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Abstract:In this study, a dynamical system of Lorenz equation is discussed. The main aim of this paper is to 

demonstrate the possible convection regimes at supercritical values of the centrifugal Rayleigh number and 

evaluate the corresponding average rate of heat transfer for the problem of centrifugally driven convection of 

couple stress fluids in a porous layer placed at an offset distance from the axis of rotation. The solution to the 

non-linear dynamics is obtained by Galerkin technique. In a manner similar to the Lorenz formulation, single 

term Galerkin representations for the stream function is used. However, two terms are needed in the 

temperature expressions if some parts of the non-linearizes are retained. The system of ordinary differential 

equations was solved by using Adomian’s decomposition method. The critical Rayleigh number to chaos is 

obtained. 
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I. Introduction 
In geophysical fluid dynamics involving large scale phenomena the effect of Coriolis force due to 

rotation plays an important role in the understanding of the mechanism of transfer of energy and momentum 

from one region to the other. The study of transport phenomena in rotating couple stress fluid in porous media is 

motivated by its practical applications in engineering and geophysics. The effect of rotation and of free 

convection as a result of the centrifugal body force is of particular interest from both the practical and 

theoretical points of view. 

Engineering applications include among others, the food, chemical and materials processing industries, 

rotating machinery, chaos control, chaos synchronization and estimating the Lyapunov dimension of the chaotic 

attractors [3]. The problem of solidification of binary alloys includes also transport phenomena in rotating 

machinery. More specifically, packed bed mechanically agitated vessels are used in the food processing and 

chemical engineering industries in batch processes, the packed bed consists of solid particles or fibbers of 

material which form the solid matrix while fluid flows through the pores, as the solid matrix rotates, due to the 

mechanical agitation, a rotating frame of reference is a necessity when investigating these flows. The role of the 

flow of fluid through these beds can vary from drying processes to extraction of soluble component from the 

solid particles. The molasses in centrifugal crystal separation processes in the sugar milling industry and the 

extraction of sodium alginate from kelp are just two examples of such processes. 

Modelling of flow and heat transfer in porous media is also applied for the design of heat pipes using 

porous wicks and includes effects of boiling in unsaturated porous medium, surface tension driven flow with 

heat transfer and condensation in unsaturated porous media. When the heat pipes is used for cooling devices 

which are subject to rotation the corresponding centrifugal effect become relevant as well. A regenerator in a 

power plant can also be modelled by using the macro-level porous media approach. As the regenerator is 

typically subject to rotation the centrifugal effects on heat transfer are to be investigated. 

Chaos can be observed in complex and nonlinear systems associated with saddle points [1]. The 

Critical Rayleigh number for the problem of a rotating layer adjacent to the axis of rotation as presented by 

Vadasz[9]. The stability map on the Raw to Raw0 plane is presented showing the plane is divided between the 

stable and unstable zones by the straight line
, 0,

2 2
1

7.81 4

w cr w crRa Ra

 
  .  

The results for the convective flow field were presented graphically by Vadasz[10] where it was concluded that 

the effect of the variation of the centrifugal acceleration within the porous layer is definitely felt when the box is 

close to the axis of rotation, corresponding  to an eccentric shift of the convection cells towards the sidewall at x 

= 1. However the layer is located far away from the axis of rotation (e.g., x = 50) the convection cells are 



A Transiently Chaotic flow for free convection of a couple stress fluids in a rotating porous layer 

www.ijesi.org                                                                52 | Page 

concentric and symmetric with respect to 
1

2
x , as expected for a porous layer subject to gravity and heated 

from below. 

Although the linear stability analysis is sufficient for obtaining the stability condition of the motionless 

solution and the corresponding Eigen functions  describing qualitatively the convective flow it cannot provide 

information regarding the values of the convection amplitudes, nor regarding the average rate of heat transfer. 

To obtain this additional information, Vadasz and Olek [11] analysed and provided a solution to the nonlinear 

equations by using Adomian’s decomposition method to solve a system of ordinary differential equations for the 

evolution of the amplitudes. The system of equations was obtained by using the first three relevant Galerkin 

modes for the stream function and the temperature while including the time derivative term in Darcy’s equation 

in the form for homogeneous porous media.Keeping in view the practical applications in the field of 

biomechanics and growing importance of non-Newtonian fluids in modern technology and industries, the 

investigations on such fluids are desirable. Stokes [12] proposed and postulated the theory of couple-stress fluid. 

One of the mechanism of lubrication of Synovial joints, which has become the object of scientific research. A 

human join is a dynamically loaded bearing which has articular cartilage as the bearing and Synovial fluid as the 

lubricant. When a fluid film is generated, squeeze film action is capable of providing considerable protection to 

the cartilage surface, the shoulder, knee, hip and ankle joint are the loaded-bearing synovial joints of the human 

body and these joints have a low-friction coefficient and negligible wear. Normal synovial fluid is clear of 

yellowish and is a viscous, non-Newtonian fluid. According to the theory of Stokes [12], Couple-stresses are 

found to appear in noticeable magnitude in fluids with very large molecules. The main goal of this paper is to 

introduce a couple stress fluids in the offset of rotation and discussion of the chaotic system. 

 

II. Formation of a problem 
 Let us consider a rotating fluid saturated porous layer subject to rotation is placed a dimensionless 

distance 0x from the centre of rotation as presented in figure 1. The offset distance is presented in a 

dimensionless form representing the ratio between the dimensional offset distance and the length of the porous 

layer in the form
*0

0

*

x
x

L
 . Two systems of coordinates are presented in Fig. 1, the first  , ,x y z   is linked to the 

axis of rotation and the second  , ,x y z are placed a horizontal distance apart from the first one, belongs to the 

porous layer coordinates. A positive temperature gradient in the x  direction is anticipated as a result of the 

imposed thermal boundary conditions. The significance of the variation of the centrifugal acceleration in the 

x  direction depends on the offset distance from the centre of rotation. The front aspect ratio of the layer is 

defined as *

*

H
a

L
  where 

*H and 
*L  is the height and the length of the layer, respectively. The top aspect ratio 

is *

*

W
W

L
 where the width of the layer is

*W . The current analysis is restricted to a narrow layer, i.e., 1W  , 

Free convection occurs as a result of the centrifugal body force while the gravity force is neglected. The only 

inertial effects considered are the centrifugal acceleration, as far as changes in density are concerned and the 

second is the time derivative term in Darcy’s equation. Other than that, Darcy’s law is assumed to govern the 

fluid flow (extended to include the aforementioned inertial terms), while the Boussinesq approximation is 

applied for the effect of density variations. As a narrow layer is considered, i.e., 1W  , a Cartesian coordinate 

system can be used and the component of the centrifugal acceleration in the y direction can be neglected. Under 

these conditions the Governing equations, Continuity equation and Momentum equations from [9], [12] are 

given by 

0q  (1) 

  2

0 2

*

1
ˆ1 c

w w xq p Ra Ra x Te q
t L



 

  
        

   
(2) 

Where
2

*

cC
L




 : Couple stress coefficient,   a coefficient of the time derivative term in Darcy’s equation 

2

* *

* *

v

e

L





,   Porosity, *  fluids kinematic viscosity, *e

  effective thermal diffusivity, *  permeability of 

the porous domain, *L  the length of the porous layer. 

Temperature equation 
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2.
T

q T T
t


   


                          (3) 

 
Figure1: A rotating fluid saturated porous layer distant from the centre of rotation and subject to different 

temperatures at the sidewalls. 

Equations (1) – (3) are presented in a dimensionless form as follows
*** * *

2

* * * *

x
x= , , ,

L

e
ty z

y z t
L L L


   . We 

observe two distinct centrifugal Rayleigh numbers. 

(i) *

2

w0 * * * * *0 e
Ra /c fT w x L M       represents the centrifugal Rayleigh number representing the contribution of 

the offset distance from the rotation axis to the centrifugal acceleration and. 

(ii) 2 2

w * * * * *e
Ra /c fT w L M       represents the contribution of the horizontal location within the porous layer 

to the centrifugal acceleration. 

The reciprocal of the dimensionless offset distance from the axis of rotation
0

1

x
is introduced into equation (2)  

2

0

0

1
1 1 xw

x
q p Ra Te C q

t x

  
         

    

 (4) 

From equation (4) it is observed that when the porous layer is far away from the axis of rotation then 0x 1

and the impact of the term 
0

x

x
is not important, while for a layer close enough to the rotation axis 

0x 1 and 

the involvement of the first term becomes immaterial. In the first case the only controlling parameter is w0Ra  

while in latter case the only controlling parameter is w0

0

Ra

x
wRa  . 

As all the boundaries are rigid the solution must follow the impermeability conditions there, i.e., q.e 0n  on the 

boundaries, where ne  is a unit vector normal to the boundary. The temperature boundary conditions are 0T  at 

0, 1 at 1x T x   and 0ne  on all other walls representing the insulation condition on these walls.  

     Let us introduce a stream function , , )x z t such that 

  and  
z

u w
x

 
  
 

                                                               (5) 

     Then the continuity equation is identically satisfied and equation (4) becomes a partial differential equation 

as follows 

 
2 2 2 2

2

02 2 2 2

1
1 w w

T
Ra Ra x C

t xx z x z

            
           

         
(6) 

Also the equation (3) gives  
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2 2

2 2

T T T T T

t z x x z x z

       
   

      
                 (7) 

The set of partial differential equations (6) and (7) form a non-linear coupled system which together with the 

corresponding boundary conditions accepts a basic motionless conduction solution. 

 

III. Analysis 
To obtain the solution to the non-linear coupled system of partial differential equations (6) and (7) the 

stream function and temperature are assumed to be of the form 

 11 sin sin
z

A x
H


 

 
  

 
(8) 

   11 20sin cos sin 2
z

T x B x B x
H


 

 
   

 
(9) 

This representation is equivalent to a Galerkin expansion of the solution in both x and z  directions, truncated 

when 2,i j   where i  is the Galerkin summation index in the x  direction and j  is the Galerkin summation 

index in the z  direction. Substituting (8) and (9) into the equation (6) we get  

  2 311

11 0 112 2

1 1 1
1 1 1w w

B
A Ra Ra x C A

t H H H
 



     
          

     
 

On integrating them over the domain i.e.,

1

0 0

H

dx dz   

2

11

11 112
1

dA H
C A B

d H

   

 

  
     

   
          (10) 

Substituting equations (8) and (9) into the equation (7) and comparing  sin cos
z

x
H




 
 
 

and    2sin cosx x 

coefficients we get 
2 2

211 2011 11

11 2

2 1A BdB A H
B

dt H H H




 
     

 
 

2

220 11 11

204
2

dB A B
B

dt H


    

Integrating them over the domain i.e.,

1

0 0

H

dx dz   

11

11 11 11 20

1 2dB
B A A B

d  
    (11) 

20

11 11 20

1 4

2

dB H
A B B

d  
                                 (12) 

Where  
2 2

2

02

1 1
; ;

2

w

w

RaH H
t Ra

HH
   

  
    
 

(13) 

The fixed or stationary points of the system of equations (10) (11) and (12) are obtained by setting all the time 

derivatives equal to zero and solving the resulting algebraic equations. They yield the following possible 

solutions. 

11 11 20 0A B B    (14) 

 
1

1 2
1

2 22

11 2 2
2 1 1 1A H C

H

 


 

  
      

   

(15) 

 

1
1 22

2 2

11 1 2 2
2 2

2
1 1 1

1

H
B C C

H HH

   
 

 

    
      

     

 (16) 

2
2

20 2 2
1

2
B C

H

   


  

 
   

 
                        (17) 
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representing the steady convection solutions. It is convenient to introduce the following further notation 
2

2 2 2
2

2 2 2 2 2 2
, , ,

1 1

H H H
R

H H

 
  

   

 
      

  
   (18) 

and rescale the amplitudes with respect to their convective fixed points in the form 
1

1 22

11 2 1 1
H

A R C




  
     
   

again H   

11

1
2

11

2
2 2

2

2 1 1

2 1 1

2

1

A
X

C
R

RB
Y

C C
R

R
Z

C
R


 





 
 

 












  
   

   



   
     

   


 

  
 

(19) 

to provide the following set of scaled equations with equivalent to equations (10) (11) and (12) 

 1X X Y                                                (20) 

1 1
2 2

1 1
C C

Y Y R X R XZ
 

 

     
         
     

                                 (21) 

 4Z XY Z                                                       (22) 

Where , ,X Y Z are the state variables 

1
2

1, , 1
C

R


 




 
 

 
are the parameters and 

2 2

1 2
1 1 ,

C H C H  
  

   

   
       

   
. Equations (20), (21) and (22) are equivalent to Lorenz equations 

[5] with different coefficients. Since Lorenz equations were extensively analysed and solved for parameter 

values corresponding to gravity driven convection in pure fluids (i.e., non-porous domains) and even there the 

parameter values most frequently used correspond to 10  and
2

3
  . The Lorenz equations can be shown to 

be dissipative by using one of the Liapunov functions.Using the steady state techniques derived for fluid 

mechanics, we set 0
t





and let  , ,X Y Z with the steady solutions at the position vector  1 1 1, ,X Y Z . Then 

equation (20) gives X Y , equation (21) gives 0X  and 0Z  . Similarly, for 0X  equation (22) gives

0Z  .Therefore 1 1 1 0X Y Z   , again for X Y with equations (20) and (22) 2 0X Z  gives 2Z X with 

equation (21) gives
2,3 2,3 2,31, 1, 1X Y Z     .So, the fixed points of the rescaled system are 

1 1 1 0X Y Z   corresponding to the motionless solution, and 
2,3 2,3 2,31, 1, 1X Y Z     corresponding to 

the convection solution. 

The next step is to perform a stability analysis of the stationary solutions in order to determine the 

nature of the dynamics about the fixed points. The system equations (20), (21) and (22) have the general form 

( )X f X and the equilibrium (stationary or fixed) points sX are defined by ( ) 0sf X  . The stability matrix is 

established by evaluating the Jacobian 

s

i

j x

f

x

 
 
  

at the fixed point of interest Xs . The eigen values of the stability 

matrix, evaluated by solving the zeros of the characteristic polynomial associated with the stability matrix, 

provide the stability conditions. A fixed point is stable if all eigen values corresponding to its stability matrix are 

negative [or in the case of complex eigenvalues they have negative real parts] and it is not stable if at least one 

eigen value becomes positive [or in the case of complex eigen values it has a positive real part] From equations 

(20), (21), (22) and linear steady we have 
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1 1 0X Y     

2

1 0
C

RX Y




 
   
 

                                                                   (23) 

4 0Z   

The Jocobian matrix of these equations is

1 1

2

0

1 0

0 0 4

C
J R

 







 
 

      
 

 
  

. The characteristic equation of system 

(23) which is obtained from 0J I   evaluated on the equilibrium is 

 
2 2

2

1 14 1 1 0
C C

R
 

     
 

    
           

    
        (24) 

Thus the first eigen value 
1 4   is always negative as 0  . The other two eigen values

   

2 2

2

2,3 2

1 1

1 1 4
2

1

C C
R

C

 

 
   





    
      

         
  

  
   

. It can be seen that the solutions stability is 

fundamentally influenced by the value of R.
3 is always negative and 

2 provides the stability condition for the 

motionless solution in the form 
2

1
C

R



  . Therefore the critical value of R , where the motionless solution 

loses stability and the convection solution (expressed by the other two fixed points) takes over, is obtained as
2

1cl cr

C
R R




   . The significance of this result can be established by expressing it in terms of the original 

parameters by using equations (3) and (13) i.e., 
2

2 2
1

C 

 
  or 

4 3
2 2

0
2

w

w

Ra C
Ra

H

 
    two limiting 

cases of interest are  

(i) 
0 0x  corresponding to 

0 0wRA  which yields 
4 3

2 2

,

2
2w cr

C
Ra

H

 
   and 

(ii) 
0 1x  (say

0x  )which yields 
4 3

2 2

0,w cr

C
Ra

H

 
    

The value of  has to be consistent with the wavenumber at the stability threshold in order for the convection 

cells to fit in to the domain and satisfy the boundary conditions. For case (i) the value of 
cr  was found by 

Vadasz [10] to be 2.0003cr  while for case (ii) 2cr  . Substituting these values yields for case (i) 

2 4

,

2
8.0024 (8.0036)w cr

C
Ra

H
   and for case (ii) 2 4

, 4.0012 (8.0036)w cr

C
Ra

H
   for the unsteady case the 

characteristic equation is given by           

 
1 1

2 2
3 2

1 1 11 4 4 1 8 1 1
C C

R R
 

       
 

       
              
         

(25) 

The stability of the fixed points associated with the convection solutions  2,3 2,3 2,3, ,X Y Z is controlled by the 

following cubic equation for the eigen values, ( 1,2,3)i i  . The smallest eigen value 1 is always real and 

negative at slightly supercritical values of R, therefore the convection fixed points are stable, i.e., simple nodes. 

As the value of R increases the convection fixed points move on the real axis towards the origin, the smallest 

between the two chasing the one and reducing the distance between them. For 
2

50



 and 

 

 

4 10

4

3 2

2 3







 and

0.5C  these roots become equal when 15.06R  . It is exactly at this point when these two roots become 

complex conjugate. However, they have still negative real parts, therefore the convection fixed points are stable, 

i.e., spiral nodes. As the value of R increases further, both the imaginary and real parts of these two complex 
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conjugate eigen values increases and on the complex plane, they cross the imaginary axis i.e., the product of the 

coefficients of 2 and  equals the constant term or their real part becomes non-negative at a value at a value of 

R given by  

 

2 2 2 2

1 1

1

3 3 4 4

1 4

C C C
R

        

  

      


 
(26) 

 

At this point the convection fixed points lose their stability and chaos sets in. Just prior to this happening, at the 

point when the complex eigen values cross the imaginary axis a Hopf bifurcation occurs, i.e., at 
2cR these eigen 

values are purely imaginary leading to a limit cycle (periodic solution). The evolution of the complex eigen 

values for 
2

50



 and 

 

 

4 10

4

3 2

2 3







 and C=0.5 the loss of stability of the convection fixed points is 

evaluated using equation (25) to be  

 

2

2 2 2
2 2 2 2

2

1 3 3 1 4 1 4

1 1 4

c

C C C
C C C

R
C

  
       

  


  



      
             

      


  
    

  

 

 

i.e.,
2

868.187cR   

 

An interesting observation can be made by investing the behaviour of the value of 
2cR  as 

1 becomes 

very big. When 
1 1  the time derivative term in Darcy’s equation and consequently in equation (20) is very 

small and this fact provides the justification of neglecting this term. By taking the limit of 
2cR  in equation (26) 

one obtains that 
2cR  as  . Therefore although a much higher value for transition to chaos is required 

when the values of  are very big this transition still exists, while neglecting the time derivative term reduces to 

two of course, alternatively one could use more modes in the Galerkin expansion thus still allowing this 

transition to occur. However at this level of truncation including the time derivative term is necessary in order to 

keep all possibilities of transitions in the model. 

 

IV. Method of solution 
Adomian’s decomposition method[1,2] is applied to solve the system of equations (20),(21) and (22). 

The method provides in principle an analytical solution in the form of an infinite power series for each 

dependent variable and its excellent accuracy in solving non-linear equations was demonstrated by [7, 11] 

Consider the following general dynamical system of equations. 

1 1 1

, 1,2,......
m m m

i

ij j ijl j l

j l j

dX
b X X X i m

dt


  

             (27) 

given the initial conditions (0), 1,2,......iX i m . It can be easily observed that the system of equations (20), 

(21) and (22) is just a particular case of equation (27). Olek [7, 11] used the decomposition method to solve a 

variety of non-linear problems, some of which have closed from analytical solutions and a comparison was 

provided between the results obtained via the decomposition method and either exact analytical or numerical 

results. The problem can be solved to the desired accuracy by including more terms in the computation of the 

series. 

For the system of equation (3) the non-linear terms are of the rather simple 2X form, so that very simple 

symmetry rules for the decomposition polynomials can be used. If we denote
d

dt
L= , the formal solution of 

equation (27) may be presented in the form. 

1

1 1 1

( ) (0) 1,2,........
m m m

i i ij j ijl j l

j l j

X t X b X X X i m

  

 
     

 
 L (28) 

i.e.,  1

1 1(0)X X X Y    L  
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1 1
2 2

1(0) 1 1 1
C C

Y Y R X Y R XZ
 

 

 


     
           
       

L  

 1(0) 4 4Z Z Z XY    L  

Where  1

0

.

t

dt  L= . According to the decomposition method an expansion of the following form is assumed. 

0

( ) , 1,2,.......i in

n

X t X i m




    (29) 

i.e.,
0 0 0

, ,n n n

n n n

X X Y Y Z Z
  

  

        

substituting equation (29) into equation (28) yields after rearranging the products. 

1

( )

1 0 1 1 0 0

( ) (0) 1,2,........
m m m n

i i ij jn ijl jk l n k

j n l j n k

X t X b X X X i m
 





     

 
     

 
     L (30) 

The solution is ensured by requiring 

0 10 0 20 0 30X X Y X Z X   (31) 

0
1

1 0 (0 )

1 1 1 0

, 1,2,........
m m m

i ij j ijl jk l k

j l j k

X b X X X i m



   

 
    

 
     L (32) 

1
1

2 1 (1 )

1 1 1 0

, 1,2,........
m m m

i ij j ijl jk l k

j l j k

X b X X X i m



   

 
    

 
     L (33) 

2
1

3 2 (2 )

1 1 1 0

, 1,2,........
m m m

i ij j ijl jk l k

j l j k

X b X X X i m



   

 
    

 
     L         (34) 

Similar to equations (32), (33) and (34) we have 

 1

1 1 0 1 0 ,X X Y   L  

1 1
2 2

1

1 0 0 0 01 1 1 ,
C C

Y R X Y R X Z
 

 

 


     
          
       

L  

 1

1 0 0 04 4Z Z X Y   L  

From equations (32) to (34) we have 

11 0 12 0 13 0 111 0 0 121 0 0 131 0 0 112 0 01

1

122 0 0 132 0 0 113 0 0 123 0 0 133 0 0

b X b Y b Z a X X a Y X a Z X a X Y
X

a Y Y a Z Y a X Z a Y Z a Z Z


      

  
     

L  

 

21 0 22 0 23 0 211 0 0 221 0 0 231 0 0 212 0 01

1

222 0 0 232 0 0 213 0 0 223 0 0 233 0 0

b X b Y b Z a X X a Y X a Z X a X Y
Y

a Y Y a Z Y a X Z a Y Z a Z Z


      

  
     

L  

31 0 32 0 33 0 311 0 0 321 0 0 331 0 0 312 0 01

1

322 0 0 332 0 0 313 0 0 323 0 0 333 0 0

b X b Y b Z a X X a Y X a Z X a X Y
Z

a Y Y a Z Y a X Z a Y Z a Z Z


      

  
     

L

   

     

       

11 1 12 1 13 1 111 0 1 1 0 121 0 1 1 0

1

2 131 0 1 1 0 112 1 0 0 1 122 1 0 0 1

132 1 0 0 1 113 1 0 0 1 123 1 0 0 1 133 1 0 0 1

b X b Y b Z a X X X X a Y X Y X

X a Z X Z X a X Y X Y a YY Y Y

a Z Y Z Y a X Z X Z a Y Z Y Z a Z Z Z Z



      
 

       
 
        

L

   

     

       

21 1 22 1 23 1 211 0 1 1 0 221 0 1 1 0

1

2 231 0 1 1 0 212 1 0 0 1 222 1 0 0 1

232 1 0 0 1 213 1 0 0 1 223 1 0 0 1 233 1 0 0 1

b X b Y b Z a X X X X a Y X Y X

Y a Z X Z X a X Y X Y a YY Y Y

a Z Y Z Y a X Z X Z a Y Z Y Z a Z Z Z Z



      
 

       
 
        

L

   

     

       

31 1 32 1 33 1 311 0 1 1 0 321 0 1 1 0

1

2 331 0 1 1 0 312 1 0 0 1 322 1 0 0 1

332 1 0 0 1 313 1 0 0 1 323 1 0 0 1 333 1 0 0 1

b X b Y b Z a X X X X a Y X Y X

Z a Z X Z X a X Y X Y a YY Y Y

a Z Y Z Y a X Z X Z a Y Z Y Z a Z Z Z Z



      
 

       
 
        

L  
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where

1
2 2

11 1 12 21 22 331 , 1 , 1, 4
C C

b b b R b b
 

  
 



   
               

   
 

Therefore, the following solution is obtained 

0

( ) , 1,2,.......
!

n

i in

n

t
X t C i m

n





                         (35) 

where
0 (0) 1,2,.......i iC X i m   (36) 

And the general term for 1n  is defined through the following recurrence relation. 
1

( 1)

( 1)

1 1 1 0

( 1)! , 1,2,.......
! ( 1)!

m m m n
jk l n k

in ij j n ijl

j l j k

C C
C b C n a i m

k n k


 



   

    
 

   (37) 

The decomposition method does not guarantee on its own existence and uniqueness of the solution. In fact, it 

can be safely applied when a fixed point theorem holds. A theorem proved by Repaci [8] indicates that there is 

no point in looking for solutions universally in time. On the other hand, the decomposition method can be used 

as algorithm for the approximation of the dynamical response in a sequence of time intervals. In this we 

observed that the solution obtained by the decomposition method converges to a unique solution as the number 

of terms in the series becomes infinite and the approximation in each interval of time is continuous with desired 

level of accuracy corresponding to the desire number of terms. 

For 3m  in equations (20), (21) and (22) the above said computation of solution is adopted with the following 

substitutions
2

11 1 1
C

b


 


 
     

 
,

2

12 1 1
C

b


 


 
   

 
, 

1
2

21 1
C

b R






 
  

 
, 

22 1b   , 
33 4b   ,

1
2

213 1 1
C

a R




  
     
   

, 
312 4a  the remaining coefficients all  are identically zero. 

V. Results and Discussions 
The Adomian's decomposition method of solution presented in the previous section was applied to obtain the 

sets of results for different critical values of R. All solutions were obtained at origin. 

 

 
Figure 2: The projection of the solution data onto X-Y plane for 

 

 

4 102

4

3 2
1 , , 0.5, 20

2 3

C
C R


 

 

 
     
 

 

VI. Conclusions 
A nonlinear centrifugally driven free convection in a rotating couple stress fluid porous layer was 

solved for a truncated Galerkin approximation.It was demonstrated that the set of non-linear ordinary 

differential equations reduces to Lorenz equations with different coefficients. The Analytical methodAdomian 

decomposition method was used to solve the equations. The results weredemonstrated with different transitions. 

That is from steady convection to a non-periodic regime through Hopf bifurcation, and a further transition from 

chaos to periodic convection at significantly higher values of the centrifugal Rayleigh number. The first 

transition is confirmed by a stability analysis of the steady convection. These transitions show a marked impact 

on the average heat transfer, all the reservations which are applicable to Lorenz model are applicable here as 

well and developing a model which includes more Galerkin terms is indeed required for improving the accuracy 

regarding the different transitions and in particular at the higher values of the centrifugal Rayleigh number. 
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Figure 3: The projection of the solution data onto X-Y plane for 
 

 

4 102

4

3 2
1 , , 0.5,

2 3

C
C


 

 

 
    
 

with different R values 
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Figure 4: The projection of the solution data onto Z-Y plane for 
 

 

4 102

4

3 2
1 , , 0.5,

2 3

C
C


 

 

 
    
 

with different R values 
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