Spectral and Raman Analysis of Er³⁺ Doped Zinc Lithium Antimony Sodalime Tellurite Glasses

S.L.Meena

Ceramic Laboratory, Department of physics, Jai NarainVyas University, Jodhpur 342001(Raj.) India

ABSTRACT

Zinc	lithium	antimony	sodalimetelluriteglasses	containing	Er^{3+}	in	(45-x):
TeO_2 :	0ZnO:10Li20	:10Sb ₂ O ₃ :10Ca	$O:15Na_2O:xEr_2O_3$. (where $x=1$	l, 1.5,2 mol %)	have been	prepared	d by melt-
quencl	ning method. T	The amorphous	nature of the glasses was cor	ifirmed by x-ray	v diffractio	n studie.	s. Optical
absorp	tion,Excitation	n, fluorescence	and Raman spectra were re	ecorded at room	n tempera	ture for	all glass
sample	es. Judd-Ofelt	intensity parame	eters Ω_{λ} (λ =2, 4, 6) are evalua	ted from the inte	ensities of v	various a	bsorption
bands	of optical a	bsorption spect	ra. Using these intensity pa	rameters vario	us radiativ	ve prope	erties like
sponta	neous emissio	n probability, br	anching ratio, radiative life ti	me and stimulat	ed emissio	n cross–	section of
variou	s emission line	s have been eva	luated.				

KEYWORDS: ZLASLT Glasses, Optical Properties, Judd-Ofelt Theory, Raman Analysis.

Date of Submission: 27-10-2021

Date of Acceptance: 10-11-2021

I. INTRODUCTION

Rare-earth ions doped glass-ceramics are important materials for optical fibers, wave guide lasers, sensors and optical amplifiers [1-5].Oxide glasses are the most stable host matrices for practical applications due to their high chemical durability and thermal stability. The importantance of glasses doped with rare earth elements lies in their distinctive emission properties in several electromagnetic spectral regions [6-10].Tellurite glasses have been extensively investigated due to their transparency in a wide spectral rang from the ultraviolet to the infrared, which makes them suitable for the fabrication of optical fibers [11,12].Tellurite glasses are extremely attractive materials for linear and non-linear application in optics, due to their important aspects such as their low melting temperature, low phonon energy and high refractive index, high dielectric constant, good chemical durability, high thermal stability, non-hygroscopic, with a large transmission window and the possibility to integrate a large amount of rare-earth ions [13-18]. Er^{3+} doped tellurite glasses considerable literature has recently emerged concerning the structure, optical, mechanical, thermal, and electrical properties[19-23].

In this work, the spectroscopic properties of Er^{3+} -doped (45-x): TeO₂:10ZnO:10Li₂O:10Sb₂O₃:10CaO:15Na₂O:xEr₂O₃ (where x=1, 1.5,2 mol %) glasses were investigated. The Optical absorption, Excitation, fluorescence and Raman spectra of Er^{3+} of the glasses were investigated. The intensities of the transitions for the rare earth ions have been estimated successfully using the Judd-Ofelt theory, The laser parameters such as radiative probabilities(A), branching ratio (β), radiative life time(τ_R) and stimulated emission cross section(σ_p) are evaluated using J.O.intensity parameters($\Omega_{\lambda, \lambda}$ =2,4 and 6).

Preparation of glasses

II. EXPERIMENTAL TECHNIQUES

The following Er^{3+} doped zinc lithium antimony sodalimetelluriteglass samples(45-x): TeO₂:10ZnO:10Li₂O:10Sb₂O₃:10CaO:15Na₂O:xEr₂O₃ (where x=1, 1.5.2) have been prepared by meltquenching method. Analytical reagent grade chemical used in the present study consist of TeO₂,ZnO, Li₂O,Sb₂O₃,CaO,Na₂Oand Er₂O₃. All weighed chemicals were powdered by using an Agate pestle mortar and mixed thoroughly before each batch (10g) was melted in alumina crucibles in silicon carbide based an electrical furnace.

Silicon Carbide Muffle furnace was heated to working temperature of 1055° C, for preparation of zinc lithium antimony sodalime tellurite glasses, for two hours to ensure the melt to be free from gases. The melt was stirred several times to ensure homogeneity. For quenching, the melt was quickly poured on the steel plate & was immediately inserted in the muffle furnace for annealing. The steel plate was preheated to 100° C. While pouring; the temperature of crucible was also maintained to prevent crystallization. And annealed at temperature of 350° C for 2h to remove thermal strains and stresses. Every time fine powder of cerium oxide was used for

polishing the samples. The glass samples so prepared were of good optical quality and were transparent. The chemical compositions of the glasses with the name of samples are summarized in Table 1

Table 1 Ch	emical comp	oosition of t	the glasses
_			

Sample	Glass composition (mol %)
ZLASLT	UD) 45TeO ₂ :10ZnO:10Li ₂ O:10Sb ₂ O ₃ :10CaO:15Na ₂ O
ZLASLT	ER1) $44\text{TeO}_2:10\text{ZnO}:10\text{Li}_2\text{O}:10\text{Sb}_2\text{O}_3:10\text{CaO}:15\text{Na}_2\text{O}:1\text{ Er}_2\text{O}_3$
ZLASLT	ER 1.5) 43.5TeO_2 : $10 \text{ZnO}: 10 \text{Li}_2 \text{O}: 10 \text{Sb}_2 \text{O}_3: 10 \text{CaO}: 15 \text{Na}_2 \text{O}: 1.5 \text{ Er}_2 \text{O}_3$
ZLASLT	ER2) $43\text{TeO}_2:10\text{ZnO}:10\text{Li}_2\text{O}:10\text{Sb}_2\text{O}_3:10\text{CaO}:15\text{Na}_2\text{O}: 2\text{ Er}_2\text{O}_3$

ZLASLT (UD)—Represents undoped Zinc Lithium Antimony SodalimeTelluriteglass specimen. ZLASLT(ER) -Represents Er³⁺ dopedZinc Lithium Antimony Sodalime Telluriteglass specimens.

III. THEORY

3.1 Oscillator Strength

The intensity of spectral lines are expressed in terms of oscillator strengths using the relation [24]. $f_{\text{expt.}} = 4.318 \times 10^{-9} \text{f} \epsilon (v) \, \text{d} v$ (1)

where, $\varepsilon(v)$ is molar absorption coefficient at a given energy $v(cm^{-1})$, to be evaluated from Beer–Lambert law. Under Gaussian Approximation, using Beer-Lambert law, the observed oscillator strengths of the absorption bands have been experimentally calculated, using the modified relation [25].

$$P_{\rm m} = 4.6 \times 10^{-9} \times \frac{1}{cl} \log \frac{I_0}{l} \times \Delta v_{1/2} \tag{2}$$

where c is the molar concentration of the absorbing ion per unit volume, I is the optical path length, $logI_0/I$ is absorbtivity or optical density and $\Delta v_{1/2}$ is half band width.

3.2. Judd-Ofelt Intensity Parameters

According to Judd [26] and Ofelt [27] theory, independently derived expression for the oscillator strength of the induced forced electric dipole transitions between an initial J manifold $4f^{N}$ (S, L) J> level and the terminal J manifold $|4f^{N}(S',L') J'>$ is given by:

$$\frac{8\Pi^2 mc v}{3h(2J+1)n} \frac{1}{n} \left[\frac{\left(n^2+2\right)^2}{9} \right] \times S(J,J^{-})$$
 where, the (3)

 $\begin{array}{l} \text{line strength } S \; (J,\,J') \text{ is given by the equation} \\ S \; (J,\,J') = e^2 \sum \Omega_{\lambda} \!\!<\!\! 4f^N(S,\,L) \; J \left\| U^{(\lambda)} \; \right\| 4f^N(S',\,L') \; J'\!\!>\!\! 2 \end{tabular}$

 $\lambda = 2, 4, 6$

In the above equation m is the mass of an electron, c is the velocity of light, v is the wave number of the transition, h is Planck's constant, n is the refractive index, J and J' are the total angular momentum of the initial and final level respectively, Ω_{λ} ($\lambda = 2, 4$ and 6) are known as Judd-Ofelt intensity parameters.

3.3. Radiative Properties

The Ω_{λ} parameters obtained using the absorption spectral results have been used to predict radiative properties such as spontaneous emission probability (A) and radiative life time ($\tau_{\rm R}$), and laser parameters like fluorescence branching ratio (β_R) and stimulated emission cross section (σ_p).

The spontaneous emission probability from initial manifold $|4f^{N}(S', L') J'>$ to a final manifold $|4f^{N}(S,L) J>|$ is given by:

A [(S', L') J'; (S,L)J] = $\frac{64 \pi^2 v^3}{3h(2J'+1)} \left| \frac{n(n^2+2)^2}{9} \right| \times S(J', \bar{J})$ (5) Where, S (J', J) = $e^2 \left[\Omega_2 \right\| U^{(2)} \|^2 + \Omega_4 \| U^{(4)} \|^2 + \Omega_6 \| U^{(6)} \|^2 \right]$

The fluorescence branching ratio for the transitions originating from a specific initial manifold $|4f^{N}(S', L')|$ J'> to a final many fold $|4f^{N}(S,L)J>$ is given by

$$\beta[(S', L') J'; (S, L) J] = \sum \frac{A[(S'L)]}{A[(S'L)J'(SL)]} (6)$$

S L J

where, the sum is over all terminal manifolds.

The radiative life time is given by

 $\tau_{rad} = \sum A[(S', L') J'; (S,L)] = A_{Total}^{-1}(7)$ S L J

where, the sum is over all possible terminal manifolds. The stimulated emission cross -section for a transition from an initial manifold $|4f^{N}(S', L') J'\rangle$ to a final manifold $|4f^{N}(S,L)J\rangle|$ is expressed as

$$\sigma_p(\lambda_p) = \left[\frac{\lambda_p^4}{8\pi c n^2 \Delta \lambda_{eff}}\right] \times A[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]$$
(8)

where, λ_p the peak fluorescence wavelength of the emission band and $\Delta \lambda_{eff}$ is the effective fluorescence line width.

3.4 Nephelauxetic Ratio (β ') and Bonding Parameter ($b^{1/2}$)

The nature of the R-O bond is known by the Nephelauxetic Ratio (β) and Bonding Parameters ($b^{1/2}$), which are computed by using following formulae [28, 29]. The Nephelauxetic Ratio is given by

$$\beta' = \frac{v_g}{d}$$

9)

where, v_a and v_g refer to the energies of the corresponding transition in the glass and free ion, respectively. The value of bonding parameter ($b^{1/2}$) is given by

$$b^{1/2} = \left[\frac{1-\beta'}{2}\right]^{1/2} \tag{10}$$

4.1. XRD Measurement

IV. RESULT AND DISCUSSION

Figure 1 presents the XRD pattern of the samples containing show no sharp Bragg's peak, but only a broad diffuse hump around low angle region. This is the clear indication of amorphous nature with in the resolution limit of XRD instrument.

Fig.1:X-ray diffraction pattern of ZLASLT(ER) glasses.

4.2 Raman spectra

The Raman spectrum of Zinc Lithium Antimony SodalimeTellurite(ZLASLT) glass specimens is recorded and is shown in Fig. 2. The Raman band at 120cm^{-1} corresponds to bending mode of Te–O–Te, which is formed by sharing vertices of TeO₄tbp's, TeO₃₊₁polyhedra and TeO₃tp's; stretching over long distance in the glass network. The Raman band at 450 cm⁻¹ is usually ascribed to bending vibrations of Te–O–Te linkages. The Raman bands around 675 and 750 cm⁻¹ are assigned to stretching vibrations in TeO₄ and TeO₃groups, respectively. The increase in intensity observed for the 750 cm⁻¹ band with erbium concentration is consistent with the destruction of TeO4 groups.

Fig. (2) Raman spectrum of ZLASLTER (01) glass.

4.2. Absorption spectra

The absorption spectra of ZLASLTER(01)glass, consists of absorption bands corresponding to the absorptions from the ground state ${}^{4}I_{15/2}$ of Er^{3+} ions. Ten absorption bands have been observed from the ground state ${}^{4}I_{15/2}$ to excited states ${}^{4}I_{11/2}, {}^{4}I_{9/2}, {}^{4}F_{9/2}, {}^{4}S_{3/2}, {}^{2}H_{11/2}, {}^{4}F_{5/2}, {}^{4}F_{3/2}, {}^{2}H_{9/2}$ and ${}^{4}G_{11/2}$ for Er^{3+} doped ZLASLTER (01)glass.

Fig.2: Absorption spectra of ZLASLTER(01) glass.

The experimental and calculated oscillator strengths for Er^{3+} ions in zinc lithium antimony sodalime tellurite glasses are given in **Table 2**

Table 2. Weasured and calculated oscillator strength (1 × 10) of E1 Tons in ZEASE relasses.								
Energy level	Glass ZLASLT		Glass ZLASLT		Glass ZLASLT			
${}^{4}I_{15/2}$	(ER01)		(ER1.5)		(ER02)			
	P _{exp.}	P _{cal.}	P _{exp.}	P _{cal.}	P _{exp.}	P _{cal.}		
${}^{4}I_{11/2}$	0.88	0.66	0.85	0.66	0.82	0.65		
${}^{4}I_{9/2}$	0.44	0.14	0.41	0.13	0.39	0.13		
${}^{4}F_{9/2}$	2.45	1.42	2.42	1.41	2.38	1.40		
${}^{4}S_{3/2}$	0.38	0.60	0.36	0.59	0.33	0.59		
${}^{2}H_{11/2}$	6.58	2.40	6.55	2.41	6.51	2.41		
${}^{4}F_{7/2}$	5.30	2.08	5.25	2.07	5.20	2.05		
${}^{4}F_{5/2}$	0.67	0.76	0.64	0.75	0.61	0.74		
${}^{4}F_{3/2}$	0.38	0.47	0.35	0.46	0.32	0.46		
${}^{2}H_{9/2}$	1.68	0.89	1.65	0.98	1.62	0.88		
${}^{4}G_{11/2}$	4.85	6.78	4.83	6.78	4.79	6.77		
R.m.s.deviation	1.8283		1.8129		1.7989			

Table 2.Measured and calculated oscillator strength (P^m×10⁺⁶) of Er³⁺ ions in ZLASLTglasses.

The various energy interaction parameters like Slater-Condon parameters $F_k(k=2, 4, 6)$, Lande'parameter (ξ_{4f}) and Racah parameters $E^k(k=1, 2, 3)$ have been computed using partial regression.Computed values of Slater-Condon, Lande', Racah,nephelauexetic ratio and bonding parameter for Er^{3+} dopedZLASLT glassspecimens are given in **Table 3**.

	101 121	uopeu ZLASLI glas	s specimens.	
Parameter	Free ion	ZLASLTER01	ZLASLTER1.5	ZLASLTER02
$F_2(cm^{-1})$	441.680	433.951	433.944	433.965
$F_4(cm^{-1})$	68.327	67.045	67.043	67.044
$F_6(cm^{-1})$	7.490	7.045	7.043	7.046
$\xi_{4f}(cm^{-1})$	2369.400	2414.646	2414.708	2414.632
$E^1(cm^{-1})$	6855.300	6663.138	6662.629	6663.316
$E^{2}(cm^{-1})$	32.126	31.348	31.346	31.350
$E^{3}(cm^{-1})$	645.570	643.641	643.681	643.647
F_4/F_2	0.15470	0.154499	0.1544968	0.1544917
F_6/F_2	0.01696	0.01623455	0.01623020	0.01623633
E^1/E^3	10.61899	10.352258	10.350824	10.352439
E^2/E^3	0.049764	0.048704	0.048698	0.048707
β'		0.99577279	.99567274	.99579898
b ^{1/2}		0.045973986	0.046514838	0.045831333

Table3.Computed values of Slater-Condon, Lande', Racah, nephelauexetic ratio and bonding parameter for Er³⁺ doped ZLASLT glass specimens.

Judd-Ofelt intensity parameters $\Omega_{\lambda}(\lambda = 2, 4 \text{ and } 6)$ were calculated by using the fitting approximation of the experimental oscillator strengths to the calculated oscillator strengths with respect to their electric dipole contributions. In the present case the three Ω_{λ} parameters follow the trend $\Omega_4 < \Omega_2 < \Omega_6$.

The values	of Judd-	Ofelt into	ensity p	arameters	are given	in Table 4.
			~ 1		0	

Table 4. Judd-Ofel	t intensity par	ameters for Er ⁷⁺	doped ZLASLT	glass specimens.
Glass Specimen	$\Omega_2(pm^2)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\text{pm}^2)$	Ω_4/Ω_6

Glass Specimen	$\Omega_2(pm^-)$	$\Omega_4(\text{pm}^2)$	$\Omega_6(\text{pm})$	Ω_4/Ω_6
ZLASLT (ER01)	0.8612	0.2944	0.9350	0.3149
ZLASLT (ER1.5)	0.8676	0.2921	0.9300	0.3141
ZLASLT (ER02)	0.8704	0.2890	0.9202	0.3141

4.4 Excitation Spectrum

The Excitation spectra of Er^{3+} doped ZLASLT glass specimens have been presented in Figure 4 in terms of Excitation Intensity versus wavelength. The excitation spectrum was recorded in the spectral region 300–600 nm fluorescence at 550nm having different excitation band centered at 350,365, 381, 425, 450, 470and 515 nmare attributed to the ${}^{2}K_{15/2}$, ${}^{4}G_{9/2}$, ${}^{4}G_{11/2}$, ${}^{2}G_{9/2}$, ${}^{4}F_{5/2}$ and ${}^{2}H_{11/2}$ transitions, respectively. The highest absorption level is ${}^{4}G_{11/2}$ and is at 381nm.So this is to be chosen for excitation wavelength.

Fig.4:Excitation Spectrum of ZLASLTER (01) glass.

4.3. Fluorescence Spectrum

The fluorescence spectrum of Er^{3+} doped in zinc lithium antimony sodalime tellurite glass is shown in Figure 3. There are sevenbroad bands $({}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}), ({}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}), ({}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}), ({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}), ({}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}), ({}^{4}I_{1$

Fig.3:Fluorescence spectrum of ZLASLTER (01) glass.

Table 5.Emission peak wave lengths (λ_p) , radiative transition probability (A_{rad}) , branching ratio (β_R) , stimulated emission crosssection (σ_p) , and radiative life time (τ) for various transitions in Er^{3+} doped ZLASLT glasses.

Transition	ZLASLTER 01			ZLASLTER 1.5			ZLASLTER 02						
	λ _{max} (nm)	A _{rad} (s ⁻¹)	β	σ _p (10 ⁻²⁰ cm ²)	$\tau_R(\mu s)$	A _{rad} (s ⁻¹)	β	σ_p (10 ⁻²⁰ cm ²)	$\tau_R(\mu s)$	$A_{rad}(s^{-1})$	β	σ_p (10 ⁻²⁰ cm ²)	(10^{-20} cm^2)
${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$	485	1956.35	0.4047	0.5282		1949.45	0.4037	0.5207		1932.76	0.4025	0.5060	
$^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$	530	1234.31	0.2553	0.3909		1241.48	0.2571	0.3896		1244.33	0.2592	0.3837	
${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	550	867.76	0.1795	0.2617		864.85	0.1791	0.2588		856.99	0.1785	0.2514	
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	657	581.20	0.1202	0.3089	206.84	579.14	0.1199	0.3038	207.07	573.91	0.1195	0.2959	208.29
⁴ I _{11/2} → ⁴ I _{15/2}	990	100.43	0.0208	0.3559		100.17	0.0207	0.3492		99.43	0.02071	0.3410	
⁴ I _{13/2} → ⁴ I _{15/2}	1538	80.99	0.0168	1.2059		80.74	0.01672	1.1874		80.06	0.01672	1.1573	
${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$	2711	13.59	0.0028	0.7802		13.55	0.0028	0.7718		13.44	0.0028	0.7580	

V. CONCLUSION

In the present study, the glass samples of composition (45-x)TeO₂:10ZnO:10Li₂O: 10Sb₂O₃:10CaO:15Na₂O:xEr₂O₃ (where x=1, 1.5, 2 mol %) have been prepared by melt-quenching method. The value of stimulated emission cross-section (σ_p) is found to be maximum for the transition (${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$) for glass ZLASLT (ER 01), suggesting that glass ZLASLT (ER 01) is better compared to the other two glass systems ZLASLT(ER1.5) and ZLASLT (ER02).A Raman band, associated with the Te–O–Te vibration mode has been observed near 450 cm⁻¹. It was found that this band shows a significant decrease in intensity as the Er³⁺ ion concentration increases, indicating a structural disruption in the glass network due to the erbium increasing.

REFERENCES

- Deopa,N., Kumar,B.,Sahu, M.K., Rani, P.R. and Rao, A.S.(2019).Effect of Sm³⁺ ions concentration on borosilicate glasses for reddish orange luminescent device applications, J.Non.Cryst.Solids, 513, 152-158.
- [2]. Meza-Rocha,A.N.,Bordignon,S.,Speghini,A.,Lozada-Morales,R. and Caldino, U.(2018).Zinc phosphate glasses activated with Dy³⁺/Eu³⁺/Sm³⁺ and Tb³⁺/Eu³⁺/Sm³⁺ for reddish-orange and yellowish white phosphor applications,J.Lumin. 203, 74-82.
- [3]. Rao, V.R. and Jayasankar, C.K.(2019). Spectroscopic investigation on multi-channel visible and NIR emission of Sm³⁺ doped alkalialkaline earth fluoro phosphate glasses, Opt. Mater, 91, 7-16.
- [4]. Largot,H.,Aiadi,K.E.,Ferid,M.,Haraiech,S.,Bouzidi,C.,Charnay,C.andHorchani-Naifer,K.(2019).Spectroscopic investigations of Sm³⁺ doped phosphate glasses:Judd-Ofeltanalysis,Phys, B Condens, Matter, 552,184-189.
- [5]. Wu, T., Cheng, Y., Zhong, H., Peng, H.and Hu, J. (2018). Thermal Stability and Spectral Properties of Tm³⁺, Yb³⁺coped Tellurite Glasses. Glass Phys. Chem., 44, 163–169.
- [6]. ÇelikbilekErsundu, M.andErsundu, A.E.(2016).Structure and crystallization kinetics of lithium tellurite glasses.J. Non-Cryst. Solids, 453, 150–157.
- [7]. Moguš-Milankovi´c, A., Pavi´c, L., Reis, S.T., Day, D.E.andIvanda, M.(2010).Structural and electrical properties of Li₂O–ZnO– P₂O₅ glasses. J. Non-Cryst. Solids, 356, 715–719.
- [8]. Balda, R., García-Revilla, S., Fernández, J., Seznec, V., Nazabal, V., Zhang, X. H., Adam, J. L., Allix, M. and Matzen, G.(2009).Upconversion luminescence of transparent Er³⁺-doped chalcohalide glass-ceramics, Opt. Mater. 31, 760-764.
- [9]. Assadi,A. A., Damak, K.andLachheb, R.(2015). Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials, Journal of Alloys and Compounds, 620, 129–136.
- [10]. Situmorang, R., Marbun, A., Hakim, A., Panggabean, D.D., Rajagukguk, J.andKaewkhao, J. (2018). Preparation and characterization of Nd³⁺ doped P₂O₅-Bi₂O₃-Na₂O-Gd₂O₃ glasses system for laser medium application, J. Phys.: Conf. Ser. 1120,1-9.

- Kesavulu,C.Kim,H.J.,Lee,S.W.,Kaewkhao,J.,Wantana,N.,Kaewnuam,E.,Kothand,S. and Kaewjaeng, S.(2017).Spectroscopic [11]. investigations of Nd³⁺ doped gadolinium calcium silica borate glasses for the NIR emission at 1059nm,J.Alloys.Compd.,695,590-590.
- Lalla,E.A., León-Luis, S.F., Monteseguro, V., Pérez-Rodríguez, C., Cáceres, J.M., Lavín,V.and Rodríguez-Mendoza, U.R.(2015). Optical temperature sensor based on the Nd^{3+} infrared thermalized emissions in a fluorotellurite glass, J. Lumin. 166, [12]. 209 - 214.
- Kaky, Kawa M., Sayyed, M. I., Laariedh, F., Abdalsalam, Alyaa H., Tekin, H. O. and Baki. S. O. (2019). Stuctural, optical and radiation [13]. shielding properties of zinc boro-tellurite alumina glasses. Applied Physics A 125, no. 1, 1-12.
- Sun, Hong-tao, Lei Wen, Zhong-chaoDuan, Li-li Hu, Jun-jie Zhang and Zhong-hong Jiang (2006). Intense frequency upconversion [14]. fluorescence emission of Er³⁺/Yb³⁺-codopedoxychloridegermanate glass.Journal of Alloys and Compounds 414, no. 1-2,142-145. Wang,J.S.,Vogel, E.M.,Snitzer, E. (1994). Tellurite glass: a new candidate for fiber devices, Opt. Mater. 3,187-203.
- [15]
- Jha, A., Richards, B., Jose, G., Teddy-Fernandez, T., Joshi, P., Jiang, X. and Lousteau, J. (2012). Rare-earth ion doped TeO2 and GeO2 [16]. glasses as laser materials, Prog. Mater. Sci. 57, 1426-1491.
- [17]. Sharudin Omar, Baki, Tan, L. S., Kan, C. S., Kamari, H. M., Noor, A. S. M. and Mahdi, M.A. (2014). Spectroscopic Studies of Er³⁺-Yb³⁺ Co-doped MulticompositionTellurite Oxide Glass.SainsMalaysiana 43, no. 6, 843-850.
- Jha, A., Richards, B.D.O., Jose, G., Fernandez, T.T., Hill, C.J., Lousteau, J.and Joshi, P. (2012). Review on structural, thermal, optical [18]. and spectroscopic properties of tellurium oxide based glasses for fiber optic and waveguide applications, Int. Mater. Rev. 57, 357-382
- León-Luis, S. F., Rodríguez-Mendoza, U. R., Martín, I. R., Lalla, E., and Lavín, V.(2013). Effects of Er³⁺ concentration on thermal [19]. sensitivity in optical temperaturefluorotellurite glass sensors, Sens. Actuators B Chem. 176, 1167-1175.
- [20]. Vijaya, N., Babu, P., Venkatramu, V., Jayasankar, C. K., León-Luis, S. F., Rodríguez-Mendoza, U. R., Martín, I. R. and Lavín, V.(2013).Optical characterization of Er^{3+} -doped zinc fluorophosphate glasses for optical temperature sensors, Sens. Actuators B Chem. 186, 156-164.
- Tian,Y.,Huang, P.,Wang, L.,Shi, Q. andCui, C. E.(2016). Effect of Yb^{3+} concentration on upconversion luminescence and temperature sensing behavior in Yb^{3+}/Er^{3+} co-doped YNbO₄ nanoparticles prepared via molten salt route, Chem. Eng. J. 297, 26–34. [21].
- Prabhu,N.S.,Hegde,V.,Sayyed,M.I.,Agar,O.andKamath,S.D.(2019). Investigations on structural and radiation shielding properties of [22]. Er³⁺ doped zinc bismuth borate glasses, Materials chemistry and physics, 230, 267-276.
- Othman, H.A., Alqahtani, M.M., Reben, M.and Yousef, ELS. (2020). Raman gain and structural of tellurite-phosphate glasses with [23]. different modifiers doping with Er₂O₃.Chalcogenide Letters, 17,207 - 215.
- Gorller-Walrand, C. and Binnemans, K. (1988). Spectral Intensities of f-f Transition. In: Gshneidner Jr., K.A. and Eyring, L., Eds., [24]. Handbook on the Physics and Chemistry of Rare Earths, Vol. 25, Chap. 167, North-Holland, Amst., 101.
- [25]. Sharma, Y.K., Surana, S.S.L. and Singh, R.K. (2009). Spectroscopic Investigations and Luminescence Spectra of Sm³⁺ Doped Soda Lime Silicate Glasses. Journal of Rare Earths, 27, 773.
- [26]. Judd, B.R. (1962). Optical Absorption Intensities of Rare Earth Ions. Physical Review, 127, 750.
- Ofelt, G.S. (1962). Intensities of Crystal Spectra of Rare Earth Ions. The Journal of Chemical Physics, 37, 511. [27].
- [28]. Sinha, S.P. (1983). Systematics and properties of lanthanides, Reidel, Dordrecht.
- Krupke, W.F. (1974). IEEE J. Quantum Electron QE, 10,450. [29].

_____ S.L.Meena, "Spectral and Raman Analysis of Er3+ Doped Zinc Lithium Antimony Sodalime Tellurite Glasses." International Journal of Engineering Science Invention (IJESI), Vol. 10(11), 2021, PP 09-15. Journal DOI- 10.35629/6734