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Abstract:  In this article, we study a MDP based inventory control in a two stage Supply Chain. We consider a 

two stage Supply Chain having Distribution Center (DC) and Retail Vendor (RV) with their respective inventory 

systems and service facility. A two dimensional MDP is formulated and the optimal decision policy is obtained 

by Linear Programming technique. Some instances of   a numerical is produced to study the behavior of the 

system. 
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I. Introduction 
Supply chain can be defined as the management of flow of products and services, which begins from the  

products point and ends at the consumption point(retailer). This process comprises of movement and storage of 

raw materials that are involved in work progress, inventory and fully furnished goods. Supply Chain exists in 

both service and manufacturing organizations, but the complexity of the chain may vary greatly from industry to 

industry. 

Inventory decision is an important component of the supply chain management, because Inventories 

exist at each and every stage of the supply chain as raw material or semi-finished or finished goods. They can 

also be as Work-in-process between the stages or stations. Since holding of inventories can cost anywhere 

between 20% to 40% of their value, their efficient management is critical in Supply Chain operations 

The usual objective for a multi-echelon inventory model is to coordinate the inventories  at various 

echelons so as to minimize the total cost associated with the entire multi-echelon inventory system. It might also 

be a suitable objective when certain echelons are managed by either the suppliers or the retailers of the company. 

The reason is that a key concept of supply chain management is that a company should strive to develop an 

informal partnership relation with its suppliers and retailers that enable them jointly to maximize their total profit. 

It would be appropriate to say that information technology is a vital organ of supply chain management. 

With the advancement of technologies, new products are being introduced within fraction of seconds increasing 

their demand in the market. Let us study the role of information technology in supply chain management briefly.  

Multi-echelon inventory system has been studied by many researchers and its applications in supply 

chain management has proved worthy in recent literature. As supply chains integrates many operators in the 

network and optimize the total cost involved without compromising the customer service efficiency.  
Continuous review models of multi-echelon inventory system in 1980’s concentrated more on repairable 

items in a Depot-Base system than as consumable items(see Graves, Moinzadeh and Lee). All these models deal 

with repairable items with batch ordering. Sven Axsäter proposed an approximate model of inventory structure in 

SC. One of the oldest papers in the field of continuous review multi-echelon inventory system is a basic and 

seminal paper written by Sherbrooke in 1968. He assumed (S-1,S) polices in the Depot-Base systems for 

repairable items in the American Air Force and could approximate  the average inventory and stock out level in 

bases. Seifbarghy,and Jokar, analyzed a two echelon inventory system with one warehouse and multiple retailers 

controlled by continuous review (r,Q) policy. A ccomplete review was provided by Benita M. Beamon (1998). 

The supply chain concept grow largely out of two-stage multi-echelon inventory models, and it is important to 

note that considerable research in this area is based on the classic work of Clark and Scarf(1960). In the case of 

continuous review perishable inventory models with random lifetimes for the items, most of the models assume 

instantaneous supply of order. The assumption of positive lead times further increases the complexity of the 

analysis of these models and hence there are only a limited number of models dealing with positive lead-times. A 

continuous review perishable inventory system at Service Facilities was studied by Elango(2001). A continuous 

review(s,S) policy with positive lead times in two-echelon Supply Chain was considered by K.Krishnan and 
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C.Elango. Service facilities in the inventory in supply chain management is a quiet new area  

In this chapter we considered an inventory system model maintained in a service facilities at Retailer 

vendor in tandem supply chain having Retailer vendor(RV) and Distribution Centre(DC). One item from 

inventory at RV is used to serve the customer. (s, S) policy is adopted at Retail Vender node for inventory 

replenishment. 

 

II. Model Formulation 
We consider a Supply Chain system consist of Distribution Centre(DC), Retail vendor(RV) with 

service facility and inventory is maintained at both DC and RV nodes. For every demand at the retailer node 

(RV) an item is supplied only after a exponential service time with parameter  . The waiting space in the 

retailer node has maximum capacity N.  An arriving customer seeing N customers in the system leaves. 

Inventory policy adopted at RV node is (s, S) type in which order for Q=S-s>s items are placed when 

the inventory level reaches the prefixed level s, and lead time is exponentially distributed with parameter 

( 0)  . Demand at RV node follows a Poisson process with parameter ( 0)  . At DC, items are packed as 

Q items in one pocket with maximum inventory level nQ (n pockets). The ordering  policy at DC is of (0,nQ) 

type where the inventory level reach 0, instantaneous replenishment nQ= M items is made. Deterministic 

Markov Decision policy is used solve the problem of MDP. 

 
Fig (1) 

 

Let I0(t) and L(t) denote the inventory level and the number of customers in the system at time t. Then 

     0 : 0,I t L t t   is a finite two dimensional stochastic process with state space , 1 2 ,E E
 

 where E1 = {0, 1, 2, … ,S} and E2 = {0, 1, 2, …,N}. 
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Decision Sets: 

The reordering decisions taken at each state of the system (i,q)  E, where, I(t) = i and  X0(t) = q. 

Let Ai (i =1, 2, 3) denotes the set of possible actions where, A1 ={0}, A2 = {0, 1}, 

 A3 = {2}, A=A1 A2 A3, 0 represents ‘no order’, 1 means reorder for ‘Q = S-i’ items at level i and 2 means 

compulsory order for S items when inventory level is zero. 

Suppose  Đ denote the class of all stationary policies, then a policy f (sequence of decisions) can be defined as a 

function f : E → A, given by 

   

2

2

2

{0,1} 1 ,

( , ) {0} 1 ,

{2} 0,

i s q E

f i q s i S q E

i q E

  


    
  

 

Objective of the problem is to find the optimal reorder level s so that the long run expected total cost rate is 

minimum. 

 

Notations and Assumptions: 

1.   1 2 ( ), ( ) : 0 ,E E E is the state space of theStochastic Process I t L t t    

   1 20,1,2,,..., 0,1,2,,..., Nwhere E S and E   

2.  ( , ) ( , )i qA decision set corresponding to state i q E  .   

3.  
(i,q)

cost ( , ).C a occured when action a is taken at state i q  

4.  (j,r)

( , ) ( , ) ( , ).i qp a the transition probability from state i q to state j r  

( , ) .when action a is taken at state i q E  

5. .Inventorylevels are reviwed at the time of service completion epochs  

6. Reordering policy is (s, S): Q = S – s items ordered when the inventory level reaches s (prefixed level), 

where 0 ≤ s ≤ S. 

7. D- the class of stationary policies. 

 

III. Analysis 
Let R denote the stationary policy, which is time invariant and Markovian Policy (MR). From our 

assumptions it can be seen that     0( , ) : 0I t L t t  is denoted as the controlled process 

     0 :, 0R RI L t tt  when policy R is adopted. Since the process      0 :, 0R RI L t tt  is a 

Markov Process with finite state space E.
 
The process is completely Ergodic, if every stationary policy gives 

raise to an irreducible Markov chain. It can be seen that for every stationary policy  0, ,f ff F I L is 

completely Ergodic and also the optimal stationary policy R
*
 exists, because the state and action spaces are 

finite. 

A Deterministic Markov decision rule from the class F is equivalent to the function f : AE   given 

by 1( ), j ,
td rP A E   where dt is the Markovian randomized decision rule for   t  T.  We denote the set of 

decision rules at time t by 
MR

tD .  

If dt is the Markovian randomized decision rule, the expected reward satisfies the transition probability relations.  

         d ( , ), | , , , ( , r) | (i,q),a ( ).
t

s

t t t i q

a A

p j r i q d i q p j p a


  

d ( , )( , ), ( ,q) (i,q,a) ( ).
t

s

t t t i q

a A

r i q d i r p a


  

For Markovian
MRf f , dt depends on history analysis through the current state of the process ( , )i q E  so 

that   ( )| ( )
t t

f

t t t d hp Y a Z h P a   where Yt – denote the action at time t and the history process Zt defined 

by Z1(w)=s1 and Zt(w)= {s1,s2,s3,…,st} for 1 ,Nt N    

Randomized Markovian Policy f  
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Order size Q=S-s  Q+1=S-s+1 …  Q+s=S  
Probability ps ps-1 … p0 

 
MRf  is the randomized Markovian policy. Under this policy f  an action (j)a A is chosen with probability 

(j)af , whenever the process is in state j E . 

 Whenever (j) 0 1af or , the stationary randomized policy f  reduces to a familiar stationary policy. 

 

3.1 Steady State Analysis  

     Let      0 :, 0R RI L t tt  denote the process.      : 0,I t L t t 
 

in which R is the policy  

adopted from our assumptions made in the previous section. The controlled process {I
R
, L

R
} where R is the 

randomized Markovian policy in a Markov process. Under the randomized policy, f  the expected long run 

total cost rate when policy f is adopted is given by  

 1 2

ff f f f f

a b cC hI c w c g                                                                         (1) 

 

h  - holding cost / unit item / unit time 

c1 – waiting cost / customer / unit time 

c2 – reordering cost / order 

g - balking cost / customer 

 - service cost / customer 
fI  - mean inventory level 
fw - mean waiting time  in system 
f

a - reordering rate  

f

b - balking rate 

f

c - service completion rate 

 

Our objective is to find an optimal policy 
*f for which 

*f fC C for every MR policy in  
MRf  

For any fixed MR policy 
MRf f and ( , ),( , ) ,i q j r E  define                                             

 0 0( , , t) r ( ) ,L ( ) r | (0) i,L (0)f f f f f

iq j r P I t j t I q     
,
( , ),( , ) .i q j r E

                    (2)
 

 

Now  , ,f

iq j r t satisfies the Kolmogorov forward differential equation '(t) (t)A,i  where A is an 

infinitesimal generator of the Markov process 
0{(I (t), (t)) : t 0}.f fL    

 

For each MR policy f, we get an irreducible Markov chain with the state space E and actions space  A which are 

finite, 

  (j, r) lim , ;
f f

j r tiq
t

  
  

exists and is independent of initial state conditions. 

 

This implies the balance equations (5) – (16) given below. Transition in and out of a states give a system of 

equations. 

Consider the typical state (j, r) that lies in the range s+1 ≤ j ≤ S-1; 1 ≤ r ≤ N– 1. When  

(j, r) lies in this range, there is no order pending and hence transition out of this state can be due to either by 

demand or a service completion. The corresponding balance equation is given by equation (7). 

A service completion in state (j+1, r+1) will decrease both inventory level and number of customers by one unit, 

thus transition made to state (j, r). 

When one customer arrives and enters the system (r < N) at state (j, r -1), the new state is (j, r). Considering two 

different ways of reaching state (j, r) and are reflected on the right hand side of Eq. (7). 
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Fig (2) represent the in-rate and out-rate flow diagram of the system states. 

 
Fig (2) 

 

Now the system of equations can be written in order as follows, 

(S,0) (j,0)

0

f

j

sf
p

j

   


                                                                                 (3) 

( ) (S, r) (j, r) (S, r 1), 1 r 1

0

f f

j

s f
p M

j

            


                          (4) 

(S, ) ( , ) (S, 1)

0

f

j

s f f
N p j N N

j

       


                                               (5) 

(j,0) (j 1,1), s 1 1
f f

j S                                                                                (6) 

( ) (j, r) (j 1, r 1) (j, r 1),ff f
            s 1 1;1 r 1j S N                             (7)                                             

(j, ) (j, 1), s 1 1ff
N N j S                                                                (8) 

( ) (j,0) (j 1,1)f

j

f
p        , 1 j s                                                                 (9) 

( ) (j, ) (j 1, 1) (j, 1)f

j

f f
p r r r             

,
                                            (10) 

1 ;1 r 1j s N    
,
 

( ) (j, ) (j, 1),1f

j

f
p N N j s           ,                                                     (11) 

0( ) (0,0) (1,1)
f f

p      ,                                                                                (12) 
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0( ) (0, r) (1, r 1) (0, r 1), 1 r 1f f f
p N                ,                           (13) 

0 (0, ) (0, 1)f f
p N N                                                                                         (14) 

The above set of equations together with the condition 

( , )

( , ) 1f

j r E

j r


                                     (15) 

,determine the steady-state probabilities uniquely.                                                  

 

3.2 System Performance Measures 

The probability 
f
(,j r) also gives the value that  the long-run fraction of time the system is in the state (j, r),       

1.The expected  inventory level  in the  system is given by 

1 0

( , )
S N

f f

j r

I j j r
 

                                                                                                               (16) 

 

2. The mean waiting time is given by      
[ / ]

1 0 0 1 1

1
( , ) ( , )

N SN S s mS
f

f f

r j k m rk

r
W j r m j r

p     

                                                                (17) 

 

3. The reorder rate is given by                                                                                        

 

0 0

( , ).
N s

f f

a j

r j

p j r 
 

                                                                                                    (18)        

 

4. The balking rate is given by 

0

( , )
S

f f

b

j

j N 


                                                                                              (19)  

 

5.The service completion rate is given by 

  

1 1

( , )
N S

f f

c

r j

j r 
 

                                                                                                            (20) 

Hence the average cost rate of the system is given by 
[ / ]

1 1
2

1 0 1 0 1 1 0 1 0

0 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , )

N SS N N s mS S N s
f f f f f

j

j r r j m r j r jj

S S N
f f

j j r

c c m
C h j j r r j r j r c r p j r

p

g j M j r


 

 

        

  

       

   

      

 

                                                                                                                                      (21) 

IV. Linear programming problem 
4.1 LPP Formulation 

In this section we propose a LPP model within a MDP framework. 

  First define the variables, D (j, r, k) as a conditional probability  such that                

                  D(j, r, k) = Pr {decision is k | state is (j, r)}   --------(22)   

 Since 0 ≤ D (j, r, k) ≤ 1, this is compatible with the randomized time invariant Markovian policies.  

        Here, the Semi – Markovian decision problem can be formulated as a linear programming problem. 

        Hence  

  0 ≤ D (j, r, k) ≤ 1 and 

{0,1,2}

(j, r,k) 1,
k A

D
 

 0 ≤ r ≤ N; 0 ≤ j ≤ S. 

For the reformulation of the MDP as LPP, we define another variable  

y (j, r, k) as follows. 

  
(j,r,k) D(j,r,k) (j,r). (23)fy    

From the above definition of the transition probabilities  
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  (j, r) (j, r,k), (j, r) E, k {0, 1, 2} (24)f

k A

y A


      

Expressing (j, r)P
in terms of (j, r,k)y

,
 the expected total cost rate function (21) is given by 

Minimize  

  

1

1 1 1 1 0

2
2

1 0 1 1 0

1 1 1

y(j, r, k) . (j,0,0) . (j, r, k)

y(j, r, k) y(j, r, k)

y(j, N,k) (0, N,0) (j, r, k)

S N S N s

j

k A j r j k A r j

N
N S ms Ss

k A r j k A m r j k

S S N

k

k A j k A j r

C h j h j y c p y

cr m
c

p

g g y y



 

  

      

 
 

      

    

  

 
   

 

  

   

  

  (25)

 

Subject to the constraints, 

(1) (j,r,k) 0, (j,r) E, k A , 1,2ly l   
,
 

(2) 

2

1 (j,r) E

(j, r,k) 1,
l ll k A

y
  

    

and the balance equations (3) – (14) obtained by replacing (j, r) by (j,r,k) .
k A

y



   
 

4.2 Lemma:  

The optimal solution of the above Linear Programming Problem yields a deterministic policy. 

       

Proof: 

 From the equations  

  (j, r,k) D(j, r,k) (j, r) (26)y  
 

                    and  

  (j, r) (j, r,k), (j, r) E. (27)
k A

y



     

 

Since the decision problem is completely ergodic every basic feasible solution to the above linear programming 

problem has the property that for each (j, r) E, (j, r,k) 0y  for every kA. 

 

V. Numerical Illustration and Discussion 
In this system we consider a problem to illustrate the method described in section 4, through numerical 

examples. We implemented TORA software to solve LPP by simplex algorithm. 

We intuitively proposed a conjecture that the reordering rate(pj) to be employed depends only on the inventory 

level. 

This conjecture can be proved for zero lead time and reorder is made  for fixed items at inventory level s. Sapna, 

K. P., & Berman, O already  proved that the expected cost rate,  

1
2

0 {0,1,2} 1 0 1 1

1
( ) (j,k) p(j, N) ( ) p(j, r)

(1)2

s s s s N

j k j j j r

cS
C h c k m p g

s m

  



     

 
     

    
 

      

 where 

1
1

, (1) .

1

N
m






 





 
 

  
 

  

 For 0 ≤ j ≤ S, 1 ≤ r ≤ N 
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1

(j, r) (j,0).

r

p P






 
  
 

  

For 0 ≤ j ≤ S, 

1
1

p(j,0) .

1

N
S









 
 

        
    

  

  

 

Consider the MDP problem with the following parameters: 

S = 3, s = 2, N = 4, λ = 2, μ = 3, γ = 4, h = 0.1, cj = 3j; j = 0, 1, 2, g = 5, β() = 2 
Action(a)\prob. value p2 p1 p0 

0 0.5 0.2 0 

1 0.5 0.8 0 

2 0.0 0.0 1 

 

The optimum cost for the system is C = 13.96 and Optimal policy is R*(0, 1, 2, 3) is (2, 0, 1, 0). 

 

VI. Conclusion and future research 
In our problem, we use an (s, S) ordering policy at the vendor node. Policies such as one-to-one 

ordering, or (r,Q) systems or any other fixed ordering policy can be analyzed with same methodology. We used 

the tools of Semi-Markov decision processes to analyze the problem and linear programming technique is used 

to determine the optimal reorder level. 

The main contribution of the chapter is the determination of the inventory control policy that smoothen 

the implement supply chain. The MDP considered in this model uses randomized Markov policy, which is first 

time introduced for MDP application in inventory control systems.  
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