} \in A=\bigcup_{s \in S} A_{s}, \quad s=\left(s_{1}, s_{2}, s_{3}\right)$.
$\mathrm{c}\left(\mathrm{a}^{\prime}, \mathrm{a}\right)=\left\{\begin{array}{ll}K+d\left(\mathrm{~b}^{\prime}\right) & b^{\prime} \neq b \\ d(\mathrm{~b}) & b^{\prime}=b\end{array}\right.$.
The stationary cost structure consist of three components: a waiting cost $l\left(s_{1}\right)$ per period when there are S_{1} customers in the system and an expected holding cost $h\left(s_{2}\right)$ per period when there are S_{2} items in inventory and fixed cost K for changing the service rate and service cost $\mathrm{d}(\mathrm{b})$ for current server $b \in B$ per period.

IV. ANALYSIS

Let X_{t} denote the number of customer in the system immediately prior to the decision epoch t and Z_{t} is the number of customers arrive in the time t are placed in the system. Let B denote the set of possible service parameter values. Let Y_{t} denote the number of "possible service completions" during period t. Let I_{t} denote the number of items in stock at time epoch t.The random variable Y_{t} assume non-negative integer values and follows a time invariant probability mass function $g_{b}(n)=\operatorname{Pr}\left\{Y_{t}=n\right\}, t=0,1,2, \ldots, \mathrm{U}$ and Z_{t} assumes a non-negative values which follows a time invariant probability distribution $\mathrm{f}(n)=\operatorname{Pr}\left\{Z_{t}=n\right\}, t=0,1,2, \ldots, \mathrm{U}$.

The number of customers in the system $X_{t+1}=\left[X_{t}-Y_{t}\right]^{+}+Z_{t}$
The one step costs are given by, $c_{t}(s, a), s=\left(s_{1}, s_{2}, s_{3}\right)$.
Let $\left(X_{t}, \mathrm{I}_{t}, B_{t}\right)$ denote the state of the system of decision epoch t (beginning of $t^{\text {th }}$ period). Assume the stationary policy R and hence the transition probability
$p_{t}\left(s^{\prime} \mid \mathrm{s}, a\right)=\operatorname{Pr}\left\{\left(X_{t+1}, \mathrm{I}_{t+1}, B_{t+1}\right)=s^{\prime} \mid\left(X_{t}, \mathrm{I}_{t}, B_{t}\right)=s, a\right\}, \quad s^{\prime}=\left(s_{1}^{\prime}, s_{2}^{\prime}, \mathrm{s}_{3}^{\prime}\right), s=\left(s_{1}, s_{2}, s_{3}\right)$.
regardless the past history of the system up to time epoch t.
Then $\left\{\left(X_{t}, I_{t}, B_{t}\right): t \geq 0\right\}$ is a Markov chain with discrete state space $S=S_{1} \times S_{2} \times S_{3}$ The t - step transition probabilities of the Markov chain under policy R is given by $p_{t}\left(s^{\prime} \mid \mathrm{s}\right)(R)=\operatorname{Pr}\left\{\left(X_{t}, \mathrm{I}_{t}, B_{t}\right)=s^{\prime} \mid\left(X_{0}, \mathrm{I}_{0}, B_{0}\right)=s\right\}, \quad s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, \mathrm{s}_{3}^{\prime}\right), s=\left(s_{1}, s_{2}, s_{3}\right)$.

Define $V_{t}(s, R), s=\left(s_{1}, s_{2}, s_{3}\right)$ denote the total expected cost over the first t decision epochs with initial state $\left(s_{1}, s_{2}, s_{3}\right)$ and policy R is adopted.
Then $V_{t}(\mathrm{~s}, \mathrm{R})=\sum_{k=0}^{t-1} \sum_{s^{\prime} \in S} p^{(k)}\left(s, s^{\prime}\right)(R) c_{s^{\prime}}\left(R_{s^{\prime}}\right), \quad s^{\prime}=\left(s_{1}^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right), s=\left(s_{1}, s_{2}, s_{3}\right)$
where , $C_{s}(R)=$ waiting cost of customer/period + holding cost of inventory/period + service cost per period.
$=l \times \bar{L}+h \times \bar{I}+c_{1} \cdot \bar{\alpha}$
Where
1- waiting cost per customer per period
\bar{L} _ the number of customers in the system +1 in service counter
h - holding cost unit item per period
\bar{I} _ average inventory in stock during the $t^{\text {th }}$ period
c_{1} - service rate cost using server $b \in B$.
$\bar{\alpha}$, the current service rate.

V. COST ANALYSIS

AThe average cost function $q_{s}(R)$ is given by $q_{s}(R)=\lim _{t \rightarrow \infty} \frac{1}{t} V_{t}(\mathrm{~s}, \mathrm{R}),\left(s_{1}, s_{2}, s_{3}\right) \in S$. The elements of the above average cost function is due to the Theorem (Puterman (1994) \& Tijims (2003)).

Theorem 5.1

For all $s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right), s=\left(s_{1}, s_{2}, s_{3}\right) \in S, \lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=1}^{t} p_{t}^{(k)}\left(s^{\prime} \mid s\right)(R)$ always exists and for any $s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right) \in \mathrm{S}$.
$\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=1}^{t} p^{(k)}\left(s^{\prime} \mid s\right)=\left\{\begin{array}{rll}\frac{1}{\mu_{s^{\prime}}} & \text { if } & \text { state } s^{\prime} \text { is recurrent } \\ 0 & \text { if } & \text { state } s^{\prime} \text { is transient. }\end{array}\right.$
Where $\mu_{s}{ }^{\prime}$ denote the mean recurrent time from state $\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right)$ to itself.
Also $\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=1}^{t} p^{(k)}\left(s^{\prime} \mid s\right)=f_{(s)}^{\left(s^{\prime}\right)} \lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=1}^{t} p_{t}^{(\mathrm{k})}\left(s^{\prime}\right), \quad s=\left(s_{1}, s_{2}, s_{3}\right), s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right)$.
Since the Markov Chain $\left\{\left(X_{t}, \mathrm{I}_{t}, B_{t}\right): t=0,1,2, \ldots, \mathrm{U}\right\}$ is a unichain which is irreducible, all its states are ergodic and have a unique equilibrium distribution.
Thus, $\pi_{\left(s^{\prime}\right)}(R)=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{k=1}^{t} p^{(k)}\left(s^{\prime} \mid s\right)(R), \quad s=\left(s_{1}, s_{2}, s_{3}\right), s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right)$, exist and is independent of initial state, such that $\pi P=\pi$ and $\sum_{s \in S} \pi_{(s)}=1$.

VI. OPTIMAL POLICY

A stationary policy $R *$ is said to be an average cost optimal policy if $q_{s_{1}, s_{2}}\left(R^{*}\right) \leq q_{s_{1}, s_{2}}(R)$ for each stationary policy R uniformly in the initial state $\left(s_{1}, s_{2}, s_{3}\right)$.

The relative value associated with a given policy R provides a tool for constructing a new policy R^{*} whose average cost is more than that of the current policy R.

The objective is to improve the given policy R whose average cost is $q(R)$ and relative value $v_{\left(s_{1}, s_{2}, s_{3}\right)}(R),\left(s_{1}, s_{2}, s_{3}\right) \in S$.

By constructing a new policy R such that for each $\left(s_{1}, s_{2}, s_{3}\right) \in S$,

$$
\begin{equation*}
c_{(s)}\left(R_{s}{ }^{*}\right)-q(R)+\sum_{s^{\prime} \in S} p_{\left(s, s^{\prime}\right)}\left(R_{s} *\right) v_{s^{\prime}} \leq v_{s} \ldots \ldots \ldots \ldots \ldots . \tag{1}
\end{equation*}
$$

Where $s=\left(s_{1}, s_{2}, s_{3}\right)$ and $s^{\prime}=\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s_{3}{ }^{\prime}\right)$.
We obtain an improved rule R^{*} with $q\left(R^{*}\right) \leq q(R)$. We have to find the optimal policy R_{s}^{*} satisfying (1) is to minimize the cost functions $c_{i}(a)-\mathrm{q}(R)+\sum_{s^{\prime} \in S} p_{t}\left(s^{\prime} \mid \mathrm{s}, \mathrm{a}\right) v_{s^{\prime}}(R)$ over all actions $a \in A(s)$.

VII. ALGORITHM

a Step 0: (Initialization)

Choose a stationary policy R for the periodic review based admission control in service facility system maintaining inventory.

Step 1: (Value determination step)

For the current policy R, compute the unique solution $\left(q(R), \mathrm{v}_{s}(R)\right)$ to the following linear equations $v_{s}=c_{s}\left(R_{s}\right)-q+\sum_{s^{\prime} \in S} p_{t}\left(s^{\prime} \mid \mathrm{s}\right)\left(R_{s}\right) v_{s}{ }^{\prime}, \quad s=\left(s_{1}, s_{2}, s_{3}\right) \in S$, $v_{s}=0$, where $s=\left(s_{1}, s_{2}, s_{3}\right)$ is arbitarily chosen state in S

Step 2:(Policy Improvement)

For each state $s=\left(s_{1}, s_{2}, s_{3}\right) \in S$ determine the actions yielding
$\arg \min _{a \in A_{s}}\left\{c_{s}(a)-q+\sum_{s^{\prime} \in S} p_{t}\left(s^{\prime} \mid \mathrm{s}, \mathrm{a}\right) v_{s}{ }^{\prime}(R)\right\}$
The new stationary policy R^{*} is obtained by choosing $R_{s}^{*}=a_{s}$.

Step 3:(Convergence test)

If the new policy $R^{*}=R$, the old one. Then the process of searching stops with policy
R. Otherwise go to Step 1 with R replaced by new $R *$.

VIII. NUMERICAL EXAMPLE

For the given service facility system with inventory we assume, $M=3, K=2$. We have infinite capacity of the system, truncating we take $\mathrm{N}=3, \eta=1$ The state space become
$S=\left\{\left(3,3, b_{1}\right),\left(3,3, b_{2}\right),\left(3,2, b_{1}\right),\left(3,2, b_{2}\right),\left(3,1, b_{1}\right),\left(3,1, b_{2}\right),\left(3,0, b_{1}\right),\left(3,0, b_{2}\right)\right.$,
$\left(2,3, b_{1}\right),\left(2,3, b_{2}\right),\left(2,2, b_{1}\right),\left(2,2, b_{2}\right),\left(2,1, b_{1}\right),\left(2,1, b_{2}\right),\left(2,0, b_{1}\right),\left(2,0, b_{2}\right)$,
$\left(1,3, b_{1}\right),\left(1,3, b_{2}\right),\left(1,2, b_{1}\right),\left(1,2, b_{2}\right),\left(1,1, b_{1}\right),\left(1,1, b_{2}\right),\left(1,0, b_{1}\right),\left(1,0, b_{2}\right)$,
$\left.\left(0,3, b_{1}\right),\left(0,3, b_{2}\right),\left(0,2, b_{1}\right),\left(0,2, b_{2}\right),\left(0,1, b_{1}\right),\left(0,1, b_{2}\right),\left(0,0, b_{1}\right),\left(0,0, b_{2}\right)\right\}$.

u	0	1	2	3
$\mathrm{c}(\mathrm{u})-$ Server b_{1}	0	0.3	0.6	0.9
$\mathrm{c}(\mathrm{u})-$ Server b_{2}	0	0.5	0.8	1.1

Action set at $\left(s_{1}, s_{2}, s_{3}\right) \in S$ is $\mathrm{A}_{\left(s_{1}, s_{2}, s_{3}\right)}=\left\{b_{1}, b_{2}\right\}$. Assume the service cost $c=1$ for each service completion per customer, waiting cost $l=0.3$ per customer/ period, holding cost $h=0.35$ per item/ period and a fixed cost $K=0.25$ per period for changing service rate .

Computational Procedure:

For any given policy R, the policy improvement quantity is given by
$T_{s}(\mathrm{a}, R)=c_{s}(a)-q(R)+\sum_{s^{\prime} \in S} p_{t}\left(s^{\prime} \mid s\right)(a) v_{s^{\prime}}(a)$ where $T_{s}(\mathrm{a}, R)=v_{s}(R)$ for $a=R_{s}$.

Iteration 1:

Policy iteration algorithm is initialized with
$R^{(1)}=(2,2,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2)$, which prescribes the adjust must in service rate at states $\left(3,3, b_{1}\right)$ and $\left(3,0, b_{1}\right)$. Solving the system of linear equations connecting the average reward $q(R)^{(1)}$ by assuming $v_{0 i j}, i=0,1,2,3, j=1,2$.

$\mathrm{C}_{\mathrm{s}}\left(\mathrm{a}, \mathrm{R}^{(1)}\right)$		
s a	b_{1}	$\mathrm{~b}_{2}$
$\left(3,3, \mathrm{~b}_{1}\right)$	3.351502286	3.30
$\left(3,3, \mathrm{~b}_{2}\right)$	3.10	3.084276679
$\left(3,2, \mathrm{~b}_{1}\right)$	2.542491232	2.65
$\left(3,2, \mathrm{~b}_{2}\right)$	2.45	2.400842879
$\left(3,1, \mathrm{~b}_{1}\right)$	1.780958981	2.00
$\left(3,1, \mathrm{~b}_{2}\right)$	1.80	1.701506139
$\left(3,0, \mathrm{~b}_{1}\right)$	3.396588325	3.30
$\left(3,0, \mathrm{~b}_{2}\right)$	3.10	3.002413557
$\left(2,3, \mathrm{~b}_{1}\right)$	2.400454858	2.70
$\left(2,3, \mathrm{~b}_{2}\right)$	2.50	2.460476430
$\left(2,2, \mathrm{~b}_{1}\right)$	2.194519635	2.35
$\left(2,2, \mathrm{~b}_{2}\right)$	2.15	2.033691383
$\left(2,1, \mathrm{~b}_{1}\right)$	1.537179235	1.70
$\left(2,1, \mathrm{~b}_{2}\right)$	1.50	1.333691383
$\left(2,0, \mathrm{~b}_{1}\right)$	2.766875577	3.00
$\left(2,0, \mathrm{~b}_{2}\right)$	2.80	2.695904824
$\left(1,3, \mathrm{~b}_{1}\right)$	1.811481561	2.10
$\left(1,3, \mathrm{~b}_{2}\right)$	1.90	1.7009043695
$\left(1,2, \mathrm{~b}_{1}\right)$	1.500953582	1.75
$\left(1,2, \mathrm{~b}_{2}\right)$	1.55	1.506352846
$\left(1,1, \mathrm{~b}_{1}\right)$	1.059369225	1.40
$\left(1,1, \mathrm{~b}_{2}\right)$	1.20	1.106352846
$\left(1,0, \mathrm{~b}_{1}\right)$	2.045976416	2.10
$\left(1,0, \mathrm{~b}_{2}\right)$	1.90	2.074673268

The new policy will be $R^{(2)}=(2,2,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,2)$. Since the new policy $R^{(2)}$ is different from the initial policy $R^{(1)}$ the searching process continues.

Iteration 2:

For the policy $R^{(2)}$, Solving the system of linear equations connecting the average reward $q(R)^{(2)}$ by assuming $v_{0 i j}, i=0,1,2,3, j=1,2$.

$\mathrm{C}_{\mathrm{s}}\left(\mathrm{a}, \mathrm{R}^{(2)}\right)$		
$\mathrm{s} \backslash \mathrm{a}$	b_{1}	$\mathrm{~b}_{2}$
$\left(3,3, \mathrm{~b}_{1}\right)$	3.389267505	3.30
$\left(3,3, \mathrm{~b}_{2}\right)$	3.10	3.075673894
$\left(3,2, \mathrm{~b}_{1}\right)$	2.438972767	2.65
$\left(3,2, \mathrm{~b}_{2}\right)$	2.45	2.387627326
$\left(3,1, \mathrm{~b}_{1}\right)$	1.894774765	2.00
$\left(3,1, \mathrm{~b}_{2}\right)$	1.80	1.687988933
$\left(3,0, \mathrm{~b}_{1}\right)$	3.468223901	3.30
$\left(3,0, \mathrm{~b}_{2}\right)$	3.10	2.903675821
$\left(2,3, \mathrm{~b}_{1}\right)$	2.568738723	2.70
$\left(2,3, \mathrm{~b}_{2}\right)$	2.50	2.289837437
$\left(2,2, \mathrm{~b}_{1}\right)$	2.297875348	2.35
$\left(2,2, \mathrm{~b}_{2}\right)$	2.15	1.995343366
$\left(2,1, \mathrm{~b}_{1}\right)$	1.468787292	1.70
$\left(2,1, \mathrm{~b}_{2}\right)$	1.50	1.283774387
$\left(2,0, \mathrm{~b}_{1}\right)$	2.837645747	3.00
$\left(2,0, \mathrm{~b}_{2}\right)$	2.80	2.557887328
$\left(1,3, \mathrm{~b}_{1}\right)$	1.783643676	2.10
$\left(1,3, \mathrm{~b}_{2}\right)$	1.90	1.797837837
$\left(1,2, \mathrm{~b}_{1}\right)$	1.693493093	1.75
$\left(1,2, \mathrm{~b}_{2}\right)$	1.55	1.458384939
$\left(1,1, \mathrm{~b}_{1}\right)$	1.239998839	1.40
$\left(1,1, \mathrm{~b}_{2}\right)$	1.20	1.007374837
$\left(1,0, \mathrm{~b}_{1}\right)$	1.997743873	2.10
$\left(1,0, \mathrm{~b}_{2}\right)$	1.90	2.286674677

Since
the
new
policy
will
be
$R^{(3)}=(2,2,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,2)$. which is identical with the previous $R^{(2)}$ policy, the searching process stops here. After two iterations we obtained the optimal policy $R^{*}=(2,2,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,2)$.

Simulation Result

Total Expected cost		(Mean waiting	Service rate									
		cost, Mean service cost)	1	2	3	4	5	6	7	8	9	10
5		(0.1, 0.3, 0.1)	19.008	14.986	10.887	7.216	6.471	6.965	7.670	8.512	9.434	10.376
		(0.1, 0.6, 0.1)	31.860	24.254	16.515	9.510	7.511	7.635	8.120	8.844	9.706	10.604
		(0.1, 0.9, 0.1)	44.711	33.522	22.143	11.804	8.551	8.304	8.571	9.177	9.979	10.832
		(0.1, 1.2, 0.1)	57.563	42.789	27.770	14.098	9.591	8.973	9.022	9.510	10.251	11.060
		(0.1, 1.5, 0.1)	70.415	52.057	33.398	16.392	10.632	9.643	9.473	9.842	10.524	11.288
		(0.1, 1.8, 0.1)	83.267	61.324	39.026	18.686	11.672	10.312	9.924	10.175	10.796	11.516
6		(0.1, 0.3, 0.1)	19.484	16.591	13.213	10.159	7.460	7.359	7.922	8.649	9.466	10.379
		(0.1, 0.6, 0.1)	32.854	27.160	20.633	14.662	9.301	8.399	8.639	9.163	9.843	10.690
		(0.1, 0.9, 0.1)	46.224	37.730	28.052	19.164	11.141	9.439	$\underline{9.356}$	9.677	10.219	11.001
		(0.1, 1.2, 0.1)	59.594	48.299	35.472	23.666	12.981	10.480	10.072	10.191	10.596	11.311
		(0.1, 1.5, 0.1)	72.965	58.868	42.891	28.169	14.821	11.520	10.789	10.704	10.973	11.622
		(0.1, 1.8, 0.1)	86.335	69.438	50.311	32.671	16.661	12.560	11.506	11.218	11.350	11.932
7		(0.1, 0.3, 0.1)	19.729	17.698	14.949	12.342	10.031	8.227	8.350	8.964	9.712	10.529
		(0.1, 0.6, 0.1)	33.355	29.130	23.667	18.451	13.743	9.907	9.391	9.717	10.275	10.955
		(0.1, 0.9, 0.1)	46.982	40.562	32.386	24.560	17.455	11.588	10.431	10.470	10.839	11.382
		(0.1, 1.2, 0.1)	60.608	51.995	41.105	30.669	21.168	13.268	11.471	$\underline{11.222}$	11.403	11.808
		(0.1, 1.5, 0.1)	74.234	63.427	49.823	36.778	24.880	14.949	12.512	11.975	11.967	12.235
		(0.1, 1.8, 0.1)	87.860	74.859	58.542	42.886	28.592	16.630	13.552	12.728	$\underline{12.531}$	12.661
	8	(0.1, 0.3, 0.1)	19.854	18.504	16.324	14.108	12.078	10.195	$\underline{9.064}$	9.344	9.997	10.763
		(0.1, 0.6, 0.1)	33.630	30.573	26.080	21.528	17.295	13.316	10.632	10.384	10.778	11.367
		(0.1, 0.9, 0.1)	47.407	42.642	35.837	28.947	22.512	16.437	12.201	$\underline{11.425}$	11.559	11.972
		(0.1, 1.2, 0.1)	61.183	54.711	45.593	36.366	27.729	19.558	13.769	12.465	12.339	12.577
		(0.1, 1.5, 0.1)	74.960	66.779	55.350	43.786	32.945	22.680	15.338	13.505	$\underline{13.120}$	13.182
		(0.1, 1.8, 0.1)	88.737	78.848	65.106	51.205	38.162	25.801	16.907	14.546	13.901	$\underline{13.787}$
	9	(0.1, 0.3, 0.1)	19.942	19.043	17.392	15.432	13.662	12.074	10.547	$\underline{9.949}$	10.339	11.023
		(0.1, 0.6, 0.1)	33.830	31.547	27.961	23.843	20.052	16.577	13.205	11.438	$\underline{11.380}$	11.826
		(0.1, 0.9, 0.1)	47.718	44.050	38.530	32.254	26.442	21.079	15.863	12.928	12.420	12.630
		(0.1, 1.2, 0.1)	61.606	56.554	49.099	40.664	32.832	25.581	18.522	14.417	13.460	13.433
		(0.1, 1.5, 0.1)	75.494	69.057	59.668	49.075	39.222	30.084	21.180	15.907	14.501	$\underline{14.236}$
		(0.1, 1.8, 0.1)	89.382	81.560	70.237	57.485	45.612	34.586	23.839	17.396	15.541	15.039
	10	(0.1, 0.3, 0.1)	20.019	19.472	18.191	16.572	15.045	13.596	12.289	11.038	10.871	11.335
		(0.1, 0.6, 0.1)	34.002	32.323	29.373	25.839	22.465	19.224	16.230	13.332	12.307	12.376
		(0.1, 0.9, 0.1)	47.985	45.174	40.556	35.106	29.884	24.851	20.171	15.626	13.743	13.416
		(0.1, 1.2, 0.1)	61.968	58.025	51.739	44.374	37.303	30.479	24.111	17.920	15.179	14.456
		(0.1, 1.5, 0.1)	75.951	70.877	62.921	53.641	44.722	36.106	28.052	20.214	16.615	15.497
		(0.1, 1.8, 0.1)	89.934	83.728	74.104	62.908	52.142	41.734	31.993	22.508	18.051	$\underline{16.537}$

Total Expect ed cost		(Mean waiting cost, Holdin g cost, Mean service cost)	Service rate										
		1	2	3	4	5	6	7	8	9	10		
	5		$\begin{aligned} & (0.5, \\ & 0.3, \\ & 0.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 39.6 \\ & 33 \end{aligned}$	29.861	19.923	10.904	8.192	8.149	8.545	9.228	10.078	10.968
		$\begin{aligned} & \hline(0.5, \\ & 0.6, \\ & 0.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 52.4 \\ & 85 \end{aligned}$	39.129	25.551	13.198	9.232	8.819	8.995	9.561	10.350	11.196	
		$\begin{aligned} & (0.5, \\ & 0.9, \\ & 0.5) \end{aligned}$	$\begin{aligned} & 65.3 \\ & 36 \end{aligned}$	48.396	31.178	15.492	10.272	9.488	9.446	9.893	10.623	11.424	

Optimal Service Control in a Discrete Time Service Facility System with Inventory

Optimal Service Control in a Discrete Time Service Facility System with Inventory

Optimal Service Control in a Discrete Time Service Facility System with Inventory

Optimal Service Control in a Discrete Time Service Facility System with Inventory

Optimal service rates are 5,8 for arrival rates 5 and 8 respectively in which $\frac{\lambda}{\mu}=1$, the optimal cost exists. Where $\mu<\lambda$ or $\frac{\lambda}{\mu}>1$ the cost is high and conjunction in queue occurs.

IX. Conclusion

When $\lambda<\mu$, also the service cost increasing and hence the total cost becomes high. From the plots we have $\frac{\lambda}{\mu}=1$ is only the $\lambda=\mu$ (arrival rate is equal to service rate), the cost is minimum and the by policy iteration method we found the solution $R^{*}=(2,2,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,2,1,2)$. whenever the service rates and arrival rates are almost equal the long run total cost minimum. In future the authors plan to work as the discrete MDP systems with perishable inventory.

REFERENCES

[1]. Berman, O., Kaplan, E.H. \& Shimshak, D. G., (1993), Deterministic approximations for inventory management at service facilities, IIE Transactions, 25, 98-104.
[2]. Berman, O. \& Kim, E., (1999), Stochastic models for inventory management at service facilities, Stochastic Models, 15(4), 695718.
[3]. Berman, O. \& Sapna, K.P., (2000), Inventory management at service facilities for systems with arbitrarily distributed service times, Stochastic Models, 16, 343-360.
[4]. Berman, O. and Sapna, K.P., (2001), Optimal control of service for an inventory system at service facilities, Computer Oper. Res., 28, 429-441.
[5]. He, Q.M., Jewkes, E. M., \& Buzacott, J., (1998), An efficient algorithm for computing the optimal replenishment policy for an inventory-production system, In A. Alfa \& S. Chakravarthy (Eds.), Advances in matrix analytic methods for stochastic models (pp. 381-402), New Jersey, NJ: Notable Publications.
[6]. Maheswari, P. and Elango, C., (2017), Optimal Admission and Service Control in a Discrete time Service Facility Systems: MDP Approach" Annals of Pure and Applied Mathematics Vol. 15, No. 2, 2017, 315-326 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 December 2017.
[7]. Puterman, M.L., (1994), Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley and Sons, Inc New York.
[8]. Selvakumar, C., Maheswari, P. and Elango, C., (2017), Discrete MDP problem with Admission and Inventory Control in Service Facility Systems, International Journal of Computational and Applied Mathematics, ISSN: 1819-4966, Volume 12, Number 1.
[9]. Tijims, H.C., (2003), A First Course in Stochastic Models, John Wiley and Sons Ltd, England.

[^0]
[^0]: Selvakumar, C. "Optimal Service Control in a Discrete Time Service Facility System with Inventory "International Journal of Engineering Science Invention (IJESI), vol. 07, no. 06, 2018, pp 21-34

