Concerning Non-Negative Quaternion Doubly Stochastic Matrices

Dr.Gunasekaran K. and Mrs.Seethadevi R.

Department of Mathematics, Government arts College (Autonomous), Kumbakonam, Tamilnadu, India. Corresponding Author: Dr.Gunasekaran K

Abstract: This paper is concerned with the condition for the convergence to a quaternion doubly stochastic limit of a sequence of matrices obtained from a non-negative matrix A by alternately scaling the rows and columns of A and with the condition for the existence of diagonal matrices D_1 and D_2 with positive main diagonals such that $D_1 A D_2$ is quaternion doubly stochastic. The result is the following the sequence of matrices converges to a doubly stochastic limit if and only if the quaternion matrix A contains at least one positive main diagonal. A necessary and sufficient condition that there exists diagonal matrices D_1 and D_2 with positive main diagonal matrices such that $D_1 A D_2$ is both quaternion doubly stochastic and the limit of the iteration is that A $\neq 0$ and each positive entry of A is contained in a positive diagonal. The form $D_1 A D_2$ is unique, and D_1 and D_2 are unique up to a positive scalar multiple if and only if A is fully indecomposable.

Date of Submission: 20-02-2019

Date of acceptance: 05-03-2019

I. Definitions:

If $A \in H^{n \times n}$ is a quaternion doubly stochastic matrix and σ is a Permutation of $\{1 \dots n\}$, then the sequence of elements $a_1, \sigma_{(1)\dots}a_n, \sigma_{(n)}$ is called the diagonal of A corresponding to σ . If σ is the identity, the diagonal is called the main diagonal.

If A is a non-negative square matrix, A is said to have total support if $A \neq o$ and if every positive element of A lies or a positive diagonal.

II. Theorem:

Let A be a nonnegative n x n quaternion matrix. A necessary and sufficient condition that there exists a quaternion doubly stochastic matrix B of the form $D_1 A D_2$ where D_1 and D_2 are diagonal matrices with positive main diagonals is that A has total support. If B exists then it is unique. Also D_1 and D_2 are unique upto a scalar multiple if and only if A is fully indecomposable.

A necessary and sufficient condition that the iterative process of alternately normalizing the rows and columns of A will converge to a quaternion doubly stochastic limit is that A has support. If A has total support, this limit is the described matrix $D_1 A D_2$. If A has support which is not total, this limit cannot be of the form $D_1 A D_2$.

PROOF:

Suppose $B = D_1 A D_2$ and $B' = D_1 A D_2$ are quaternion doubly stochastic matrix.

$$D_{i} = diag (x_{i}, x_{2}, \dots, x_{n})$$

$$D_{z} = diag (y_{i}, y_{2}, \dots, y_{n})$$

$$D_{i}' = diag (x_{i}', x_{2}', \dots, x_{n}')$$

$$D_{z}' = diag (y_{i}', y_{n}, \dots, y_{n}')$$

$$p_{i} = x_{i}'/x_{i}$$

$$qj = yj'/yj'$$

$$\sum x_{i}a_{ij}y_{j} = 1 \sum x_{i}a_{ij}y_{j} = 1$$

$$\sum x_{i}a_{ij}y_{j} = 1 \sum x_{i}'a_{ij}y_{j}' = 1$$

$$\sum x_{i}a_{ij}y_{j} = 1 \sum x_{i}'a_{ij}y_{j} = 1$$

$$\sum x_{i}a_{ij}y_{j} = 1 \sum x_{i}'a_{ij}y_{j} = 1$$

$$\sum x_{i}a_{ij}y_{j} = 1 \sum x_{i}a_{ij}y_{j} = 1$$

$$Let E_{j} = [i/a_{ij} > 0] F_{i} = [j/a_{ij} > 0]$$

$$m = \left\{ i / p_{i} = \min_{i} P_{i} = \underline{P} \right\},$$

$$M = \left\{ j / q_{j} = \max_{j} q_{j} = \overline{q}_{1} \right\}$$
Assume,
$$i_{o} \in m, j_{o} \in M, \text{Then } \mathbf{q}_{o} \left(\sum_{i} P_{i} x_{i} a_{i} j_{o} y_{j_{o}} \right) - 1 \le p_{i_{o}}^{-1}$$

$$P_{i_{o}} \ge q_{j_{o}}^{-1}, q_{j_{o}} = P_{i_{o}}^{-1} = \underline{P}^{-1}$$

$$P_{i} = \underline{P} \text{ when } i \in E_{j_{o}}.$$

Thus

 $\bigcup_{j \in M} Ej \subseteq M \text{ and it follows that } A[m/M] = 0. \text{ In the same way}$ $P_{i_o} = q_{i_o}^{-1} \text{ is possibly only if } q_j = \overline{q} \text{ for all } j \in F_{i_o}.$ Hence $q_j = \overline{q}$, when $j \in F_i$ and $i \in m$. Thus $\bigcup_{i \in m} Fi \subseteq$ and it follows that A[m/M] = 0.

On m x M, Piqj = $p \bar{q}$ and it follows that B [m/M] = B' [m/M] is quaternion doubly stochastic. In particular m and M must have the same size.

If A is fully indecomposable, A(m/M] and A(m/M) thus cannot exist. In such a case A = A(m/M]. Thus $D_1AD_2 = D_1'AD_2'$ and D_1 and D_2 are themselves unique upto a scalar multiple.

If A(m/M] and [m/M) exists, B(m/M) and B'(m/M) exist and are each quaternion doubly stochastic matrices of order less than n. Further more B(m/M) = $D_1^{"}A(m/M) D_2^{"}and B'(m/M) = D_1^{""}A(m/M)D_2^{""}$

Where the D's are diagonal matrices with positive main diagonals. The argument may be repeated on these submatrices until $D_1AD_2 = D_1'AD_2'$ is established. Lemma - 1

If $A \in H^{n \times n}$ is a row stochastic quaternion matrix and $\beta_1, \beta_2, \dots, \beta_n$ are columns of A, then $\prod_{k=1}^n \beta_k \leq 1$, with equality only if each $\beta_k = 1$. Proof:

Let A have column sums β

1, β_n of course, each $\beta_k \ge 0$ and $\sum_{k=1}^n \beta_k = n$.

By arithmetic geometric mean inequality $\prod_{k=1}^{n} \beta_{k} \leq \left[\left[\frac{1}{N} \right] \sum_{k=1}^{n} \beta_{k} \right]^{n} = 1$

with equality occuring only if each

 $\beta_{\rm k} = 1$

$$\min \prod_{k=1}^{n} \beta_k \le \max \left[(\frac{1}{N}) \sum_{k=1}^{n} \beta_k \right]^n = 1$$

Lemma : 2

Lemma : 2

Let $A = (a_{ij})$ be an nxn non-negative quaternion matrix with total support and suppose that if $1 \le i, j \le N, \{x_{i,n}\}$ and $\{y_{j,n}\}$ are positive sequences such that x_i, ny_j, n converges to a positive limit for each i, j such that $aij \ne 0$ then there exist convergent positive sequences $\{x'_{i,n}\}, \{y'_{j,n}\}$ with positive limits such that $x'_{i,n}, y'_{j,n} = x_{i,n}y_{j,n}$ for all i,j,n.

PROOF:

A is fully indecomposable.

Let

$$E^{(1)} = \{1\}$$

$$F^{(1)} = \{j / a_{ij} \succ 0\}$$

$$E^{(s)} = \{i \notin \bigcup_{k=1}^{s-1} \in^{(k)} / \text{for some}$$

$$j \in F^{(s-1)}, a_{ij} \succ 0 \}$$

$$F^{(S)} = \{j \notin \bigcup_{k=1}^{s-1} F^{(k)} / \text{ for some}$$

$$i \in E^{(s)}, a_{ij} \succ 0 \} \text{ when s } \succ 1.$$

The sets $E^{(s)}$ and $F^{(s)}$ are void for sufficiently large S.

Define $E = U_k E^{(k)}$ and $F = U_k F^{(k)}$.

Since A has total support, the first row of A contains a nonzero element;

Thus $F^{(1)}$ is non-void. Since $F^{(1)} \subseteq F$, F is nonvoid. Also since $\{1\} = E^{(1)} \subseteq E$ is nonvoid.

Suppose E is a proper subset of $\{1, 2, ..., n\}$. Pick $i \notin E, j \in F$. Then $j \in F^{(s)}$ for some S. Since $i \notin E$, certainly then it could not be that $a_{ij} \succ 0$ for then $i \in E^{(s+1)} \subseteq E$, a contraolication. Hence $i \notin E, j \in F \Rightarrow a_{ij} = 0$, i.e., A(E/F) = 0

$$F \neq \{1, 2, ..., n\}, A[E/F] = 0.$$

Define an nxn matrix $H = (h_{ii})$ as follows. If $a_{ii} = 0$, set $h_{ii} = 0$,

if $a_{ij} \neq 0$ and a_{ij} lies on t positive diagonals in A, set $h_{ij} = t/\tau$ where τ is the total number of positive diagonals in A. Then H is quaternion doubly stochastic and $h_{ij} = 0$ if and only if $a_{ij} = 0$. Suppose E contains u elements and F contains V elements. Since H (E/F] = 0, $\sum_{i \in F} \sum_{j \in F} h_{ij} = v$, since either F = {1,....,n} or H[E/F) = 0, $\sum_{i \in E} \sum_{j \in F} h_{ij} = u$, Thus E and F have the same number of elements. But E and F cannot be proper subsets of $\{1,...,n\}$ if A is assumed to be fully indecomposable.

Thus

 $E = F = \{1, \dots, n\}$ Define $x'_{i,n} = x_{i,n} y_{j,n}$ and $y'_{j,n} = x_{i,n} y_{j,n} = x_{i,n} y_{j,n}$ for all i,j,n. Then $x'_{i,n} y'_{j,n} = x_{i,n} y_{j,n}$ for all i,j,n. Since $x'_{1,n} = 1$ for all n. Certainly $x'_{i,n} \rightarrow 1$. For $j \in F^{(1)}$, $y'_{j,n} = x'_{i,n} y'_{j,n} = x_{i,n} y_{j,n}$ has a non-negative limit. Inductively suppose that is known that $x'_{i,n}$ and $y'_{i,n}$ converge to positive

limits when $i \in \bigcup_{k=1}^{s-1} E^{(k)}$ and $j \in \bigcup_{k=1}^{s-1} F^{(k)}$. For it $E^{(s)}$ there is a $j_{s-1} \in F^{(s-1)}$ such that $a_{ij s-1} \succ 0$. Thus $x'_{i,n} = x'_{i,n} y^1_{s-1,n} / y'_{j s-1,n} = x_{i,n} y_{j s-1,n} / y'_{j s-1,n}$ has a positive limit.

Then for $j \in F^{(s)}$ there is $a_{is} \in E^{(s)}$ such that $a_{is} j \succ 0$. When $y'_{j,n} = x'_{is,n} y'_{j,n} / x'_{is,n} = x_{is,n} y_{j,n} / x'_{is,n}$ has a positive limit.

This completes the Proof in cas A is fully indecomposable quaternion doubly stochastic matrices.

If A is not fully inclecomposable, then neither is the corresponding quaternion doubly stochastic matrix H. This means that there exist Permutations P and Q such that PHQ=H₁ \oplus \oplus H_g where each H_k is quaternion doubly stochastic and fully indecomposable. Thus also PAQ = A1 \oplus \oplus A_g. Where each A_k has total support and is fully indecomposable.

Define an iteration on A as follows

Let
$$x_{i,0} = 1$$
, $y_{j,0} = \left(\sum_{i=1}^{N} a_{ij} \right)^{-i}$ and set $x_{i,n+1} = \infty^{-1}_{i,n} x_{i,n} y_{j,n+1} = \beta^{-1}_{j,n} y_{j,n}$.
 $\infty_{i,n} = \sum_{j=1}^{n} x_{i,n} a_{ij} y_{j,n}, \beta_{j,n} = \sum_{i=1}^{n} \infty_{i,n}^{-1} x_{i,n} \infty_{ij} y_{j,n},$

 $i = 1, \dots, n, j = 1, \dots, n, n = 0, 1, \dots$

Note that $(x_{i,n}a_{ij} y_{j,n})$ is column stochastic and $(x_{i,n+1} a_{ij} y_{j,n})$ is row stochastic.

$$y_{j,n} = \left(\sum_{i=1}^{n} x_{i,n} a_{ij}\right)^{-1} \leq x_{io}^{-1} a_{io,n}^{-1} j \leq x_{io,n}^{-1} a^{-1}.$$

Where i_0 is such that $a_{ij} > 0$ and a is the minimal positive a_{ij} . Thus $x_{i,n} y_j, n \le a^{-1}$ if $a_{ij} > 0$.

Let A have a positive diagonal corresponding to a permulatation σ , and Set

$$S_{n} = \prod_{i=1}^{n} x_{i,n} y_{\sigma(i)}, n \text{ and}$$
$$S_{n}^{-1} = \prod_{i=1}^{n} x_{i,n+1} y_{\sigma(i),n}$$
$$S_{n} \leq s_{n}^{-1} \leq s_{n} + 1 \leq a^{-n}.$$

Thus $S_n \to L$ and $S_n' \to L$. where $o \prec L \leq a^{-n}$.

 $\prod_{j=1}^{n} \beta_{j}, = \frac{s_{n}}{s_{n}} + 1 \rightarrow 1.$ This is impossible unless each $\beta_{j}, \to 1.$ Since $\prod_{k=1}^{n} \beta_{k}$ has a unique maximal value of 1. Only when $\beta_{1} = \dots, \beta_{n} = 1.$ Similarly each $\infty_{i,n} \rightarrow 1.$ A_n is the nth matrix in the iteration and that A_{nk} \rightarrow B and A_{mk} \rightarrow C. Observe that for any given pair i, j $\beta_{ij} \neq 0 \Leftrightarrow c_{ij} \neq 0.$ For any permutations σ ,

 $\prod_{i=1}^{n} b_{i}, \sigma_{(i)} = \prod_{i=1}^{n} c_{i}, \sigma_{ci} = L \prod_{i=1}^{n} a_{i}, \sigma_{(i)}.$ Thus certainly $\mathbf{b}_{ij} \neq 0 \Rightarrow \mathbf{c}_{ij} \neq 0$ for suppose $\mathbf{b}_{io} \mathbf{j}_{o} \neq 0$ then $\mathbf{b}_{io} \mathbf{j}_{o}$ leis on a positive diagonal.

The corresponding diagonal in c would have a positive product. Thus $c_{i0}j_0 \neq 0$ in the same way $c_{ij} \neq 0 \Rightarrow b_{ij} \neq 0$. If in addition A has total support then $a_{ij} \neq 0 \Leftrightarrow b_{ij} \neq 0 \Leftrightarrow c_{ij} \neq 0$.

By construction there exist matrices D_{1}^{*} , k = diag $(X_{1,k}, \dots, X_{n,k})$ and

 $D_{2,k}^{*} = \text{diag} \left(Z_{1,k}, \dots, Z_{n,k} \right)$ $A_{mk} = D_{1,k}^{*} A_{mk} D_{2,k}^{*}. \text{ For } b_{ij} \succ 0,$

 $X_{i,k} Z_{j,k} \rightarrow c_{ij} b_{ij}^{-1}$. By lemma 2, there exist a positive sequences $\{X'_{i,k}\}$ and $\{Z'_{j,k}\}$ coverging to a positive limits such that $X'_{i,k} Z'_{i,k} = X_{i,k} Z_{j,k}$ for all i, j, k

 $D_1^* = \lim_{k \to \infty} diag (X_{1,k}' \dots X_{n,k})$

 $D_2^* = \lim_{k \to \infty} diag \ (Z_{1,k}', \dots, Z_{n,k})$

then $C = D_1 * B D_2 *$. By the uniquences part of the theorem B = C. It follows that the iteration converges.

Suppose A has total support. Let $D_{1,n} = diag(X_{1,n}, \dots, X_{n,n})$ and $D_{2,n} = diag(y_{1,n}, \dots, y_{n,n})$. Then $B = \lim_{n \to \infty} diag(D_{1,n}, A_{2,n})$ exists and $b_{ij} \neq 0 \Leftrightarrow a_{ij} \neq 0$. when $a_{ij} \succ 0$, $x_{i,n}y_{i,n} \rightarrow b_{ij}a_{ij}^{-1}$. By lemma 2 there are convergent positive sequences $\{x'_{i,n}\}\{y'_{i,n}\}$ with positive limits such that $x_{i,n}'y_{j,n}' = x_{i,n}y_{j,n}$ for all i, j, n. Let $D_1 = \lim_{n \to \infty} diag(x'_{1,n}, \dots, x_{n,n})$ $D_2 = \lim_{n \to \infty} diag(y'_{1,n}, \dots, y_{n,n})$

Then $B = D_1 A D_2$

Finally we observe that if A has support which is not total, then by Birkhoff's theorem there is a non-zero in the iteration. In fact every non-zero element in A which is not on a positive diagonal must do so. If the limit matrix could be put in the form $D_1A D_2$ then some term $x_i a_{ij} y_j = 0$ where $a_{ij} > 0$. But then either $x_i = 0$ or $y_j = 0$. The former leads to a row of zeros and the latter to a column of zeros in $D_1A D_2$. In either case $D_1A D_2$. In either case $D_1A D_2$ could not be quaternion doubly stochastic matrix.

Dr.Gunasekaran K" Concerning Non-Negative Quaternion Doubly Stochastic Matrices" International Journal of Engineering Science Invention (IJESI), Vol. 08, No. 03, 2019, PP 18-23