Concerning Non-Negative Quaternion Doubly Stochastic Matrices

Dr.Gunasekaran K. and Mrs.Seethadevi R.
Department of Mathematics, Government arts College (Autonomous), Kumbakonam, Tamilnadu, India. Corresponding Author: Dr.Gunasekaran K

Abstract

This paper is concerned with the condition for the convergence to a quaternion doubly stochastic limit of a sequence of matrices obtained from a non-negative matrix A by alternately scaling the rows and columns of A and with the condition for the existence of diagonal matrices D_{1} and D_{2} with positive main diagonals such that $D_{1} A D_{2}$ is quaternion doubly stochastic.The result is the following the sequence of matrices converges to a doubly stochastic limit if and only if the quaternion matrix A contains at least one positive main diagonal.A necessary and sufficient condition that there exists diagonal matrices D_{1} and D_{2} with positive main diagonal matrices such that $D_{1} A D_{2}$ is both quaternion doubly stochastic and the limit of the iteration is that A $\neq 0$ and each positive entry of A is contained in a positive diagonal. The form $D_{1} A D_{2}$ is unique, and D_{1} and D_{2} are unique up to a positive scalar multiple if and only if A is fully indecomposable.

I. Definitions:

If $\mathrm{A} \in \mathrm{H}^{\mathrm{nxn}}$ is a quaternion doubly stochastic matrix and σ is a Permutation of
$\{1 \ldots \ldots . . n\}$, then the sequence of elements $a_{1}, \sigma_{(1) \ldots} a_{n}, \sigma_{(n)}$ is called the diagonal of A corresponding to σ. If σ is the identity, the diagonal is called the main diagonal.

If A is a non-negative square matrix, A is said to have total support if $A \neq 0$ and if every positive element of A lies or a positive diagonal.

II. Theorem:

Let A be a nonnegative n x n quaternion matrix. A necessary and sufficient condition that there exists a quaternion doubly stochastic matrix B of the form $D_{1} A D_{2}$ where D_{1} and D_{2} are diagonal matrices with positive main diagonals is that A has total support. If B exists then it is unique. Also D_{1} and D_{2} are unique upto a scalar multiple if and only if A is fully indecomposable.

A necessary and sufficient condition that the iterative process of alternately normalizing the rows and columns of A will converge to a quaternion doubly stochastic limit is that A has support. If A has total support, this limit is the described matrix $D_{1} A D_{2}$. If A has support which is not total, this limit cannot be of the form D_{1} AD_{2}.
PROOF:
Suppose $B=D_{1} A D_{2}$ and $B^{\prime}=D_{1}{ }^{\prime} A D_{2}{ }^{\prime}$ are quaternion doubly stochastic matrix.

```
\(D_{1}=\operatorname{diag}\left(x_{1}, x_{2}, \ldots \ldots \ldots x_{n}\right)\)
\(D_{2}=\operatorname{diag}\left(y_{1}, y 2, \ldots \ldots \ldots y_{n}\right)\)
\(D_{1}{ }^{\prime}=\) 衁ag \(\left(x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots . . x_{n}{ }^{\prime}\right)\)
\(D_{2}{ }^{\prime}=\operatorname{diag}\left(y_{1}{ }^{\prime} \ldots \ldots \ldots . y_{n}{ }^{\prime}\right)\)
\(p_{i}=x_{i}{ }^{\prime} / x_{i}\)
    \(q_{j}=y_{j}{ }^{1 / y} j_{j}\)
        \(\sum_{p} x_{i} a_{i j} y_{j}=1 \sum_{j} x_{i} a_{i j} y_{j}=1\)
        \(\sum_{i}^{\prime} x_{i} a_{i j} y_{j}=1 \sum_{j} x_{i}{ }^{\prime} a_{i j} y_{j}{ }^{\prime}=1\)
        \(\sum_{i=1}^{n} \min x_{i} a_{i \ddot{ } \ddot{i}_{j}} \leq 1 \leq \sum_{j=1}^{n} \max x_{i} a_{i j} y_{j}\)
        \(\sum_{i}^{n} p_{i} x_{i} a_{i j} q_{j} y_{j}=1 ; \sum_{j}^{n} p_{i} x_{i} a_{i j} q_{j} y_{j}=1\)
Let \(E_{j}=\left\{i / a_{i j}>0\right\} F_{i}=\left\{j / a_{i j}>0\right\}\)
```

$\boldsymbol{m}=\left\{\boldsymbol{i} / \boldsymbol{p}_{i}=\min _{i} \boldsymbol{P}_{i}=\underline{\boldsymbol{P}}\right\}$,
$\boldsymbol{M}=\left\{\boldsymbol{j} / \boldsymbol{q}_{\boldsymbol{j}}=\boldsymbol{\operatorname { m a x }}_{\boldsymbol{j}} \boldsymbol{q}_{\boldsymbol{j}}=\overline{\boldsymbol{q}}_{1}\right\}$
Assume,
$i_{o} \in \boldsymbol{m}, j_{o} \in M$, Then $\mathbf{q}_{o}\left(\sum_{i} P_{i} x_{i} a_{i} j_{o} y_{j_{o}}\right)-1 \leq \boldsymbol{p}_{i_{o}}{ }^{-1}$
$\boldsymbol{P}_{\boldsymbol{i}_{o}} \geq \boldsymbol{q}_{\boldsymbol{j}_{o}}{ }^{-1}, \boldsymbol{q}_{\boldsymbol{j}_{o}}=\boldsymbol{P}_{\boldsymbol{i}_{o}}{ }^{-1}=\underline{\boldsymbol{P}^{-1}}$
$\boldsymbol{P}_{i}=\underline{\boldsymbol{P}}$ when $\boldsymbol{i} \in \boldsymbol{E}_{j_{o}}$.
Thus
$\bigcup_{j \in M} E j \subseteq M$ and it follows that $\mathbf{A}[\mathrm{m} / \mathrm{M}]=\mathbf{0}$. In the same way
$\boldsymbol{P}_{i_{o}}=\boldsymbol{q}_{i_{o}}{ }^{-1}$ is possibly only if $\boldsymbol{q}_{j}=\bar{q}$ for all $\boldsymbol{j} \in \boldsymbol{F}_{i_{o}}$.
Hence $q_{j}=q$, when $j \in F_{i}$ and $\mathbf{i} \in \mathbf{m}$.
Thus $\cup_{i \in m} \boldsymbol{F i} \subseteq$ and it follows that $\mathbf{A}[\mathrm{m} / \mathrm{M}]=\mathbf{0}$.
On $\mathbf{m \times M} \times$ Piqj $=p \bar{q}$ and it follows that $B[m / M]=B^{\prime}[m / M]$ is quaternion doubly stochastic. In particular m and M must have the same size.

If A is fully indecomposable, $A(m / M]$ and $A(m / M)$ thus cannot exist.
In such a case $A=A(m / M]$. Thus $D_{1} A D_{2}=D_{1}{ }^{\prime} A D_{2}{ }^{\prime}$ and D_{1} and D_{2} are themselves unique upto a scalar multiple.

If $A(m / M]$ and $[m / M)$ exists, $B(m / M)$ and $B^{\prime}(m / M)$ exist and are each
quaternion doubly stochastic matrices of order less than n. Further more $B(m / M)=$ $D_{1}{ }^{\prime \prime} A(m / M) D_{2}{ }^{\prime \prime}$ and $B^{\prime}(m / M)=D_{1}{ }^{\prime \prime} A(m / M) D_{2}{ }^{\prime \prime \prime}$
Where the D 's are diagonal matrices with positive main diagonals. The argument may be repeated on these submatrices until $D_{1} A D_{2}=D_{1}{ }^{\prime}{A D_{2}}^{\prime}$ is established.
Lemma - 1
If $\mathbf{A} \in \mathbf{H}^{n \times n}$ is a row stochastic quaternion matrix and $\beta_{1}, \beta_{2}, \ldots . . \beta_{n}$ are
columns of \mathbf{A}, then $\prod_{k=1}^{n} \beta_{k} \leqq 1$, with equality only if each $\beta_{\mathbf{k}}=1$.
Proof:
Let A have column sums β
${ }_{1}, \ldots \beta_{\mathrm{n}}$ of course, each $\beta_{\mathrm{k}} \geqq 0$ and $\sum_{k=1}^{n} \beta_{k}=n$.

By arithmetic geometric mean inequality $\prod_{k=1}^{n} \beta_{k} \leqq\left[[1 / N] \sum_{k=1}^{n} \beta_{k}\right]^{n}=1$
with equality occuring only if each
$\beta_{\mathrm{k}}=1$

$$
\min \prod_{k=1}^{n} \beta_{k} \leq \max \left[(1 / N) \sum_{k=1}^{n} \beta_{k}\right]^{n}=1
$$

Lemma : 2
Let $\mathrm{A}=\left(\mathrm{a}_{i j}\right)$ be an nxn non-negative quaternion matrix with total support and suppose that if $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{N},\left\{x_{i, n}\right\}$ and $\left\{y_{j, n}\right\}$ are positive sequences such that $\mathrm{x}_{\mathrm{i}}, \mathrm{ny}_{\mathrm{j}}, \mathrm{n}$ converges to a positive limit for each i, j such that aij$\neq 0$ then there exist convergent positive sequences $\left\{x_{i, n}^{\prime}\right\},\left\{y_{j, n}^{\prime}\right\}$ with positive limits such that $\mathrm{x}_{\mathrm{i}, \mathrm{n}}^{\prime} \mathrm{y}_{\mathrm{j}, \mathrm{n}}^{\prime}=\mathrm{x}_{\mathrm{i}, \mathrm{n}} \mathrm{y}_{\mathrm{j}, \mathrm{n}}$ for all i,j,n.

PROOF:

A is fully indecomposable.
Let

$$
\begin{aligned}
& \mathrm{E}^{(1)}=\{1\} \\
& \mathrm{F}^{(1)}=\left\{j / a_{i j} \succ 0\right\} \\
& \mathrm{E}^{(\mathrm{s})}=\left\{i \notin \bigcup_{k=1}^{s-1} \epsilon^{(k)}\right. \text { /for some } \\
& \left.\mathrm{j} \in \mathrm{~F}^{(s-1)}, \mathrm{a}_{i j} \succ 0\right\} \\
& \mathrm{F}^{(\mathrm{s})}=\left\{\mathrm{j} \notin \bigcup_{k=1}^{s-1} F^{(k)} /\right. \text { for some } \\
& \left.i \in E^{(\mathrm{s})}, \mathrm{a}_{i j} \succ 0\right\} \text { when } \mathrm{s} \succ 1 .
\end{aligned}
$$

The sets $\mathrm{E}^{(s)}$ and $\mathrm{F}^{(s)}$ are void for sufficiently large S .
Define $E=U_{k} E^{(k)}$ and $F=U_{k} F^{(k)}$.
Since A has total support, the first row of A contains a nonzero element;
Thus $\mathrm{F}^{(1)}$ is non-void. Since $\mathrm{F}^{(1)} \subseteq \mathrm{F}, \mathrm{F}$ is nonvoid. Also since $\{1\}=\mathrm{E}^{(1)} \subseteq \mathrm{E}$ is nonvoid.

Suppose E is a proper subset of $\{1,2, \ldots . . . n\}$. Pick $\mathrm{i} \notin E, j \in F$. Then $\mathrm{j} \in \mathrm{F}^{(\mathrm{s})}$ for some S. Since $\mathrm{i} \notin \mathrm{E}$, certainly then it could not be that $\mathrm{a}_{i j} \succ 0$ for then
$\mathrm{i} \in \mathrm{E}^{(s+1)} \subseteq E$, a contraolication. Hence $\mathrm{i} \notin E, j \in F \Rightarrow a_{i j}=0$,
ie., $\mathrm{A}(\mathrm{E} / \mathrm{F}]=0$

$$
\mathrm{F} \neq\{1,2, \ldots . . . n\}, A[E / F)=0 .
$$

Define an nxn matrix $H=\left(h_{i j}\right)$ as follows. If $\mathrm{a}_{i j}=0$, set $\mathrm{h}_{i j}=0$,
if $\mathrm{a}_{i j} \neq 0$ and $\mathrm{a}_{i j}$ lies on t positive diagonals in A , set $\mathrm{h}_{i j}=\mathrm{t} / \tau$ where τ is the total number of positive diagonals in A.
Then H is quaternion doubly stochastic and $h_{i j}=0$ if and only if $\mathrm{a}_{i j}=0$. Suppose E contains u elements and F contains V elements.
Since $\mathrm{H}(\mathrm{E} / \mathrm{F}]=0, \sum_{i \in F} \sum_{j \in F} h_{i j}=v$, since either $\mathrm{F}=\{1, \ldots \ldots . n\}$ or $\mathrm{H}[\mathrm{E} / \mathrm{F})=0, \sum_{i \in E} \sum_{j \in F} h_{i j}=u$, Thus E and F have the same number
of elements. But E and F cannot be proper subsets of $\{1, \ldots . . n\}$ if A is
assumed to be fully indecomposable.
Thus
$\mathrm{E}=\mathrm{F}=\{1, \ldots \ldots . . n\}$
Define $x_{i, n}^{\prime}=x_{i, n} y_{j, n}$ and

$$
\mathrm{y}_{j, n}^{\prime}=x_{i, n} y_{j, n}=x_{i, n} y_{j, n} \text { for all } \mathrm{i}, \mathrm{j}, \mathrm{n} .
$$

Then $x_{i, n}^{\prime} y_{j, n}^{\prime}=x_{i, n} y_{j, n}$ for all i,j,n.Since $x_{1, n}^{\prime}=1$ for all n .
Certainly $x_{i, n}^{\prime} \rightarrow 1$. For $\mathrm{j} \in \mathrm{F}^{(1)}, \mathrm{y}_{j, n}^{\prime}=x_{i, n}^{\prime} \mathrm{y}_{j, n}^{\prime}=x_{i, n} y_{j, n}$ has a non-negative limit.

Inductively suppose that is known that $x_{i, n}^{\prime}$ and $y^{\prime}{ }_{j, n}$ converge to positive
limits when $i \in \bigcup_{k=1}^{s-1} E^{(k)}$ and $j \in \bigcup_{k=1}^{s-1} F^{(k)}$. For it $\mathrm{E}^{(s)}$ there is a $\mathrm{j}_{\mathrm{s}-1} \in F^{(s-1)}$
such that $\mathrm{a}_{i j s-1} \succ 0$. Thus $x_{i, n}^{\prime}=x_{i, n}^{\prime} y_{s-1, n}^{1} / y^{\prime}{ }_{j s-1, n}=x_{i, n} y_{j s-1, n} / y^{\prime}{ }_{j s-1, n}$
has a positive limit.

Then for $j \in F^{(s)}$ there is $\mathrm{a}_{i s} \in E^{(s)}$ such that $a_{i s} j \succ 0$. When $y^{\prime}{ }_{j, n}=x_{i s, n}^{\prime} y^{\prime}{ }_{j, n} / x_{i s, n}^{\prime}=x_{i s, n} y_{j, n} / x_{i s, n}^{\prime}$ has a positive limit.
This completes the Proof in cas A is fully indecomposable quaternion doubly stochastic matrices.
If A is not fully inclecomposable, then neither is the corresponding quaternion doubly stochastic matrix H. This means that there exist Permutations P and Q such that $\mathrm{PHQ}=\mathrm{H}_{1} \oplus \ldots \ldots . . \oplus H_{g}$ where each H_{k} is quaternion doubly stochastic and fully indecomposable. Thus also $\mathrm{PAQ}=\mathrm{A} 1 \oplus$ \qquad $\oplus \mathrm{A}_{\mathrm{g}}$. Where each A_{k} has total support and is fully indecomposable.
Define an iteration on A as follows

$$
\begin{aligned}
& \text { Let } x_{i, 0}=1, y_{j, 0}=\left(\sum_{i=1}^{N} a i j\right)^{-i} \text { and set } x_{i, n+1}=\propto^{-1}{ }_{i, n} x_{i, n} y_{j, n+1}=\beta^{-1}{ }_{j, n} y_{j, n} . \\
& \propto_{i, n}=\sum_{j=1}^{n} x_{i, n} a_{i j} y_{j, n}, \beta_{j, n}=\sum_{i=\prime}^{n} \propto_{i, n}{ }^{-1} x_{i, n} \propto_{i j} y_{j, n}, \\
& i=1, \ldots . n, j=1, \ldots \ldots . n, n=0,1, \ldots \ldots .
\end{aligned}
$$

Note that $\left(x_{i, n} a_{i j} y_{j, n}\right)$ is column stochastic and $\left(x_{i, n+1} a_{i j} y_{j, n}\right)$ is row stochastic.

$$
y_{j, n}=\left(\sum_{i=1}^{n} x_{i, n} a_{i j}\right)^{-1} \leqq x_{i o}{ }^{-1} a_{i o, n}{ }^{-1} j \leqq x_{i o, n}{ }^{-1} a^{-1} .
$$

Where $\mathrm{i}_{0} \mathrm{is}$ such that $\mathrm{a}_{i j} \succ 0$ and a is the minimal positive $\mathrm{a}_{i j}$. Thus $x_{i},{ }_{n} y_{j}, n \leqq a^{-1}$ if $a_{i j} \succ 0$.

Let A have a positive diagonal corresponding to a permulatation σ, and Set

$$
\begin{aligned}
& S_{n}=\prod_{i=1}^{n} x_{i, n} y_{\sigma(i)}, n \text { and } \\
& S_{n}^{1}=\prod_{i=1}^{n} x_{i, n+1} y_{\sigma(i), n} \\
& S_{n} \leqq s_{n}{ }^{1} \leqq s_{n}+1 \leqq a^{-n}
\end{aligned}
$$

Thus $S_{n} \rightarrow L$ and $S_{n}{ }^{\prime} \rightarrow L$.
where $o \prec L \leqq a^{-n}$.
$\prod_{j=1}^{n} \beta_{j},_{n}=s_{n}{ }^{\prime} / s_{n}+1 \rightarrow 1$. This is impossible unless each $\beta_{j},_{n} \rightarrow 1$. Since $\prod_{k=1}^{n} \beta_{k}$ has a unique maximal value of 1 . Only when $\beta_{1}=\ldots \ldots \ldots \beta_{n}=1$. Similarly each $\propto_{i, n} \rightarrow 1$. A_{n} is the $\mathrm{n}^{\text {th }}$ matrix in the iteration and that $\mathrm{A}_{\mathrm{nk}} \rightarrow \mathrm{B}$ and $\mathrm{A}_{\mathrm{mk}} \rightarrow \mathrm{C}$. Observe that for any given pair $\mathrm{i}, \mathrm{j} \beta_{\mathrm{ij}} \neq 0 \Leftrightarrow \mathrm{c}_{i j} \neq 0$. For any permutations σ,
$\prod_{i=1}^{n} b_{i}, \sigma_{(i)}=\prod_{i=1}^{n} c_{i}, \sigma_{c i}=L \prod_{i=1}^{n} a_{i}, \sigma_{(i)}$. Thus certainly $\mathrm{b}_{\mathrm{ij}} \neq 0 \Rightarrow \mathrm{c}_{\mathrm{ij}} \neq 0$ for suppose $b_{i o} j_{o} \neq 0$ then $b_{\text {io }} j_{o}$ leis on a positive diagonal.

The corresponding diagonal in c would have a positive product. Thus $\mathrm{c}_{\mathrm{i} 0} \mathrm{j}_{0} \neq 0$ in the same way $\mathrm{c}_{\mathrm{ij}} \neq 0 \Rightarrow \mathrm{~b}_{\mathrm{ij}} \neq 0$. If in addition A has total support then $\mathrm{a}_{\mathrm{ij}} \neq 0 \Leftrightarrow \mathrm{~b}_{\mathrm{ij}} \neq 0 \Leftrightarrow \mathrm{c}_{i j} \neq 0$.

By construction there exist matrices $\mathrm{D}_{1}, \mathrm{k}=\operatorname{diag}\left(X_{1, k}, \ldots \ldots . . . X_{n, k}\right)$ and

$$
\begin{aligned}
& \mathrm{D}_{2, \mathrm{k}}^{*}=\operatorname{diag}\left(Z_{1, k}, \ldots \ldots Z_{n, k}\right) \\
& \mathrm{A}_{\mathrm{mk}}=\mathrm{D}_{1, \mathrm{k}}^{*} \mathrm{~A}_{\mathrm{mk}} \mathrm{D}_{2, \mathrm{k}}^{*} . \text { For } \mathrm{b}_{\mathrm{ij}} \succ 0,
\end{aligned}
$$

$X_{i, k} Z_{j, k} \rightarrow c_{i j} b_{i j}^{-1}$. By lemma 2, there exist a positive sequences $\left\{X_{i, k}^{\prime}\right\}$ and $\left\{Z^{\prime}{ }_{j, k}\right\}$
coverging to a positive limits such that $\mathrm{X}_{\mathrm{i}, \mathrm{k}}^{\prime} \mathrm{Z}_{\mathrm{j}, \mathrm{k}}^{\prime}=\mathrm{X}_{\mathrm{i}, \mathrm{k}} \mathrm{Z}_{\mathrm{j}, \mathrm{k}}$ for all $\mathrm{i}, \mathrm{j}, \mathrm{k}$
$D_{1}{ }^{*}=\lim _{k \rightarrow \infty} \operatorname{diag}\left(X_{1, k}{ }^{\prime} \ldots . . X_{n, k}\right)$
$D_{2}{ }^{*}=\lim _{k \rightarrow \infty} \operatorname{diag}\left(Z_{1, k}{ }^{\prime}, \ldots . . Z_{n, k}\right)$
then $\mathrm{C}=\mathrm{D}_{1} * \mathrm{~B} \mathrm{D}_{2}{ }^{*}$. By the uniquences part of the theorem $\mathrm{B}=\mathrm{C}$. It follows that the iteration converges.

Suppose A has total support. Let $\mathrm{D}_{1, \mathrm{n}}=\operatorname{diag}\left(X_{1, n}, \ldots . . X_{n, n}\right)$ and $\mathrm{D}_{2, \mathrm{n}}=\operatorname{diag}\left(y_{1, n}, \ldots . . y_{n, n}\right)$. Then $\mathrm{B}=\lim _{n \rightarrow \infty} \operatorname{diag}\left(D_{1, n} A_{2, n}\right)$ exists and $\mathrm{b}_{i j} \neq 0 \Leftrightarrow \mathrm{a}_{i j} \neq 0$. when $\mathrm{a}_{i j} \succ 0, \mathrm{x}_{\mathrm{i}, \mathrm{n}} \mathrm{y}_{i, n} \rightarrow \mathrm{~b}_{i j} \mathrm{a}_{\mathrm{ij}}{ }^{-1}$. By lemma 2 there are convergent positive sequences $\left\{x_{i, n}{ }_{i, n}\right\}\left\{y_{i, n}^{\prime}\right\}$ with positive limits such that $\mathrm{X}_{i, n}{ }^{\prime} \mathrm{y}_{j, n}{ }^{\prime}=\mathrm{x}_{i, n} \mathrm{y}_{j, n}$ for all $\mathrm{i}, \mathrm{j}, \mathrm{n}$.

$$
\text { Let } \begin{aligned}
\mathrm{D}_{1} & =\lim _{n \rightarrow \infty} \operatorname{diag}\left(x_{1, n}^{\prime}, \ldots . . x_{n, n}\right) \\
\mathrm{D}_{2} & =\lim _{n \rightarrow \infty} \operatorname{diag}\left(y_{1, n}^{\prime}, \ldots . . y_{n, n}\right)
\end{aligned}
$$

Then $B=D_{1} A_{2}$
Finally we observe that if A has support which is not total, then by Birkhoff's theorem there is a non-zero in the iteration. In fact every non-zero element in A which is not on a positive diagonal must do so. If the limit matrix could be put in the form $\mathrm{D}_{1} \mathrm{AD}_{2}$ then some term $\mathrm{x}_{i} \mathrm{a}_{i j} \mathrm{y}_{j}=0$ where $\mathrm{a}_{i j} \succ 0$. But then either $\mathrm{x}_{i}=0$ or $\mathrm{y}_{j}=0$. The former leads to a row of zeros and the latter to a column of zeros in $D_{1} A D_{2}$. In either case $D_{1} A D_{2}$. In either case $D_{1} A D_{2}$ could not be quaternion doubly stochastic matrix.

[^0]
[^0]: Dr.Gunasekaran K" Concerning Non-Negative Quaternion Doubly Stochastic Matrices" International Journal of Engineering Science Invention (IJESI), Vol. 08, No. 03, 2019, PP 1823

