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ABSTRACT:  The snap-through buckling of shallow spherical shells made of functionally graded material 
(FGM) induced by temperature variations is studied in this paper. The volume fractions of the material 
constituents are assumed to be in the form of power exponential function of the coordinate along the thickness 
direction, and the physical property of FGM is obtained by Voight mixing rate model. The governing equations 
for nonlinear deformation of FGM shallow spherical shells are presented for the case of axisymmetrical 
deformation based on the thin shell theory. The analytical solution for the nonlinear characteristic relation 
between the temperature variation and central deflection is derived by using the asymptotic iteration method. 
Numerical examples are given and comparison of the present results with finite element simulation shows 
accuracy and validity of the theoretical model. The resulting solution can be used readily to do parametric analysis 
of FGM shell structures. 
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I. INTRODUCTION 
Nowadays it becomes more imperative that some requirements of heat resistance, corrosion resistance 

and designability should meet for engineering materials and their structures under various special environmental 
conditions for the purpose of safe use. As a type of multi-component materials, functionally graded materials 
(FGM) can be chosen to accord with these demands, and have been used widely as structural elements in 
mechanical, aeronautical and aerospace engineering, etc. 

Buckling analysis of FGM structures under temperature condition is of great importance to evaluation of 
safety. Shahsiah and Eslami gave an analysis of thermal buckling of simply-supported FGM cylindrical shell 
based on the first-order shell theory and Sanders’ equations [1]. Using Donnell’s theory, Wu, Jiang and Liu studied 
thermal buckling problem of the FGM cylindrical shell and critical buckling loading was obtained by applying 
the method of critical equilibrium together with the prescribed mode of buckling [2]. Due to the Donnell–
Mushtari–Vlasov assumption and Sanders’ equations, Shahsiah, Eslami and Naj [3] solved the thermal stability 
problem of FGM shallow spherical shell. Prakash, Sundararajan and Ganapathi [4] adopted Mindlin’s theory to 
analyze the nonlinear axisymmetrical dynamic buckling of clamped FGM spherical shells. Hafezalkotob and 
Eslami [5] presented the critical buckling temperature by a corresponding solution for eigen-value problem of 
simply supported shallow FGM spherical shells in which component materials are dependent of temperature. 
Boroujerdy and Eslami derived an analytical solution for thermal buckling of piezo-FGM shallow spherical shells 
under conditions of three types of thermal loadings for the constant driving voltages [6]. Introducing first-order 
shear deformation theory and geometrical nonlinear theory, Tung [7] deduced the relationship of critical loading 
with geometrical and material parameters of FGM shallow spherical shells resting on elastic foundations with 
temperature-dependent material. Anh, Bich and Duc [8] tackled nonlinear stability problem of thin FGM annular 
spherical shells on elastic foundations under a combined action of external pressure and thermal loads by 
Galerkin’s method. Further, Anh and Duc [9] solved the nonlinear stability of a sigmoid functionally graded 
material (S-FGM) shallow spherical shell incorporating effect of transverse shear deformation. Moosaie and 
Panahi-Kalus investigated the thermal stability of an incompressible FGM spherical shell [10]. 

Recently most existing studies on the thermal buckling and stability of FGM shallow shell structures 
have focused on the case of combined action of mechanical loading and temperature variation. For the case of 
only temperature variation, related work is concentrated on treatment of bifurcation buckling mainly induced by 
in-plane compressive loading. In addition, some specific forms of modes of buckling, e.g., trigonometric function, 
etc. have been prescribed in the process of solution, which makes problems easy to solve, especially for nonlinear 
analysis. So far there are relatively few studies on thermal snap-through buckling (limited point buckling) of 
shallow shell structures [11]. This work aims to present an analytical solution for snap-through buckling of FGM 
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shallow spherical shells under temperature loading by an asymptotic iteration method. The method has been used 
widely to solve nonlinear problems of plates and shells and proved to have good convergence in computation [12-
15].  

 
II.MATHEMATICAL FORMULATION AND SOLUTION 

Let us consider a FGM shallow spherical shell, as shown in Fig.1. The shell is of the radius of curvature 
R, thickness h, span 2a and apex height H. It is assumed that the shell is made of mixed materials of both metal 
and ceramic layers, and the former is placed at bottom layer while the latter at upper layer. Material property is 
assumed to be changed in the direction of thickness of the shell based on a power law associated with volume 
fractions of the material constituents expressed by 
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where cV  and mV  are volume fractions of ceramic and metal respectively, and k  is constituent parameter. 
According to Voight model, one can write 

 F m m c cP P V PV= +  (2) 
in which FP   is FGM physical property, mP  and cP  are physical properties of metal and ceramic materials, 
respectively. 

 
Fig. 1 Geometrical model of FGM shallow spherical shells 

 
According to Eqs.(1) and (2), elastic modulus and  coefficient of thermal expansion in FGM, ( )E z  

( )zα  can be written by 
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where cE , mE  and cα , mα  are elastic moduli and coefficients of thermal expansion for ceramic and metal, 
respectively. It is seen that  0k =  and k →∞   correspond to pure metal and ceramic, respectively. 

For the case of axisymmetric deformation, the strain components at any point in the shell is written by 
 0 0,r r rz zθ θ θε ε χ ε ε χ= − = −  (4) 

where 0 0, ; ,r rθ θε ε χ χ  are the strain components at mid-plane and curvature variations expressed by radial 
displacement u and deflection w as 
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Constitutive equations are 
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Internal forces and moments are expressed as 
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Using Eqs.(4)-(7), Eqs.(8) and (9) change to 
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(10) 

where 
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The equilibrium equations for the shell are written by 

 ( ) 0r
d rN N
dr θ− =   (12) 

 ( ) 0r r
d rM M rQ
dr θ− − =  (13) 
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where rQ  is transverse shear force. Eliminating u  in Eq.(5), a compatibility equation is derived by 
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According to Eq.(10), the strain components are expressed by the internal forces below 
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Introduce a force function φ  defined by 
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then Eq.(12) is satisfied automatically. Substituting Eqs.(17) and (16) into Eq.(15), the compatibility equation is 
expressed in terms of the force function φ  and deflection w as 
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Further, eliminating rQ  by using Eqs.(13) and (14), then using Eqs.(10), (16) and (17), the equilibrium equation 
in the direction of thickness is also written by the force function and deflection in the following 
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where ( )
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−
. The equations (18) and (19) form fundamental governing equations for nonlinear 

deformation of the shell. For the elastic constrained edge, i.e., radial displacement and rotational constraints, the 
boundary conditions are written by [12] 
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and 
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where ,ξ η  are coefficients of the radial and rotational constraints, respectively. Introducing the following 
nondimensional variables and quantities 
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where Q  is nondimensional temperature variation, and 1A , 2A  are associated with the temperature t .  
Nondimensional governing equations and boundary conditions are expressed by 
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In preceding analysis, it is assumed that the temperature variation is uniform, i.e., ( )t z t= (constant). The 
asymptotic iteration method is use to solve Eqs.(23) and (24) in connection with Eq.(25) and (26). For the first 
iteration process, nonlinear terms in Eq.(23) is neglected, the reduced linear problem can be expressed by using 
the following differential equations 
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where subscript 1 represents the first iteration for W  and T . Denote the central deflection 
 1 0| mW Wρ= =  (32) 

The solution for Eq.(28) is  
( )12 1 mQ b W= +                                                                        (33) 

2
1 m mW W W ρ= −                                                                       (34) 

Substituting Eq.(34) into Eq.(29), Using the corresponding condition equations in Eqs.(30) and (31) for 1T , the 
analytical expression for it can be obtained as 
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Applying the resulting 1W  and 1T  for the first iteration, resuming the coupled terms in Eq.(23), the 
corresponding equation for the second iteration process is written by 
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where subscript 2 stands for the second iteration. The nonlinear characteristic relation between Q  and mW  can be 
derived by solution for Eq.(37) in the following 

     2 3
11 22 33m m mQ W W Wλ λ λ= + +   (39) 

where 11 22 33, ,λ λ λ  are coefficients associated with geometrical and material parameters of the FGM shell. Based 
on the extremum condition, / 0mdQ dW = , the critical temperature variations crQ , crt   can be determined finally. 
 

III. NUMERICAL EXAMPLES 
In computation the geometrical sizes are 500 , 200 , 10R mm a mm h mm= = = . The alumina ceramics and 

steel are chosen as material constituents, their properties are listed as: 6380 , 7.2 10c cE GPa α −= = ×  and 
6200 , 11.7 10m mE GPa α −= = × . The Poisson’ ratio is taken as  0.3ν = . In numerical simulation, S4R element in 

ABAQUS code is adopted to construct a FEM model of the shell with 16565 elements, as show in Fig. 2. The 
shell is divided into n isotropic layers along the direction of thickness with parameters given by 
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Fig. 2 Finite element model of FGM shallow spherical shells 
 
Snap-through buckling deformation of FGM shallow spherical shells is displayed in Fig. 3. For the case 

of movable simply-supported shell, a comparison of central deflection induced by different temperature variations 
is listed in Table 1.  A corresponding comparison of critical buckling temperature is presented in Table 2. The 
results show that the theoretical prediction agrees with the FEM simulation. It should be pointed that the numerical 
model is comparative approximate one by dividing finite isotropic layers to reflect the change in physical 
properties in the form of power exponential function along the direction of thickness. 

 
Fig. 3 Snap-through buckling deformation of FGM shallow spherical shells 

 
Table1 Comparison of bending deformation 

Temperature 
variation ( )C°  

Central deflection (mm) 
present model 

Central deflection (mm) 
FEM Error 

102 0.089 0.098 10% 
202 0.180 0.197 9% 
302 0.264 0.297 12% 
402 0.352 0.398 13% 
502 0.441 0.490 11% 
602 0.532 0.593 11% 
702 0.622 0.693 10% 
802 0.713 0.805 13% 
902 0.804 0.912 13% 

1002 0.896 1.012 13% 
 

Table 2 Comparison of critical buckling temperature of FGM shallow spherical shells 
Critical buckling temperature ( )C°  

present model  
Critical buckling temperature ( )C°  

FEM 
Error 

9805 8300 16% 
 

IV. CONCLUSIONS 
This paper presents snap-through buckling of shallow spherical shells made of functionally graded 

material (FGM) under temperature loading. The governing equations for nonlinear deformation of FGM shallow 
spherical shells are given for the axisymmetrical case. The volume fractions of the material constituents are 
assumed to be in the form of power exponential function of the coordinate along the thickness direction, and the 
physical property of FGM is obtained by Voight mixing rate model. The analytical solution for the nonlinear 
relation between the temperature variation and central deflection of the shell is obtained by using the asymptotic 
iteration method. In the process of solution a mode of buckling needs not to be prescribed. The theoretical solution 
is verified by a comparison with finite element simulation. The proposed model can be used to do parametric 
analysis in evaluation of nonlinear deformation and buckling behaviors of such FGM shell structures. 
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