Assessment of Building Performance by Energy Retrofits of Building Services

Ar. ParulBhyan

(Research Scholar, Malaviya National Institute of TechnologyJaipur)

Abstract: The colossal majority of existing buildings are impacting our environment in notable ways including an energy perspective. It is well inveterate that building energy use can account for up to 30 to 40% of the total greenhouse gas emissions which have been rising steadily since the 1950s [1,2]. The built habitat is therefore a critical part of the climate change problem and solutions. Although the increased requirement for thermal comfort in buildings has increased the energy demand for various building services notably HVAC and lighting. Considering the fact that a majority of government buildings are old constructions and therefore large consumers of energy, the Ministry of Finance, Government of India, has issued guidelines for mandatory installation of energy efficient appliances in all Central Government buildings across India on 5th January, 2015 under the aegis of the National LED Programme.

This study considers the retrofitting potential of building services in existing buildings to achieve energy efficiency. Although there are a number of retrofit technologies promptly available, whereas methods of most cost-effective retrofit measures are still major technical challenges for particular projects. An overview of the publications and applications of the retrofit technologies in existing buildings is also provided. The aim of this work is to provide building researchers and practitioners with a better understanding of assessment of building performance by energy retrofit through existing government building assessment to promote energy conservation and sustainability. Paper focuses on only building services to establish the feasibility of technologies and assemblies to improve the building energy performance and also to understand the decision making technique as best option for retrofitting of existing building by identifying various parameters.

Keywords: Building Performance, Assessment, Energy, Retrofitting, Building Services, Delphi Technique

Date of Submission: 15-09-2019

Date of acceptance: 30-09-2019

I. Introduction

Whenever Building performance is discussed it is totally about impute of a building defining its overall function. It can be evaluated at different stages as pre-design, energyaudits, design, on-going performance and so on. The performance of building after construction process can be evaluated with two main categories quality (how appropriately the building fulfils its functions) and resources aving (how ample resource is needed to fulfil functions).Building performance is importantly related to architecture, building services its engineering, architectural engineering and construction management. Notable building performance aspects are energy efficiency, thermal comfortand day lighting. Incessant through the last many years of energy market evolution has been the foremost interest from commercial building owners and energy managers in understanding the energy performance of a building. Energy performance of a building can be evaluated in two ways ,first being its baseline at which the building is originally performing where it is, and second being for the betterment of building performance by energy retrofit by different ways.

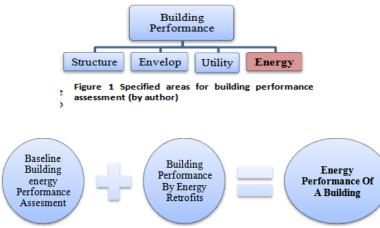


Figure 1 Energy performance of a building (by author)

Retrofitting itself includes evolving functional ability of any structure and when specifically energy retrofitting is discussed it's about evolving the energy efficiency of an existing building. But eventually, there are number of researches has already been done to carry out different energy efficiency to improve energy performance of existing building. Nowadays there are end number of retrofitting technologies introduced in market whereas the decision making regarding the use of technologies for particular type of project is still a big problematic subject to some constraints such as type of building, use of building, total budget, age of building, type of building services installed etc. Costing should not always be the only beneficial criteria it includes related or non-related energy factors, such as technical, social, reliable, energy and environmental etc. Objective of this paper an overview of recent work and research in field of retrofitting as well as the case studies to identify the most needed retrofitted building services to make the existing building energy efficient.

Review Of Literature I.

The problematic issue of high energy consumption in existing buildings and retrofitting measurers has been receiving increasing attention over the recent decade in the extant literature. There have been a number of research revised on various observations on this perspective, few of these are namely by Khairi, Jaapar And Yahya[2017] which promotes retrofitting as most environmentally friendly, economically competent and proven efficient solution to optimize the energy performance in existing buildings and as well the historic buildings through comparison of various analogous studies. Shaikh, Sahito, UqaliAndUmrani[2017] stated about the cost effective optimization of retrofitting for energy efficiency and various retrofittingscenarios has been discussed for most effective pre retrofit plan. Jan W. Bleyl [2018]stated through retrofitting many approach to combining energy cost saving with the added values of mpbs to enhance their business can appears to be enhance.

Author	Research year	Research approach	conclusions
Braid	2017	Systematic approach	Factors affecting energy consumption, factors to be considered when are assessing the energy performance of the buildings and various aspects of energy performance of buildings.
Shaikh, Sahito , Uqaili and Umrani	2017	Economic approach	Understanding challenges for cost-effective optimal retrofitting within buildings to attain energy standards Conservation and sustainability.
Panel. ,Burman and .Mumovic	2017	Analytical approach	The study of main protocols And standards used in the Construction industry for Measurement and verification (M&V)of retrofit Projects
M.A.Paya and Marin	2017	Economic approach	Economic study of both unglazed transpired solar air collector (UTSAC) and back-pass solar air collector (BPSAC) systems, taking into account the internal rate of return and installation cost, based on large-scale test setups and measured performance data.
Belany ,Bolf ,Novak, Roch and Otcenasova A	2018	Analytical approach	Describes the issue of power consumption of buildings
Xiaonuan, Zhonghua and Siu- Yu Lau	2018	Systematic approach	Active and passive strategies 14 should be integrated Into building Design to Optimize the energy performance.

II. Research Methodology

Assessment of building performance by its baseline to propose for Retrofitting of building services for an energy efficient building is achieved with two stage methodology a building was chosen which is Fletcher Bhawan of CSS Haryana Agricultural University, Hisar (an administrative building) initially site visits and observation of the above two buildings were carried out and the data is then computed to calculate the current energy performance index of the building as per energy conservation code. And secondly through using Delphi technique of analytic hierarchy process (AHP) a decision making of proposed retrofitted building services are concluded.

III. Case Studies

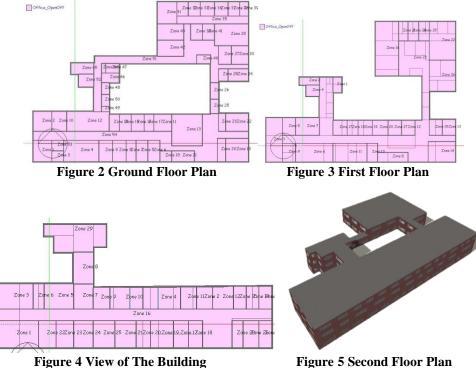
For the optimisation of most retrofitted building services for reducing energy consumption in existing building various existing buildings are taken up as case studies. The building's design is discussed in the beginning and its type of usage identified followed by a survey of the services systems as well as building use pattern. Scope for energy savings are then identified in each of these systems and retrofit measures are recommended. The overall savings as a cumulative effect of each of the individual measures on the system as a whole is calculated and evaluated in terms of payback period in years.

- 1. **The Godrej Bhavan Building, Mumbai** This case study highlights Godrej Bhavan, an iconic office building in South Mumbai, focusing on the strong business case for energy-efficiency retrofits. The building was retrofitted with three energy efficient technologies: HVAC by TRANE, lighting by PHILIPES and building management system by TRANE
- 2. **Retrofitting Mahindra Towers, Mumbai**This case study highlights the Mahindra towers headquarters, an office building in Mumbai, focusing on the strong business case for the ESCO model to implement energy efficiency improvement measures. The energy auditing was carried out for lighting and HVAC system for reducing energy consumption in building by replacing new chiller system with the baseline one.
- 3. **Global Education Centre (GEC)-1 in the Mysore campus**this case study includes the retrofitting of old chiller plant with less number of new valves and beams to reduce the energy consumption of building.
- 4. **Express Tower, Mumbai**the building fell under major energy efficient retrofitting successive study as various services were retrofitted to give new life to the building including plumbing lighting electrical and HVAC etc.

S. No.		The Godrej Bhavan Building In Mumbai	Retrofitting Mahindra Towers	Express Tower Mumbai	Global Education Centre (GEC)-1
1.	Location	Fort, South Mumbai	Worli, Mumbai, India	Nariman point, Mumbai	Mysore campus
2.	Building Gross Area	3,826 square meters (41,185 square feet)	18,430 Square Meters (198,277 Square Feet)	400,000sqft	440,000 sq. ft
3.	Building Use:	Commercial	Commercial	Commercial	Institutional
4.	Construc ted:	1972	1985	1972	2008
5.	Retrofit Complete d	2010	March-July 2009	2008-2013	September 2011
6.	Project Cost	Rs 5,384,000 (\$99,704)	Rs.40,73,310 (\$66,200)	900 crore	
7.	Project Type	Existing Building Renovation Or Retrofit	Existing Building Renovation Or Retrofit	Existing Building Renovation Or Retrofit	Existing Building Renovation Or Retrofit
8.	Pay Back Period	02 years	less than half year	05 Years	2 years
9.	Retrofitt ed Services	HVAC Lighting BMS	HVAC Lighting	HVAC Lighting Pumps Chiller system Building	HVAC

Table 2 conclusion f	or most onted	retrofitting services
Table 2 conclusion I	or most opted	i i cu ontung sei vices

Resulting to the conclusion of case studies HVAC and Lighting are the most energy consuming services in any building .so, the further study will elaborate the decision making for HVAC and Lighting services as well there reliability by taking various examples and calculating the energy performance index of existing building.


IV. Energy Performance Index

The Energy Performance Index (EPI) of a building is its annual energy consumption in kilowatt-hours per square meter of the building. While calculating the EPI of a building, the area of unconditioned basements shall not be included. EPI can be determined by:

EPI = Annual Energy Consumption (KWH) / Total Built-up Area – (unconditioned area)

5. BASELINE ASSESSMENT OF BUILDING PERFORMANCE

Building: Fletcher Bhawan of CSS Haryana Agricultural University, Hisar

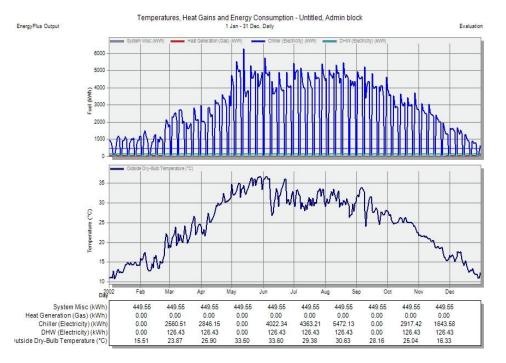


Figure 6 Monthly Report of HVAC Energy Consumption (Design Builder Software)

By simulating the building on design builder for hvacHence the total power consumption per m2 per **annum** EXISTING= 1116180kwh/yrsTotal built up area: 4352 Sqm

Table 3 Admin Building Total Baseline Energy Performance Index
--

For Admin Block (Day Time Occupancy 9hours)	Actual Power Consumption
HVAC	1116180 kwh/yr
Lighting	85831 kwh/yr
Total	1124711
Built-Up Area	4532.3 Sqm
EPI	265.6 kW-hr/m2/yr

And for lighting manual calculations has been done for appliances to calculate the existing Energy Performance Index.

Table 4 Energy Performance Index of Admin Block									
Appliance	Total applianc es of G.F	No.of hours used	Total applia nces of F.F	No.of hours used	Total applia nces of S.F	No.of hours used	TOTAL APPLIANC E /hr	Wat t	TOTAL WATT
Ceiling	90	8	59	8	30	8	1432	70	100240
Fan Desktop Computer	29	6	35	6	19	6	498	250	124500
T12 Fluorescen t Tubes	155	8	92	8	50	8	2376	34	80784
32 Inch LED TV	12	4	4	4	19	4	140	50	7000
light bulb	21	9	16	9	4	9	369	60	22140
light bulb (Incandesc ent)	36	9	21	9	12	9	621	100	62100
Phone Charger	59	9	46	9	26	9	1179	7	8253
Projector	4	1	1	1	1	1	6	250	1500
Scanner	4	1	3	1	0	1	7	15	105
Water Filter and Cooler	6	24	7	24	2	24	312	90	28080
Exhaust Fan	14	1	11	2	17	2	70	12	840
Microwave	1	1	2	2	0	2	5	700	3500
Electric Kettle	2	1	1	2	0	2	4	120 0	4800
Electric Stove	1	1	1	2	0	2	3	900	2700
Fridge / Freezer	1	1	3	2	0	2	7	300	2100
Internet Router	14	24	11	24	15	24	960	15	14400
Printing Machine	0	0	4	9	0	0	36	300	10800
Lift	1	9	0	9	0	0	9	333	2997
				Total w day	att per	476839	Watt		
				Load i kwh	n	476.83	Kwh		
				Load i month		14305	kwh/m		
				Load in o	•	85831	kwh/Yr		
				Cooling kwh/yr Totol	load	1116180	kwh/Yr		
				Total load Built up		1202011 4532	kwh/Yr sqm		
				area		1002	օգա		
				EPI		265.2099 kw	vh/yr/m2		

Hence the total power consumption per m2 per annum EXSTING = 265.2099 kwh/yr/m2 As per energy conservation code

Energy Perform	ance Index Benchmarks (EPI) – (kWh	/ m²/year)					
	Day time occupancy	24 hours Occupancy					
Climate Classification	5 Days a week	7 Days a week					
Commercial/Institutional/Academic/Hospital buildings							
Moderate	75	225					
Composite / Warm and humid / hot and dry	90	300					
Residential buildings/Hostels							
Moderate	50						
Composite / Warm and humid / hot and dry	70						

Hence, The building is day time occupancy admin building in composite climate of hisar ,Haryana with required EPI 90kwh/yr/m2 so to achieve the required EPI retrofitting is needed.

6. DECISION MAKING FACTORS (PARAMETERS) FOR SERVICES (PROPOSED DESIGN) with analytic hierarchy process (AHP)

HVAC TYPES

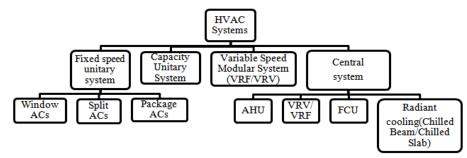


Figure 7 Various Types of HVAC Systems Discussed in Analysis (source: NBC 2016)

Parameters Considered (source: NBC 2016)

- Temperature Control
- Relative Humidity Control
- Space Pressure Control
- Capacity Requirements
- Spatial Optimization
- Electricity Distribution
- Initial Cost
- Operational Cost
- Maintenance Cost
- Reliability
- Flexibility
- Noise Reduction
- Easy Installation
- Zone-ability

8. MPC (Matrix Parametric Comparison) Tables

Table 5 MPC for Temperature Control

Temperature Control						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	0.14	0.11	4.0079	0.056
Capacity Unitary System	1.00	1.00	0.14	0.11	4.0079	0.056
Variable Speed Modular System	7.00	7.00	1.00	1.00	4.0079	0.416
Centeral System	9.00	9.00	1.00	1.00	4.2218	0.472
Sum Total	18.00	18.00	2.29	2.22	16.25	1.00

Relative Humidity Control									
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector			
Fixed Speed Unitary System	1.00	1.00	0.20	0.14	4.2818	0.060			
Capacity Unitary System	1.00	1.00	0.14	0.14	4.2818	0.057			
Variable Speed Modular System	5.00	7.00	1.00	0.20	4.2818	0.251			
Centeral System	7.00	7.00	5.00	1.00	4.2818	0.632			
Sum Total	14.00	16.00	6.34	1.49	17.13	1.00			

Table 6 MPC for relative Humidity control

Table 7 MPC for Space Pressure Control

Space Pressure C	Control					
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	1.00	1.00	4.0000	0.250
Capacity Unitary System	1.00	1.00	1.00	1.00	4.0000	0.250
Variable Speed Modular System	1.00	1.00	1.00	1.00	4.0000	0.250
Centeral System	1.00	1.00	1.00	1.00	4.0000	0.250
Sum Total	4.00	4.00	4.00	4.00	16.00	1.00

Table 8 MPC for Capacity Requirements

Fixed Speed Unitary System1.001.100.140.118.93600.051	Capacity Require	ements					
Unitary System 1.00 1.00 0.14 0.11 8.9360 0.051	Criterion	Unitary		Modular		0	Normalised Eigen Vector
Capacity 1.00 1.00 0.14 0.00 8.0358 0.238	· · · · · · · · · · · · · · · · · · ·	1.00	1.00	0.14	0.11	8.9360	0.051
Unitary System	Unitary System	1.00	1.00	0.14	9.00	8.9358	0.328
Variable Speed Modular 7.00 7.00 1.00 0.20 8.9360 0.342 System	Modular	7.00	7.00	1.00	0.20	8.9360	0.342
Centeral System 9.00 0.11 5.00 1.00 8.9364 0.278		9.00	0.11	5.00	1.00	8.9364	0.278
Sum Total 18.00 9.11 6.29 10.31 35.74 1.00	Sum Total	18.00	9.11	6.29	10.31	35.74	1.00

Table 9 MPC for spatial optimization

Spatial Optimizat	ion					
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	0.20	0.20	4.1545	0.078
Capacity Unitary System	1.00	1.00	0.20	0.20	4.1545	0.078
Variable Speed Modular System	5.00	5.00	1.00	0.33	4.1545	0.305
Centeral System	5.00	5.00	3.00	1.00	4.1545	0.538
Sum Total	12.00	12.00	4.40	1.73	16.62	1.00

Electricity Distr	ribution						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector	
Fixed Speed Unitary System	1.00	0.33	3.00	0.20	5.1135	0.133	
Capacity Unitary System	3.00	1.00	0.33	0.20	5.1135	0.136	
Variable Speed Modular System	0.33	3.00	1.00	0.11	5.1135	0.127	
Centeral System	5.00	5.00	9.00	1.00	5.1135	0.604	
Sum Total	9.33	9.33	13.33	1.51	20.45	1.00	

Table 10 MPC for Electricity Distribution

Table 11 MPC for initial cost

Initial Cost						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	5.00	7.00	7.0397	0.427
Capacity Unitary System	1.00	1.00	5.00	0.14	7.0397	0.192
Variable Speed Modular System	0.20	0.20	1.00	3.00	7.0397	0.140
Centeral System	0.14	7.00	0.33	1.00	7.0397	0.241
Sum Total	2.34	9.20	11.33	11.14	28.16	1.00

Table 12 MPC for operational cost

Operational Co	st						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector	
Fixed Speed							
Unitary	1.00	1.00	0.20	0.11	4.0328	0.060	
System							
Capacity			0.20				
Unitary	1.00	.00 1.00		0.11	4.0328	0.060	
System							
Variable							
Speed	5.00	5.00	1.00	0.33	4.0328	0.265	
Modular	5.00	5.00	1.00	0.55	4.0520	0.205	
System							
Centeral	9.00	9.00	3.00	1.00	4.0328	0.616	
System	2.00	2.00	5.00	1.00	4.0320	0.010	
Sum Total	16.00	16.00	4.40	1.56	16.13	1.00	

Table 13 MPC for Maintenance Cost

Maintenance C	ost					
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	1.00	0.33	4.0000	0.167

Assessment Of Building Performance By Energy Retrofits Of Building Servic	es
---	----

Capacity Unitary System	1.00	1.00	1.00	0.33	4.0000	0.167
Variable Speed Modular System	1.00	1.00	1.00	0.33	4.0000	0.167
Centeral System	3.00	3.00	3.00	1.00	4.0000	0.500
Sum Total	6.00	6.00	6.00	2.00	16.00	1.00

Table 14 MPC for Reliability

Reliability							
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector	
Fixed Speed Unitary System	1.00	1.00	1.00	0.20	4.0328	0.132	
Capacity Unitary System	1.00	1.00	1.00	0.20	4.0328	0.132	
Variable Speed Modular System	1.00	1.00	1.00	0.33	4.0328	0.151	
Centeral System	5.00	5.00	3.00	1.00	4.0328	0.585	
Sum Total	8.00	8.00	6.00	1.73	16.13	1.00	

Table 15 MPC for flexibility

Flexibility						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed						
Unitary System	1.00	1.00	0.11	5.00	6.4203	0.170
Capacity						
Unitary	1.00	1.00	1.00	0.20	6.4203	0.138
System						
Variable Speed						
Modular	9.00	9.00	1.00	9.00	6.4203	0.548
System						
Centeral	0.20	0.33	0.11	1.00	6.4203	0.145
System						012.10
Sum Total	11.20	11.33	2.22	15.20	25.68	1.00

Table 16 MPC for noise reduction

Noise Reduction	n							
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector		
Fixed Speed								
Unitary	1.00	1.00	1.00	0.14	4.1545	0.098		
System								
Capacity	1.00	1.00	2.00	0.14	4 1 5 4 5	0.125		
Unitary	1.00	1.00	3.00	0.14	4.1545	0.135		
System Variable								
Speed								
Modular	1.00	0.33	1.00	0.14	4.1545	0.077		
System								
Centeral			= 00	1.00		0.000		
System	7.00	7.00	7.00	1.00	4.1545	0.689		
Sum Total	10.00	9.33	12.00	1.43	16.62	1.00		

Easy Installation			Variable Speed			
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	1.00	9.00	4.0000	0.321
Capacity Unitary System	1.00	1.00	1.00	9.00	4.0000	0.321
Variable Speed Modular System	1.00	1.00	1.00	9.00	4.0000	0.321
Centeral System	0.11	0.11	0.11	1.00	4.0000	0.036
Sum Total	3.11	3.11	3.11	28.00	16.00	1.00

Table 17 MPC for easy installation

Table 18 MPC for zonability

Zonability						
Criterion	Fixed Speed Unitary System	Capacity Unitary System	Variable Speed Modular System	Centeral System	Eigen Value	Normalised Eigen Vector
Fixed Speed Unitary System	1.00	1.00	7.00	3.00	5.1146	0.502
Capacity Unitary System	1.00	1.00	0.33	3.00	5.1146	0.191
Variable Speed Modular System	3.00	3.00	1.00	5.00	5.1146	0.239
Centeral System	0.33	0.33	0.20	1.00	5.1146	0.068
Sum Total	5.33	5.33	8.53	12.00	20.46	1.00

MPC for	para	meters	e					t								7
PARAMETER e S	Temperature Control	Relative Humidity Control	Space Pressure Control	Capacuy Requirements	Spatial Optimization	Electricity Distribution	Initial Cost	operational cost	Maintenance Cost	Reliability	Flexibility	Reduction	Lasy Installation	Zonability	EIGEN VALUE	NORMALISE D EIGEN VECTOR
ty Temperature S Control	1.00	5.00	5.00	7.00	7.00	0.14	0.20	7.00	0.20	0.11	7.00	9.00	0.20	0.33	60.74728 60.74728	0.10
Relative Humidity Control	0.20	1.00	3.00	0.20	9.00	0.11	7.00	9.00	5.00	0.14	5.00	5.00	7.00	5.00		0.11
it Space e Pressure Control	0.20	0.33	1.00	0.33	3.00	0.20	3.00	3.00	0.20	3.00	5.00	5.00	3.00	3.00	2 60.74728	0.06
Capacit y Require ion ments	0.14	5.00	3.00	1.00	5.00	3.00	3.00	0.20	0.33	0.20	3.00	5.00	3.00	5.00	60.7472 8	0.08
Capaci y Spatial Requir n Optimization ments	0.14	0.11	0.33	0.20	1.00	0.20	3.00	0.33	0.20	0.14	0.20	3.00	5.00	3.00	60.74728	0.03
Electricity Distribution	7.00	00.6	5.00	0.33	5.00	1.00	3.00	5.00	3.00	0.20	0.33	3.00	0.33	3.00	60.7472	0.12
Initial Cost	5.00	0.14	0.33	0.33	0.33	0.33	1.00	0.20	0.20	0.14	5.00	7.00	3.00	7.00	60.74728	0.05
operational cost	0.14	0.11	0.33	5.00	3.00	0.20	5.00	1.00	0.20	0.33	0.20	3.00	3.00	3.00	60.74728	0.05
Maintenance Cost	5.00	0.20	5.00	3.00	5.00	0.33	5.00	5.00	1.00	5.00	5.00	3.00	5.00	9.00	60.74728	0.13
Reliability	9.00	7.00	0.33	5.00	7.00	5.00	7.00	3.00	0.20	1.00	3.00	5.00	5.00	9.00	60.74728	0.16
Flexibility	0.14	0.20	0.20	0.33	5.00	3.00	0.20	5.00	0.20	0.33	1.00	5.00	0.14	5.00	60.74728	0.04
Noise Reduction	0.11	0.20	0.20	0.20	0.33	0.33	0.14	0.33	0.33	0.20	0.20	1.00	0.20	0.20	60.74728	0.01
Zonability Easy Installation	5.00	0.14	0.33	0.33	0.20	3.00	0.33	0.33	0.20	0.20	7.00	5.00	1.00	5.00	60.74728	0.06
Zonability	3.00	0.20 (0.33 (0.20 (0.33 (0.33	0.14 (0.33 (0.11 (0.11 (0.20	5.00	0.20	1.00	60.747 0	0.02
Total	36.08	28.64	24.40	23.47 (51.20) 61.71	38.02	39.73	11.38	11.12	42.13 (64.00	36.08	58.53	850.46	1.00 0

MPC for ranking HVAC systems																	
		Temperature Control	H	space rressur Control	Capacity Requirements	Spatial Optimization	Distribution	Initial Cost	operational cost	Maintenance Cost	Reliability	Flexibility	Noise Reduction	Easy Installation	Zonability	FINAL DESIRABILITY	RANKING
	WEIGHTAGES	0.097854459	0.109915724	0.058700163	0.076249441	0.027929045	0.122078065	0.051209	0.04643386	0.1264677	0.1580084	0.0399	0.01	0.05650431	0.0201562	1	
		0.056	0.060	0.250	0.051	0.078	0.133	0.427	0.060	0.167	0.132	0.170	0.098	0.321	0.502		
	Fixed Speed Unitary System	0.005455451	0.006607263	0.014675041	0.003920785	0.002186654	0.016206732	0.021858	0.00277217	0.021078	0.02085116	0.00679005	0.000842044	0.0181621	0.0101259	0.151531	4
		0.056	0.057	0.250	0.328	0.078	0.136	0.192	0.060	0.167	0.132	0.138	0.135 (0.321 (0.191		~
	Capacity Unitary S	0.005455451	0.006238826	0.014675041	0.02503237	0.002186654	0.01665799	0.009849	0.00277217	0.021078	0.02085116	0.00550192	0.001157956	0.0181621	0.0038473	0.1534661	
	ılar System (0.416	0.251	0.250	0.342	0.305	0.127	0.140	0.265	0.167	0.151	0.548	0.077	0.321	0.239	0	3
	Variable Speed Modular System Capacity Unitary System	0.040749433	0.027607281	0.014675041	0.026073244	0.008520603	0.015454223	0.007174	0.0122846	0.021078	0.02390612	0.02187716	0.000656228	0.0181621	0.0048169	0.2430344	2
		0.472	0.632	0.250	0.278	0.538	0.604	0.241	0.616 (0.500	0.585	0.145	0.689 (0.036	0.068		
	Centeral system	0.046194124	0.069462354	0.014675041	0.021223042	0.015035135	0.07375912	0.012328	0.02860493	0.0632339	0.09239996	0.00577428	0.005894308	0.00201801	0.0013662	0.4519685	1

Hence, it is seen that the best option for the HVAC system type would be Central system, as it ranks 1st. The 2nd best option is Variable Speed Modular System.

V. Conclusion:

This is assessment methodology for integrated decision making in active energy efficiency of existing buildings. This Paper Presented the Possible Assessment of Building Energy Performance and the Decision Making technique to identify the best system out of available systems as per engineers and field HVAC consultants for particular government building. For future study this study can be justified by simulating the

proposed systems as per AHP process and identifying the Energy Performance Index in ECBC limits and within projects payback period limits to justify its economic feasibility. This study can be applied on any commercial, educational, recreational and many official government building.

References

- Kılkış B (2014) Energy consumption and CO2 emission responsibilities of terminal buildings: A case study for the future Istanbul International Airport. Energy Buildings 76: 109-118
- [2]. Alshehry AS, Belloumi M (2015) Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renewable Sustainable energy 41: 237-247.
- [3]. Zhenjun C, Daly A and Ledo t(2012) Existing building retrofits: Methodology and stat of the-art vol. 1.
- [4]. Kumbaroğlu G and Madlener R(2012) Evaluation of economically optimal retrofit investment options for energy savings in buildings vol 49
- [5]. Bojic L, Nikolic V, Nikoli H, Skerli and Mileti (2012) A simulation appraisal of performance of different HVAC systems in an office building
- [6]. Rey E (2014) Office building retrofitting strategies: multi-criteria approach of an architectural and technical issue. vol 23
- [7]. Pyloudi A, Papantoniou G and Kolokotsa T (2014)Retrofitting an office building towards a net zero energy building. Vol 11
 [8]. Nazi, Royapoor D, Wang, and Roskilly G(2015)Office building cooling load reduction using thermal analysis method A case
- [9]. Kale, Joshi and Menon (2016) Life cycle cost analysis of commercial buildings with energy efficient approach
- [10]. Ruparathna ,Hewage andSadiq A (2016)Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings.
- [11]. Woods T (2016) Improving the Building Envelope to Meet the Challenges of New Research and Regulation. vol 2
- [12]. Garmston D, Mary C (2017) Decision-making in the selection of retrofit facades for non-domestic buildings. Vol 29
- [13]. Bu, Shen, Anumba H, Wong C, Liang C (2017) Literature review of green retro fit design for commercial buildings with BIM implication. Vol 40
- [14]. Braid W (2017)Energy performance of the buildings.
- [15]. Khairi1, JaaparandYahya (2017) The application benefits and challenges of retrofitting the existing buildings.
- [16]. Kylili J and Fokaides D(2017)Methodologies for Selection of Thermal Insulation Materials for Cost-Effective, Sustainable, and Energy-Efficient Retrofitting. vol 27
- [17]. Khairil V, Jaapar L and YahyaB(2017) The application benefits and challenges of retrofitting the existing buildings.vol 33
- [18]. Fabrizio H, Ferrara K and MonettiB(2017) Smart Heating Systems for Cost-Effective Retrofitting.
- [19]. Panel M, Burman N and MumovicH(2017) Measurement and Verification Models for Cost-Effective Energy-Efficient Retrofitting.
 [20]. Belany M, Bolf K, Roch L and cenasova O (2018) Decreasing the power consumption of buildings with utilization of lighting
- [21]. Paya L and Marin H (2017)Solar Air Collectors for Cost-Effective Energy-Efficient Retrofitting.pp164-173.
- [21]. Faya L and Mathi H (2017)solar All Conectors for Cost-Enective Energy-Encient Renonthing.pp104-175.
 [22]. Gupta S (2004) Framework of Building Energy Code for India, MBEM, SPA- Project Seminar II, and December unpublished.
- [22]. BEE (2017) Energy Conservation Building Code, Bureau Of Energy Efficiency, Govt Of India.
- [24]. BIS(2016) National Building Code Of India ,Bureau Of Indian Standards .