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ABSTRACT: Forecasts of water inflow into major reservoirs of different rivers are needed for the operational 

planning over periods ranging from a few hours to several months ahead. Medium-range forecasts of the order 

of a few days to two weeks have usually been obtained by simple ARMA-type models, which do not utilize 

information on observed or forecast precipitation, nor stream flow observations from upstream gauging 

stations. Recently, several different hydrological models have been tested to assess the potential improvements 

in forecasts that could be obtained by using observed and forecast precipitation as additional inputs. In this 

paper we have carried out a review of different techniques used for forecasting the water flow into various 

rivers and fore casting the flood situation. 
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I. INTRODUCTION  
River flow forecasts are required to provide basic information for reservoir management in a multipurpose water 

system optimization framework. An accurate prediction of flow rates in tributary streams is crucial to optimize 

the management of water resources considering extended time horizons. Moreover, runoff prediction is crucial 

in protection from water shortage and possible flood damages. 

 

The rainfall-runoff, process represents a complex nonlinear problem and there are several approaches to solve it. 

Traditionally, hydrological simulation modeling systems are classified into three main groups, namely, 

empirical black box, lumped conceptual, and distributed physically-based models [3, 2]. 

 

Flooding leads to numerous hazards, with consequences including risk to human life, disturbance of transport 

and communication networks, damage to buildings and infrastructure, and the loss of agricultural crops. 

Therefore, prevention and protection policies are required that aim to reduce the vulnerability of people and 

public and private property. Many solutions for flood mitigation and prevention have been suggested however, a 

vast amount of data and knowledge are required about the causes and influencing factors of floods and their 

resulting damage. Flood forecasting and prediction capabilities evolved slowly during the 1970s and 1980s. 

However, recent technological advances have had a major impact on forecasting methodologies. For instance, 

hydrological models use physical detection systems to forecast flood conditions based on predicted and/or 

measured parameters [2]. River flow models are used as components in actual flood forecasting schemes, where 

forecasts are required to issue warnings and to permit the evacuation of populations threatened by rising water 

levels. The basis of such forecasts is invariably observation and/or predictions of rainfall in the upper catchment 

area and/or river flows at upstream points along main rivers or tributaries. Forecasts about the discharge are 

obtained in real-time, by using the model to transform the input functions into a corresponding discharge 

function time [3]. 

 

II. LITERATURE REVIEW 
Preliminary concepts and numerous applications of Artificial Neural Networks (ANN) to hydrology are 

available (ASCE, 2000a,b; Fernando and Jayawardena, 1998). Cheng and Chau (2001), Cheng and Chau (2002) 

proposed fuzzyiteration methodology and three-person multi-objective conflict decision model respectively for 

reservoir flood control operation for a case study of Fengman Reservoir, China. Chau et al. (2005) employed the 

Genetic Algorithm based Artificial Neural Network (ANN-GA) and the Adaptive Network based Fuzzy 

Inference System (ANFIS), for flood forecasting in a reach of the Yangtze River in China. Similar studies are 

reported by Cheng et al. (2002, 2008a,b).  

 

Muskingum method is a hydrological flood routing technique (Chow et al., 1988) which was modified by many 

researchers. In the two parameter Muskingum method, there are number of ways for finding the two parameters, 

K (travel time) and x (weighing factor for prism and wedge storage of routing reach). These methods were 
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discussed in detail by Singh and McCann (1980) and applied to a set of data to assess their relative efficacy. Gill 

(1978) proposed segmented curve method, in which least square method was used to find out the parameters of 

nonlinear form of Muskingum method. Stephenson (1979) demonstrated the way to calculate directly the 

coefficients of Muskingum method, C0, C1, and C2 using Linear Programming instead of calculating the 

parameters, K and x.  

 

O’Donnell (1985) considered the lateral flow factor in Muskingum two parameter model of single input single 

output (si-so) nature, which was converted into a three parameter model. The parameters are K, x, a (a shows the 

fraction of lateral flow in comparison with inflow to the reach). The least square technique is used to find out 

these parameters in the routing reach automatically. Khan (1993) extended the si-so flood routing model to 

include lateral flow to form a multi input single output (mi-so) model with lateral flow.  

 

Tung (1985) developed state variable modeling technique for solving the nonlinear form of Muskingum method. 

The parameters of the model were found out by four methods of curve fitting. Yoon and Padmanabhan (1993) 

developed software, MUPERS, where both linear and nonlinear relationships were dealt with. Kshirsagar et al. 

(1995) found parameters by a constrained, nonlinear (successive quadratic) programming. In this work, the  

Muskingum equation was used for routing the upstream hydrograph and the intermediate un gauged lateral 

inflow. The lateral inflow was calculated by an impulse response function approach. Mohan (1997) used genetic 

algorithm for parameter estimation of nonlinear Muskingum method and compared its performance with the 

approach by Yoon and Padmanabhan (1993).  

 

Samani and Jebelifard (2003) applied multi linear Muskingum method for hydrologic routing through circular 

conduits. Das (2004) developed a methodology for parameter estimation for the Muskingum model of stream 

flow routing. Al-Humond and Esen (2006) presented two approximate methods for estimating Muskingum flood 

routing parameters. Geem (2006) introduced the Broydene Fletchere Goldfarbe Shanno (BFGS) technique, 

which searches the solution area based on gradients for estimation of Muskingum parameters. 

 

III. ARTIFICIAL NEURAL NETWORK  
An alternative approach to flow forecasting has been developed in the recent years, which is based on the ANN 

[3]. Recent studies have reported that ANN may offer a promising alternative for the hydrological forecasting of 

stream flow [7]. The ANN is a computer program that is designed to model the human brain and its ability to 

learn tasks [4]. An ANN differs to other forms of computer intelligence in that it is not rule based, as in an 

expert system. An ANN is trained to recognize and generalize the relationship between a set of inputs and 

outputs. Early artificial neural networks were inspired by perceptions of how the human brain operates. In the 

recent years, ANN technological developments have made it more of an applied mathematical technique with 

some similarities to the human brain. ANNs retain two characteristics of the brain as primary features: the 

ability to (1) ‘learn’ and (2) generalize from limited information [5]. Both biological and artificial neural 

networks employ massive, interconnected simple processing elements, or neurons. The knowledge stored as the 

strength of the interconnecting weights (a numeric parameter) in ANNs is modified through a process called 

learning, using a learning algorithm. This algorithmic function, in conjunction with a learning rule, (i.e., back-

propagation) is used to modify the weights in the network in an orderly fashion. Unlike most computer 

applications, an ANN is not ‘‘programmed,’’ rather it is ‘‘taught’’ to give an acceptable answer to a particular 

problem. Input and output values are sent to the ANN, initial weights to the connections in the architecture of 

the ANN are assigned, and the ANN repeatedly adjusts these interconnecting weights until it successfully 

produces output values that match the original values. This weighted matrix of interconnections allows the 

neural network to learn and remember [10]. When using an ANN to solve a problem, the first step is to train the 

ANN to ‘‘learn’’ the relationship between the input and outputs. This action is accomplished by presenting the 

network with examples of known inputs and outputs, in conjunction with a learning rule. The ANN maps the 

relationship between the inputs and outputs, and then modifies its internal functions to determine the best 

relationship that is be represented by the ANN. 

 

The inner workings and processing of an ANN are often thought of as a ‘‘black box’’ with inputs and outputs. 

One use-ful analogy that helps to understand the mechanism occurring inside the black box is to consider the 

neural network as a super-form of multiple regressions. Like linear regression, which finds the relationship that 

{y} = f{x}, the neural network finds some function f{x} when trained. However, the neural network is not 

limited to linear functions. It finds its own best function to the best of its ability, given the complexity used in 

the network, and without the constraint of linearity (Hewitson and Crane [5]). The most common type of 

artificial neural network consists of three groups, or layers, of units: (1) a layer of ‘‘input’’ units are connected 

to (2) a layer of ‘‘hidden’’ units, which are connected to (3) a layer of ‘‘output’’ units (Fig. 1)The activity of the 
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input units represents the raw information that is fed into the network. The activity of each hidden unit is 

determined by the activities of the input units and the weights on the connections between the input units and the 

hidden units. The behavior of the output units depends on the activity of the hidden units and the weights 

between the hidden units and output units [12]. 

 

 
Figure 1: Simple feed forward network. http://dx.doi.org/10.1016/j.aej.2014.06.010 

 

IV. PSO ALGORITHM  
The principle of PSO algorithm is founded on the assumption that potential solutions will be flown through 

hyperspace with acceleration towards more optimum solutions. It is a populated search method for optimization 

of non-linear functions resembling the movement of organisms in a bird flock or fish school. Candidate 

solutions to the problem are termed particles or individuals. Instead of employing genetic operators, the 

evolution of generations of a population of these individuals in such a system is by cooperation and competition 

among the individuals themselves. In essence, each particle adjusts its flying based on the flying experiences of 

both itself and its companions. During the process, it keeps track of its coordinates in hyperspace which are 

associated with its previous best fitness solution, and also of its counterpart corresponding to the overall best 

value acquired thus far by any other particle in the population. In the algorithm, vectors are taken as 

representation of particles since most optimization problems are convenient for such variable presentations. The 

population is responding to the quality factors of the previous best individual values and the previous best group 

values. The allocation of responses between the individual and group values ensures a diversity of response. Its 

major advantages are the relatively simple and computationally inexpensive coding and its adaptability 

corresponding to the change of the best group value. The stochastic PSO algorithm has been found to be able to 

find the global optimum with a large probability and high convergence rate (Clerc and Kennedy, 2002). 

Hence, it is adopted to train the multi-layer perceptrons, within which matrices learning problems are dealt with. 

Adaptation to network training A three-layered perceptron is chosen for this application case. Here, W[1] and 

W[2] represent the connection weight matrix between the input layer and the hidden layer, and that between the 

hidden layer and the output layer, respectively. When a PSO is employed to train the multi-layer perceptrons, 

the ith particle is denoted by    

Wi = { Wi 
[1]

, Wi 
[2] 

}         (1) 

The position representing the previous best fitness value of any particle is recorded and denoted by 

 

              pi = { pi 
[1]

, pi 
[2] 

}          (2) 

 

If, among all the particles in the current population, the index of the best particle is represented by the symbol b, 

then the best matrix is denoted by               

   pi = { pb 
[1]

, pb 
[2] 

}         (3) 

 

The velocity of particle i is denoted by 

 

       Vi = { Vi 
[1]

, Vi 
[2] 

}         (4) 
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If m and n represent the index of matrix row and column, respectively, the manipulation of the particles are as 

follows  

 

Vi``
[j]

 (m, n) = Vi
[j]

 (m, n) + { rα [Pi 
[j] 

 (m , n) - Wi
[j]

 (m, n) ] 

 + sβ[ Pb 
[j] 

 (m , n) - Wi
[j]

 (m, n) ] } / t     (5) 

 

And 

  

Wi``
[j]

  =  Wi
[j] 

 +  Vi
[j]

 t 

 

where j = 1, 2; m = 1,. . . ,Mj; n = 1,. . . ,Nj; Mj and Nj are the row and column sizes of the matrices W, P, and V; 

r and s are positive constants; α and β are random numbers in the range from 0 to 1; t is the time step between 

observations and is often taken as unity; V`` and W`` represent the new values. Eq. (5) is employed to compute 

the new velocity of the particle based on its previous velocity and the distances of its current position from the 

best experiences both in its own and as a group. In the context of the social behavior, the cognition part, i.e., the 

second element on the right hand side of Eq. (5), represents the private thinking of the particle itself whilst the 

social part, i.e., the third element on the right hand side of Eq. (5), denotes the collaboration among the particles 

as a group. Eq. (6) then determines the new position according to the new velocity.  

The fitness of the ith particle is expressed in term of an output mean squared error of the neural networks as 

follows  

 

 f(Wi) =  
 

 
         –          

 
   

 
  

        (6) 

 

where f is the fitness value, tkl is the target output; pkl is the predicted output based on Wi; S is the number of 

training set samples; and, O is the number of output neurons. 

 

V. ARMA MODELS   
Most of the time-series techniques traditionally used for modeling water resources series fall within the 

framework of the ARMA class of linear stochastic processes. They are usually denoted as ARMA (p,q) models, 

where p and q are the auto-regressive and moving-average orders, respectively (Box and Jenkins, 1976; 

Brockwell and Davis, 1987; Bras and Rodriguez-Iturbe, 1994). They describe each observation of the time 

series as a weighted sum of p previous data, and the current as well as q previous values of a white noise process 

xt = ɸ 1 (x t-1 - µx) + ɸ 2 (x t-2 - µx) + . . . . . + ɸ p (x t-p - µx) + ηt +  
     

+  

                  
     

+  . . . . +  
     

 + µ x              

where xt is the investigated time series; ηt , a white noise, i.e. a non-correlated, zero-mean random variable that 

is also not correlated with the past values of xt; ɸ1;…;ɸp and ɸ1;…; ɸp, the auto-regressive and moving-average 

parameters, respectively; and µx; the mean of the time series. Parameter estimation for ARMA models can be 

performed in several ways. We applied here an approximation in the spectral domain of the Gaussian maximum 

likelihood function, which was first proposed by Whittle (1953) for short-memory models. 

 

VI. CONCLUSION  
Thus, in our case, the K-NN algorithm looks through all consecutive d-dimensional vectors in the entire 

historical rainfall depths database and locates K of these d-ples, which are closest to the vector of d most recent 

rainfalls. The prediction of the next rainfall is then taken to be the average of the rainfall subsequent to these K 

historical nearest neighbors. It may be noticed that the K-NN approach does not require the selection of a class 

of models and the estimation of the model parameters, so that the identification of a specific form of the 

input/output relationship is not needed. 
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