Study of Diverse Low Emissivity Glass Materials For Indian Green Building Construction

M. John Kennedy1* Dr Nj Solomon Babu* Y Druga Prasad
1Department of Chemistry, Andhra Christian College, Guntur, India

Abstract: One third of power consumption in India is because of buildings and the materials there on. Out of which, Glass is one of the noteworthy building region to control cooling loads in buildings. This paper describes how a variety of low emissivity glasses based on transparent conducting oxides are used for building windows have an effect on performance of green energy buildings. This includes various materials starting from the conventional pigments of silver, oxide materials, non-oxide materials such as nitrides etc.

I. Introduction

Till recent times, clear glass was the most important glazing material used in windows. Although glass is strong and allows a high percentage of sunlight into buildings. However, it allows the heat along with white light as it possesses very little resistance to heat flow. But due to increased interest over the impact of energy efficiency concept, in the past two decades, it caused a great change in glazing technology of the glasses. Advanced glazings materials coatings have increased windows’ resistance to heat flow of the glasses or R-value of the glasses. For a building a window can be considered as a thermal hole which contributes energy exchange of more than 50% of the building’s cover through radiation, convection and conduction. [1]. Via thermal radiation two thirds of the thermal losses of a double-glazing window will take place [2], to avoid these losses low-emissivity coatings are applied widely to build glazing for energy conservation. The primary problem of conventional low-emissive coatings is the poor stability of the materials which limits durability of the coatings under continuous atmospheric environment [3]. To retain the functional coating for long duration hard coatings over that are used.

Figure 1 Schematic of low-e window
II. Materials

Conventionally metal oxides are used as coatings in low-e windows. The outer transparent coating of the low emissivity coatings should be inert to resist itself from chemical attack by the ambient atmosphere. However, conventional oxides are quite difficult to retain them in hard atmospheres. For example, films of Ag tends to beget oxidized and the dielectric layers over that are deposited in the atmosphere with O4, 5.

Non-oxide films also have been studied for this application. For example, diamond-like carbon films to improve the stability, with a transmittance of only 80 % are used by Cokun et al.,[6]. Similarly, nitrides are also used as the protective layer in the optical industry. Forinstance, Titanium nitride is one of the most widely used barrier materials as metal capping layer[7, 8]. However, it is also found that TiN does not have higher thermal stability and which enables it to be easily adopted the TiN films as the low-e coatings, which possesses a transmittance of above 80% and lowstabilization. In the nitrides category, zirconium nitride is another capable alternative as a hard coating, as it has lessers coefficient of friction than TiN and other transition metal nitrides[9, 10]. In addition to that, if one could increase amount of Al, that can increase thehardness of the films through partial substitution and expand the resistance against oxidation[11, 12].

The infrared low emissivity coating is primarily composed of organic binder and metallicpigment[13]. Amongst these components, aluminium decreases the emissivity of the coating greatly, improve the mechanical properties of the coating, and furnish the color of silver to the coating [14], so aluminium powder is such an insignificant part of the coating that it cannot be separated from the coating. Accordingly, knowledge on aluminium with different colors has been carried out for a long time. Le Yuan [15] has prepared the composite pigments with co-precipitation coatedCr2O3 on the surface of Al powders, while the emissivity of powders attained above 0.5 in the wavelength range of 8–14 μm, and there also have been a few information on composite pigments formed by coatingFe3O4 on the surface of aluminum powder [16]. The lightness L* can be reduced noticeably, while the infrared emissivity is above 0.56 in the wavelength range of 8–14 μm. Guangwen Wu [17] has prepared acr powder coated on modified aluminium coated with polyethylene wax, and the gloss of the coating is reduced, while its emissivity and chroma are disagreeable. Weimin Tan [18] has synthesized the Greenishyellow lacklustere coatings with Prussian blue (PB) surface tailored Alpowders, but the infrared emissivity of the coating has been amplified to above 0.5. To change the color and reduce the lightness, coloredpigments of high concentration were also attempted to be added, then the emissivity of the coating is principally amplified because most of the colored pigments are very absorbing materials in the infrared waveband. As the development of the detection technology moves far ahead, inorder to lessen the possibility of being exposed, the stealth coating on the surface of equipment would better to appreciate the infrared and visible light stealth simultaneously, namely, the emissivity and the surface gloss should be decreased to below 0.3 and 15 respectively. However, according to the above research, the color and the infrared emissivity of the compatible coating is hardly able to meet the demand of the practical application at the same time.

III. Conclusion

A single type of glazing material is not suitable for every application. Different materials are existing that servedissimilar purposes. Moreover, for one application one may determine that it may need combination of two or more types of glazing for ahme which will increase the energy efficiency.

References

