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ABSTRACT: Today, quantum physics [1,2] and general relativity, GR, [3,4] are the two essential fundamental 

theories in physics [5–7]. However, as we live in one world, these two theories should be unified [8]. In this paper, 

we show that the volume is an essential dynamical quantity, the dynamic volume, DV. And we derive the volume 

dynamics, VD. For it, we use the dynamics of GR. From the VD, we derive a cornerstone of the unification, the 

Schrödinger equation [9, Eq. 1.1]. Hereby, the DV is a part of reality [5], as its amount and its energy density 

𝑢𝑣𝑜𝑙 (dark energy) [10–12] can be observed. Therefrom, we derive the deterministic dynamical equation of quanta 

- the Schrödinger equation [13–16] - and we derive the stochastic dynamics of quanta [17–19], as well as the 

Hilbert space structure of quanta [9,20]. On that basis, the postulates of quanta [21–23] and the energy density 

of dark energy [21,24,25] have been derived. All results are in precise accordance with observation, whereby 

neither a hypothesis is introduced, nor an ununified fit parameter is proposed, nor a fit is executed, nor a universal 

constant of nature is modified. Thus, a high unifying power is achieved [8]. 
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1. INTRODUCTION 

In 1905, Einstein [26] introduced special relativity, SR, describing a system or frame moving at a velocity 

𝑣  relative to a rest frame, whereby no gravity or acceleration are present. As results, time dilation, length 

contraction, the Lorentz transformation and the Minkowski metric have been derived, for instance. In 1915, 

Einstein [3] introduced general relativity, GR, describing a system with gravity or acceleration. As a result, a 

curvature of spacetime is obtained. It can be described by the Einstein field equation [3,4,27–30]. In particular, in 

the vicinity of a mass 𝑀, the Schwarzschild metric [31] is derived. Based on GR, Einstein [32] showed in 1917 

that the universe could expand in the course of time. Indeed, Hubble observed galaxies and thereby, he confirmed 

such an expansion of space [33]. Moreover, such an expansion of space has been confirmed by many quite 

different observations [34–47]. Furthermore, SR and GR have been confirmed by many observations [48]. In 

1900, based on observation, Planck [2] discovered the quantization and the Planck constant ℎ of quantization. In 

1926, Schrödinger [13] proposed a differential equation for quanta, the Schrödinger equation, SEQ. The SEQ 

turned out to describe the basic dynamics of quanta. Moreover, the SEQ became the basis for many quantum 

systems [49,50]. Accordingly, the SEQ is inherent to the postulates of quantum physics [20–23,51,52]. In 1935, 

Einstein [5] proposed that quantum theory would be incompatible with relativity. However, as we live in one 

world only, quantum physics and relativity should be unified [8], whereby no ad hoc hypothesis or unified fit 

parameter should be used, if possible. How can this be achieved? Perlmutter [10], Riess [11] and Smoot [12] 

discovered the accelerated expansion of the universe. According to Einstein [32], such an accelerated expansion 

can be explained by GR with help of an additional constant, which he named cosmological constant Λ. That 

constant corresponds to an energy density 𝑢vol of the corresponding density 𝜌vol =
𝑢vol

𝑐2
 of volume [29, Eq. 15.4, 

p. 389]. The energy 𝛿𝐸vol = 𝑢vol ⋅ 𝛿𝑉 of the energy density 𝑢vol has been called dark energy [53, abstract]. In the 

present paper, the term volume describes that volume with the energy density 𝑢vol. According to Einstein, Rosen 

and Podolski [5], a physical quantity that can be observed or confirmed by observation should be regarded as an 

element of physical reality. In this sense, volume is an element of physical reality, as volume has been observed 

in the form of its amount 𝛿𝑉 , of its energy density 𝑢vol  and of its energy 𝛿𝐸vol = 𝑢vol ⋅ 𝛿𝑉 . According to 

observation and derivation, the energy density 𝑢vol amounts to approximately 67 % of all energy or mass of the 

universe [21,24,46]. In this paper, we apply volume in order to derive an essential dynamical basis of quantum 

physics, the Schrödinger equation, SEQ. Note that by using that derivation of the SEQ, all postulates of quantum 

physics have been derived, and a unification of quantum physics, relativity and gravity has been elaborated [21–

23,54]. Thereby, no ad hoc hypothesis has been proposed, no ununified fit parameter has been introduced, no fit 
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has been executed, no universal constant of nature has been modified, and precise accordance with observation 

has been achieved. The paper is organized as follows. We present possible measures of observable distances and 

their application to the Schwarzschild metric in section two. We derive additional volume as well as relative 

additional volume, which explains curvature, gravitational fields and gravitational potentials, see sections 3.1 and 

3.2. In section 3.3, we derive the propagation, including the formation, of relative additional volume. We describe 

the dynamics of relative additional volume with a Lorentz scalar, and we discover the general nature of that scalar 

in part 3.4. In sections 3.5 and 3.6, we derive waves of relative additional volume, and we derive the SEQ. We 

conclude our findings in part four. We provide a glossary for some technical terms in section five.  

In this text, if we use units, then we use SI units only, see e. g. [55]. In this paper, we use a spaceship as 

a probe mass that is in the vicinity of a mass 𝑀. Thereby, the influences of the probe mass upon the curvature of 

spacetime, upon the gravitational field and upon the gravitational potential are negligible, as usual, see e. g. 

[3,27,29,30,56].  

In order to provide a transparent and exact basis for our investigation, we clarify the concept of volume 

in more detail in the following sections 1.1 towards 1.3. 

 

1.1 Definition of the dynamical density of volume in nature  

In this section, we define the energy density 𝑢𝑣𝑜𝑙  of the volume, and we distinguish it from energy 

densities of vacuum. By definition, the energy density of a portion of volume 𝛿𝑉 is the ratio of the energy inherent 

to the volume 𝛿𝐸𝑣𝑜𝑙  and 𝛿𝑉: 

𝑢𝑣𝑜𝑙 =
𝛿𝐸𝑣𝑜𝑙
𝛿𝑉

 

In cosmology, an energy density 𝑢  is usually described by a corresponding dynamical density or density 𝜌. 

Thereby, the dynamical density 𝜌 is equal to energy density 𝑢 divided by the square of the velocity of light 𝑐2, 

see e. g. sections 15.1 and 15.2 in [29]: 

𝜌 =
𝑢

𝑐2
 

Accordingly, we derive the dynamical density of volume in nature: 

𝜌𝑣𝑜𝑙 =
𝑢𝑣𝑜𝑙
𝑐2

=
𝛿𝐸𝑣𝑜𝑙/𝑐

2

𝛿𝑉
 

As the volume in nature is a geometrical quantity, and as the volume in nature should describe the extension of 

space at all times in a coherent manner, we define that the dynamical density of volume 𝜌𝑣𝑜𝑙  does not change as 

a function of time. Accordingly, and altogether, we define that the energy density 𝑢𝑣𝑜𝑙 of a portion of volume 𝛿𝑉 

is the energy 𝛿𝐸𝑣𝑜𝑙  that is inherent to that portion 𝛿𝑉 and that does not change as a function of time. 

In contrast, several different energy densities of vacuum have been proposed in physics. For instance, an 

energy density vacuum caused by the electromagnetic field has been proposed, see e. g. section 19.3 in [51]. For 

example, the vacuum expectation value, vev, has been proposed in the theory of the weak interaction, see e. g. 

sections 10 and 11 in [55]. Accordingly, we make a difference between the dynamical density of the volume in 

nature and the various proposed densities of the vacuum. According to this distinction, we derive the geometrical 

dynamics of volume, as announced in the title of the paper. 

 

 1.2 Identification of the dynamical density of volume  

In this section, we analyze the expansion of space since the Big Bang, in order to identify the energy 

density 𝑢𝑣𝑜𝑙 of the volume. In a very good and popular approximation, the expansion of space since the Big Bang 

can be described in an isotropic manner, see e. g. [29]. Accordingly, the time evolution of that expansion can be 

described by the time evolution of a radius 𝑅(𝑡) of a prototypical ball of the universe, see e. g. [29] or [24]. 

Usually, the time derivative �̇� per radius 𝑅 is analyzed, that ratio is called Hubble parameter 𝐻: 

𝐻 =
�̇�

𝑅
 

In a very good and popular approximation, the expansion can be modeled by a homogeneous universe, see e. g. 

[24] or [29]. Note that the consequences of heterogeneity have been analyzed and are in precise accordance with 

observation, see e. g. [24]. Moreover, in another very good and popular approximation, the global curvature of 

space is zero, see e. g. [24,29,46]. A space with zero curvature is called flat. Altogether, in an isotropic and 

homogeneous universe with zero global curvature, the Hubble parameter 𝐻 is the following function of the density 

𝜌, whereby the gravitational constant is marked by 𝐺 [24,29]: 

𝐻2 =
8𝜋𝐺

3
⋅ 𝜌 

For the purpose of an analysis of the time evolution of the expansion of the universe, the density is classified into 

three components: The density of matter 𝜌𝑚 is proportional to 𝑅−3, the density of radiation 𝜌𝑟 is proportional to 

𝑅−4, and the density of volume 𝜌𝑣𝑜𝑙  is constant (proportional to 𝑅−0), see e. g. [29]: 
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𝐻2 =
8𝜋𝐺

3
⋅ (𝜌𝑟 + 𝜌𝑚 + 𝜌𝑣𝑜𝑙), with 𝜌𝑚 ∝ 𝑅

−3 and 𝜌𝑟 ∝ 𝑅
−4 and 𝜌𝑣𝑜𝑙  is constant 

Note that the constant density 𝜌𝑣𝑜𝑙  is denoted by 𝜌Λ in [29], and it is named density of vacuum, see p. 389 in [29].  

Application of the time derivative to the above equation provides the following result: 

𝑅 ⋅ �̈�

�̇�2
=
4𝜋𝐺

3𝐻2
⋅ (−2𝜌𝑟 − 𝜌𝑚 + 2𝜌𝑣𝑜𝑙) 

In 1998, observations showed that the universe expands in an accelerated manner, so that the above fraction 
𝑅⋅�̈�

�̇�2
 

is positive [10-12,46]. The above equation shows that the density of volume must be positive, as a consequence. 

More precisely, the observation shows that the density of volume 𝜌𝑣𝑜𝑙  amounts to ca. 67 % of the whole density 

of the universe. Additionally, this result has been confirmed theoretically, see e. g. [24]. 

 

Altogether, as the density of volume is constant, it can cause an accelerated expansion of the universe (see above 

Eq.). Observations show that the constant density amounts to ca. 67 % of the whole density of the universe. 

Analysis shows that the constant density amounts to 66,7 % of the density of the universe [24]. The observed 

energy density 𝑢𝑣𝑜𝑙 = 𝜌𝑣𝑜𝑙 ⋅ 𝑐
2  has been named dark energy [53]. However, the volume and vacuum are not 

distinguished in [53]. Thus, we identify the density of volume with the density that causes an accelerated 

expansion according to the above equation. Moreover, we realize that many people call the energy density causing 

the accelerated expansion dark energy, whereby they do not distinguish between volume and vacuum. That 

distinction is essential, as the densities of proposed forms of vacuum [51,55] differ by dozens of orders of 

magnitude from the observed constant density 𝜌𝑣𝑜𝑙 .     
 

1.3 Analysis of the global dynamics of volume  

In the case of the isotropic and homogeneous universe with zero global curvature, the rate �̇� of formation of 

volume is derived from the above equation 𝐻2 =
8𝜋𝐺

3
⋅ 𝜌. In that case, the volume of the prototypical ball is 

described by the usual term of Euclidean geometry: 

𝑉 =
4𝜋

3
⋅ 𝑅3 

As a consequence, volume is formed in an isotropic manner. Thereby, the rate of formation of relative additional 

volume 
�̇�

𝑉
 can be derived by analyzing the derivative. Hereby, the following rate is derived [24]: 

�̇�

𝑉
=
3�̇�

𝑅
= 3𝐻 

However, in the vicinity of a mass 𝑀, the space is neither homogeneous nor flat. As a consequence, the 

additionally formed volume and its rate are quite different from the above global formation of volume. The local 

formation of volume is analyzed in the following. For it, the formation of volume in the vicinity of a mass 𝑀 is 

analyzed with help of the Schwarzschild metric, see sections II and III. Later, the obtained results are 

generalized, and the volume dynamics, VD, are derived, see sections 3.3 and 3.4. Finally, we show that the VD 

implies the Schrödinger equation, the corner stone of quantum physics, see section 3.5. More generally, the VD 

is an essential basis for the unification of spacetime, gravity and quanta [21-23].   

 
II. SCHWARZSCHILD METRIC 

In this section, we summarize the Schwarzschild metric. In general, a metric can be described with help 

of a line element ds in four dimensional spacetime [3,4,26,27,29,56–58]. For instance, flat spacetime can be 

described in terms of spherical polar coordinates (𝑐𝑡, 𝑅, 𝜗, 𝜑) as follows [26,27,29,56]: 

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑅2 + 𝑅2 ⋅ 𝑑2𝜗 + 𝑅2 ⋅ sin2 𝜗 ⋅ 𝑑2𝜑 
note: the opposite sign convention is always possible 

−𝑑𝑠2 = +𝑐2𝑑𝑡2 − 𝑑𝑅2 − 𝑅2 ⋅ 𝑑2𝜗 − 𝑅2 ⋅ sin2 𝜗 ⋅ 𝑑2𝜑    (2.1) 

In particular, if a mass M is at the origin of a frame of four dimensional spacetime, and if the frame is described 

with the above spherical polar coordinates, then the metric is described by the Schwarzschild metric [27,29,31,56] 

as follows: 

𝑑𝑠2 = −𝑐2𝑑𝑡2 ⋅ 𝜀𝐸
2 +

𝑑𝑅2

𝜀𝐸
2 + 𝑅

2 ⋅ 𝑑2𝜗 + 𝑅2 ⋅ sin2 𝜗 ⋅ 𝑑2𝜑    with  𝜀𝐸 = √1 −
𝑅𝑆

𝑅
 

and with the Schwarzschild radius  𝑅𝑆 =
2𝐺𝑀

𝑐2
 and with the gravitational constant 𝐺 (2.2) 
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Figure 1. Measurement of a well-defined gravitational parallax distance 𝑑𝐺𝑃 between an observer in a spaceship 

and a mass 𝑀. 

 
2.1 Two measures of observable distance  

In general, there are various methods for the measurement of a physical quantity. For instance, if you 

want to measure a mass, then you can use a beam balance or a spring balance. If you measure one kilogram of 

bread, then both balances will provide the same result at Earth. However, they will provide significantly different 

results at the Moon. Thereby, the beam balance provides the correct value of the mass at Earth and at the Moon. 

In contrast, the spring balance provides the correct mass at Earth and a wrong value for the mass at the Moon. Of 

course, the spring balance basically measures a force. And the spring balance provides the correct values of the 

force at Earth and at the Moon, if it is calibrated for the measurement of forces. Moreover, the difference of the 

values provided by the two balances provides essential information about the local properties of gravity at Earth 

and at the Moon. Similarly, we use two distance measures in order to obtain essential information about volume, 

see e. g. [21-23,54].  

 

2.2 Light-travel distance 

In this section, we summarize the light-travel distance 𝑑𝐿𝑇 [59]. If an object emits a light signal at a time 

𝑡𝑒𝑚, and if that light signal propagates in volume, and if that light signal is observed at a second object at a time 

𝑡𝑜𝑏𝑠, then the light signal propagated the light-travel distance 𝑑𝐿𝑇 = 𝑐 ⋅ (𝑡𝑜𝑏𝑠 − 𝑡𝑒𝑚). 
An alternative procedure of measurement is as follows: If an object emits a light signal at a time 𝑡𝑒𝑚, 

and if that light signal propagates in volume, and if that light signal is reflected at a second object, and if the 

reflected signal is observed at the first object at a time 𝑡𝑜𝑏𝑠, then the light-travel distance between the objects is 

as follows 𝑑𝐿𝑇 = 𝑐 ⋅
𝑡𝑜𝑏𝑠−𝑡𝑒𝑚

2
. 

  The measured distances can be represented in a map of curved spacetime, as the light-travel distance is 

used in GR, and as GR provides a curved spacetime. For an illustration see the upper map in Fig. (2). 

 

2.3 Gravitational parallax distance  

In this section, we propose a second distance measure, the gravitational parallax distance 𝑑𝐺𝑃, see Fig. 

(1), and we show that this distance is well defined. 

Theorem 2.1. If a mass 𝑀 is in an empty environment, and if 𝑀 is neither accelerated, nor rotating nor 

charged. And if a spacecraft is in the vicinity, and if that spacecraft navigates with a gyro-sensor so that it does 

not rotate,  �⃗⃗� = 0⃗ , and if the spacecraft has two hand leads at the ends of a rod of length 𝑏, and if the spacecraft 

navigates via feedback control so that each hand lead encloses the same angle 𝛼 with the rod, and so that the 

spacecraft keeps the angle 𝛼 fixed, then the angle 90𝑜 − 𝛼 = 𝑝𝑔𝑟𝑎𝑣  is called gravitational parallax angle, then 

following holds:  

(1) A well-defined gravitational parallax distance 𝑑𝐺𝑃, also called 𝑅, between the spacecraft and the 

mass 𝑀 can be measured and evaluated as follows: 

𝑅 = 𝑑𝐺𝑃 =
𝑏/2

tan 𝑝𝑔𝑟𝑎𝑣
 

(2)  The measured gravitational parallax distance 𝑑𝐺𝑃 does not depend on the value of 𝑀.  

(3) In the zero-mass limit, the light-travel distance 𝑑𝐿𝑇 is equal to the measured gravitational parallax 

distance and to the light-travel distance 𝑑𝐿𝑇,𝑓𝑙𝑎𝑡 in flat space: 
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𝑑𝐿𝑇,𝑓𝑙𝑎𝑡 = lim
M→∞

𝑑𝐿𝑇(𝑀) = 𝑑𝐺𝑃   

(4) At a location with 𝑅 > 𝑅𝑆, the radius 𝑅 can be measured by using the light-travel distance 𝑑𝐿𝑇 only. 

For it, the circumference 𝐶 = 2𝜋𝑅 of a circle with 𝑀 at the center can be measured. With it, the 

circumferential radial coordinate 𝑅 =
𝐶

2𝜋
 is determined [30, p. 107].  

In order to prove part (1) of the above theorem, we have to show that the measurement of 𝑑𝐺𝑃 is well defined. For 

it, we show that the measurement provides the same value, whenever the procedure of measurement is applied at 

the same geometric situation. For it, we realize that there is no inertial force at the spaceship:  

Firstly, there acts no centripetal force at the spaceship, as the spaceship does not rotate.  

Secondly, there acts no linear inertial force at the spaceship, as the distance to 𝑀 is constant, and as 𝑀 does not 

experience any inertial force, since 𝑀 is not accelerated or 𝑀 is in a state of free fall.  

Thirdly, there acts no force at the spaceship that is based on a drag, because 𝑀 does not rotate [60].  

Furthermore, except the gravitational interaction, there acts no long-range force upon the hand leads or the 

spaceship. This is a consequence of the following facts:  

Firstly, 𝑀 is not charged.  

Secondly, the spaceship is in a vicinity of 𝑀 consisting of volume without any other content.  

Thirdly, long range forces, except the gravitational interaction, cancel according to shielding or to a zero 

average, as a result of the relative homogeneity of the universe [24,61]. 

Altogether, the gravitational parallax distance 𝑑𝐺𝑃 is well defined.  

In order to prove part (2) of the above theorem, we realize that the gravitational parallax angle 𝑝𝑔𝑟𝑎𝑣  does not 

depend on the particular value of the mass 𝑀. Thus, the obtained distances 𝑑𝐺𝑃 =
𝑏/2

tan 𝑝𝑔𝑟𝑎𝑣
 do not depend on the 

particular nonzero value of the mass 𝑀.  

In order to prove part (3) of the above theorem, we analyze the limit of the nonzero mass 𝑀 to zero. In that limit, 

the Schwarzschild metric (Eq. 2.2) is the same as the metric (Eq. 2.1) of flat space. Thus, the light-travel distance 

becomes equal to the light-travel distance at 𝑀 = 0 of flat space, 𝑑𝐿𝑇,𝑓𝑙𝑎𝑡 = lim
M→∞

𝑑𝐿𝑇(𝑀). Moreover, in that limit, 

the gravitational parallax distance is the same as in flat space, 𝑑𝐿𝑇,𝑓𝑙𝑎𝑡 = lim
M→∞

𝑑𝐿𝑇(𝑀) = 𝑑𝐿𝑇(𝑀) , as the 

gravitational parallax distance does not depend on 𝑀, see part (2). As the gravitational parallax distance is based 

on a triangle with angle sum 180° (see Fig. 2 and the angle-sum theorem [62, theorem 1.2]), 𝑑𝐿𝑇,𝑓𝑙𝑎𝑡 = 𝑑𝐺𝑃,𝑓𝑙𝑎𝑡 =

𝑑𝐺𝑃.  

In order to prove part (4) of the above theorem, we provide a procedure of measurement. Using the light-travel 

distance, a set of spaceships can navigate to positions at equal light-travel distance to 𝑀 and at the same plane 

with 𝑀 in that plane. Thus, the spaceships are at a circle around 𝑀 at a common radius 𝑅. According to the 

Schwarzschild metric (Eq. 2.2), the circumference of the circle has the length measured by light-travel distances 

of 𝐶 = 2𝜋𝑅. Hence, the radius is measured on the basis of the light-travel distance only, 𝑅 =
𝐶

2𝜋
 [30, Eq. 9.5]. 

Altogether, we proved all parts of the theorem. 

 

 
Figure 2. In the vicinity of a mass 𝑀, the measured light-travel distances can be represented in a map of 

curved spacetime, according to the Schwarzschild metric. In the vicinity of the same mass 𝑀, the measured 

gravitational parallax distances can be represented in a map of flat spacetime, according to theorem (2.1). 

Thereby, each event can be represented in both maps, see dotted lines. 

 

Corollary 2.1. As the gravitational parallax distance provides distances in flat space, these distances can 

be marked in an illustrative map or 𝑑𝐺𝑃-map of flat space (Fig. 2). As the light-travel distance provides distances 

in curved spacetime according to the Schwarzschild metric, these distances can be marked in an illustrative map 

or 𝑑𝐿𝑇-map of curved spacetime (Fig. 2). For similar illustrative maps see for instance [30, Fig. 11.3], [29, 13.1], 

[56, Fig. 4.1].  
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2.4 A mass causes a change of the metric  

As described in section (2.1), the comparison of two measurement procedures can provide interesting 

information about physics. In this sense, we analyze the Schwarzschild metric in the vicinity of a mass 𝑀 . 

Thereby, we compare the two distance measures described, proposed or derived in section (2) and illustrated in 

Fig. (2). For it, we compare the shell with a radius 𝑅 and with an incremental thickness 𝑑𝑅 in the 𝑑𝐺𝑃 - map on 

one hand with the shell with the same radius 𝑅 and the corresponding thickness 𝑑𝐿 in the 𝑑𝐿𝑇 - map on the other 

hand (for an illustration see Fig 3). 

Theorem 2.2. If a mass 𝑀 fulfills the conditions of theorem (2.1), then the following holds:  

(1) The mass 𝑀 causes a change of the metric from the flat space metric (Eq. 2.1) to the Schwarzschild 

metric (Eq. 2.2). 

(2) In particular, the mass 𝑀 causes a change of the radial increment 𝑑𝑅. Thereby, 𝑑𝑅 ranges from an 

event 𝐸1  at 𝑅 to an event 𝐸2 at 𝑅 + 𝑑𝑅 at zero 𝑑𝑡, 𝑑𝜗 and 𝑑𝜑 in the 𝑑𝐺𝑃 - map. The increment 𝑑𝑅 

changes to the corresponding radial increment 𝑑𝐿 ranging from the event 𝐸1 to the event 𝐸2 in the 

𝑑𝐿𝑇 - map (for an illustration see Fig 3). Thereby, the increments 𝑑𝑅 and 𝑑𝐿 are related as follows: 

𝑑𝐿 =
𝑑𝑅

𝜀𝐸
  at 𝑑𝑡 = 0, 𝑑𝜗 = 0 and 𝑑𝜑 = 0       (2.3)  

In order to prove part (1) of the above theorem, we apply part (3) in theorem (2.1). Thus, in the limit 𝑀 to zero, 

the metric is the flat space metric, while at an arbitrary mass 𝑀, the metric is the Schwarzschild metric. In this 

sense, the mass 𝑀 causes the change from the flat space metric to the Schwarzschild metric.  

In order to prove part (2) of the above theorem, we apply part (1) in this theorem and the Schwarzschild metric 

(Eq. 2.2). Thus, at constant time and polar angles, the mass 𝑀  causes a change from 𝑑𝑅  to 
𝑑𝑅

𝜀𝐸
 in Eq. (2.2). 

Altogether, we proved both parts of the theorem. 

 

 
Figure 3. Corresponding shells in the two maps (see Fig. 2) of the vicinity of 𝑀. The thicknesses 𝑑𝐿 and 𝑑𝑅 are 

related according to Eq. (2.3). 

 

III. ADDITIONAL VOLUME 
 In this section, we analyze the volumes of the shells in theorem (2.2), see Fig. (3). Hereby, we apply 

various well established mathematical and physical concepts.  

3.1 Mass causes additional volume  

In this section, we analyze the difference of the volumes of the shells in theorem (2.2), see Fig. (3).  

Theorem 3.1. If a mass 𝑀 fulfills the conditions of theorem (2.2), then the following holds (for an 

illustration see Fig. 3):  

(1) At a radius 𝑅, the mass 𝑀 causes the following additional radial increment:  

𝛿𝑅:= 𝑑𝐿 − 𝑑𝑅, thus, 𝛿𝑅 = 𝑑𝑅 ⋅ (
1

𝜀𝐸
− 1)       (3.1)  

(2) As a consequence, the mass 𝑀 causes an increase of the volume 𝑑𝑉𝑅 of a shell with the center 𝑀, a 

radius 𝑅 and a thickness 𝑑𝑅 in the 𝑑𝐺𝑃 - map. If the mass changes from the limit 𝑀 to zero to an 

arbitrary value 𝑀, then the thickness of the above shell increases from 𝑑𝑅 to 𝑑𝐿 =
𝑑𝑅

𝜀𝐸
. Thus, the 

volume of the above shell increases from 𝑑𝑉𝑅 to a value 𝑑𝑉𝐿. Thence, the volumes are as follows: 

𝑑𝑉𝑅 = 4𝜋𝑅
2𝑑𝑅, and 𝑑𝑉𝐿 = 4𝜋𝑅

2𝑑𝐿, with the additional volume 𝛿𝑉: 𝑑𝑉𝐿 − 𝑑𝑉𝑅 

and with the relative additional volume 𝜀𝐿 ≔
𝛿𝑉

𝑑𝑉𝐿
,  thus,  𝜀𝐿 = 1 − 𝜀𝐸   (3.2)  
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In order to prove part (1) of the above theorem, we apply part (2) in theorem (2.2), and we factorize 𝑑𝑅. We 

prove part (2) of the above theorem as follows: The incremental volume 𝑑𝑉𝑅 of the shell is equal to its surface 

4𝜋𝑅2 multiplied by the thickness 𝑑𝑅. The incremental volume 𝑑𝑉𝐿 of the shell is equal to its surface 4𝜋𝑅2 

multiplied by the thickness 𝑑𝐿 . By definition, the difference of these volumes is 𝛿𝑉 = 𝑑𝑉𝐿 − 𝑑𝑉𝑅 . By 

definition, the difference of these volumes 𝛿𝑉  relative to the complete volume 𝑑𝑉𝐿  is 𝜀𝐿 =
𝛿𝑉

𝑑𝑉𝐿
. In the 

definition 𝜀𝐿 =
𝛿𝑉

𝑑𝑉𝐿
, we insert the terms for 𝛿𝑉, 𝑑𝑉𝑅  and 𝑑𝑉𝐿 . Then we cancel 𝑑𝑉𝐿  and 4𝜋𝑅2  in order to 

derive 𝜀𝐿 = 1 −
𝑑𝑅

𝑑𝐿
. Next, we apply part (2) in theorem (2.2). Thus, we derive part (2) in the above theorem. 

Altogether, we proved all parts of the theorem. 

 

 
Figure 4. Two observers above a mass 𝑀 measure the gravitational redshift and time dilation: An upper 

observer at 𝑅∞ measures the light travel distance 𝑑𝐿(𝐴, 𝐵) between two locations A and B with help of the time 

of flight 𝑡𝑜𝑓. A lower observer additionally measures the gravitational parallax distance 𝑑𝑅(𝐴, 𝐵) between the 

same locations. 

 

3.2 Relative additional volume provides curvature, potential and field  

In this section, we show that the relative additional volume derived in theorem (3.1) provides the 

observed curvature of spacetime of the Schwarzschild metric as well as the gravitational potential and the 

gravitational field as a function of the gravitational parallax distance 𝑑𝐺𝑃 = 𝑅.  

Theorem 3.2. If a mass 𝑀 fulfills the conditions of theorems (2.1, 2.2, 3.1), then the following holds: 

(1) At each location with 𝑅 ≥ 𝑅𝑆, and in the 𝑑𝐺𝑃 - map, the gravitational field  𝐺 ∗ is antiparallel to the 

radial unit vector  𝑒 𝐿 and the field has the following absolute value, see e. g. [30, Eq. 9.9]: 

 |𝐺 ∗| =
𝐺⋅𝑀

𝑅2
,  thus,  𝐺 ∗ =

𝐺⋅𝑀

𝑅2
⋅ 𝑒 𝐿       (3.3) 

(2) At each location with 𝑅 ≥ 𝑅𝑆, the gravitational potential Φ𝐿(�⃗� ) is equal to the relative additional 

volume multiplied by −𝑐2, and the field is the gradient of the potential: 

Φ𝐿(�⃗� ) = −𝑐
2 ⋅ 𝜀𝐿(�⃗� ), thus, 𝐺 ∗ = −

𝜕

𝜕𝐿
Φ𝐿 ⋅ 𝑒 𝐿, thence, 𝐺 ∗ = −𝑔𝑟𝑎𝑑𝐿Φ𝐿 ⋅ 𝑒 𝐿 

or with 𝜕 𝐿: = 𝑔𝑟𝑎𝑑𝐿 follows  𝐺 ∗ = −𝜕 𝐿Φ𝐿       (3.4) 

(3) The mass 𝑀 causes a gravitational redshift as follows. For it, we analyze a wave emitted at 𝑅∞ (that is 

the limit 𝑅 → ∞) with a wavelength 𝜆∞ and a periodic time 𝑇∞. We derive the corresponding 

wavelength 𝜆(𝑅) and periodic time 𝑇(𝑅) at a radius 𝑅:  

𝜆(𝑅) = 𝜆∞ ⋅ 𝜀𝐸(𝑅)   with  𝜆∞ = 𝜆(𝑅∞), 
𝑇(𝑅) = 𝑇∞ ⋅ 𝜀𝐸(𝑅)   with  𝑇∞ = 𝑇(𝑅∞) 

The time corresponding time increments are conventionally obtained from atomic clocks, which are 

based on periodic times of light: 

𝑑𝑡∞ = 𝑇∞  and  𝑑𝑡(𝑅) = 𝑇(𝑅) 
If both observers use the periodic time 𝑇𝐻𝛼 of the 𝐻𝛼  – line as the unit of time, for instance, then they 

observe the same light travel distance. 

In order to prove part (1), we use the well-known fact that the gravitational field in the 𝑑𝐺𝑃 - map is equal to its 

Newtonian value [30, Eq. 9.9]. That value can be used in the 𝑑𝐿𝑇 - map as well, according to the exact 

correspondence of events, see Fig. (3). 
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In order to prove part (2), we use 𝜀𝐿 = 1 − 𝜀𝐸 in part (2) in theorem (3.1), and we apply the derivative 
𝜕

𝜕𝐿
 to 𝜀𝐿. 

For it, we substitute 
𝜕

𝜕𝐿
=
𝜕𝑅

𝜕𝐿
⋅
𝜕

𝜕𝑅
. By evaluating the expressions and using 𝑅𝑆 =

2𝐺𝑀

𝑐2
, we derive 𝐺 ∗ =

𝐺⋅𝑀

𝑅2
⋅ 𝑒 𝐿. 

Furthermore, the derivative 
𝜕

𝜕𝐿
Φ𝐿  multiplied by the radial unit vector 𝑒 𝐿 is equal to the gradient of that potential, 

as each derivative of the potential Φ𝐿 with respect to a direction orthogonal to the radial direction is zero. 

Altogether, we showed that the relative additional volume provides the gravitational potential and field, 

according to part (2).  

In order to prove part (3), we analyze the observations made by the upper and lower observer in Fig. (4): 

The local observer at the radius 𝑅 in Fig. (4) measures the local wavelength 𝜆(𝑅) and the increment 𝑑𝑅(𝐴, 𝐵) =
𝑑𝑅 with help of the gravitational parallax distance, see Theorem (2.1). When the electromagnetic radiation 

propagates from A to B, then the radiation exhibits a number 𝑛∞ of wavelengths. This is the case for both 

observers. Thus, the following holds: 

𝑛∞ =
𝑑𝐿

𝜆∞
   and   𝑛∞ =

𝑑𝑅

𝜆(𝑅)
, thus, 𝜆(𝑅) = 𝜆∞ ⋅

𝑑𝑅

𝑑𝐿
    (3.5)    

With it, theorem (2.1) implies the following relation describing a gravitational blue shift or an (inverse) 

gravitational redshift, more generally:  

𝜆(𝑅) = 𝜆∞ ⋅ 𝜀𝐸         (3.6) 

As a consequence of the invariance of the velocity of light, the following holds: 
𝜆∞
𝑇∞
= 𝑐 =

𝜆(𝑅)

𝑇(𝑅)
 

Solving for 𝑇(𝑅) and using Eq. (3.6) implies the following relation of the periodic times: 

𝑇(𝑅) = 𝑇∞ ⋅ 𝜀𝐸         (3.7) 

As the periodic time of light represents a typical reference interval dt of time, e. g. at a clock, see [64], the 

relative additional volume 𝜀𝐿 causes a decrease of the reference interval of time 𝑑𝑡∞ by the factor 𝜀𝐸, resulting 

in the gravitational time dilation:  

𝑑𝑡(𝑅) = 𝑑𝑡∞ ⋅ 𝜀𝐸         (3.8) 

If an observer uses the periodic time 𝑇𝐻𝛼 of the 𝐻𝛼  – line (line of the Balmer series with the lowest energy) as 

the unit of time, then the time of flight is as follows: 

𝑡𝑜𝑓 = 2𝑛∞ ⋅ 𝑇𝐻𝛼 

Thus, the light travel distance is as follows: 

𝑑𝐿𝑇 = 𝑑𝐿(𝐴, 𝐵) = 𝑐 ⋅
𝑡𝑜𝑓

2
=  𝑛∞ ⋅ 𝑐 ⋅ 𝑇𝐻𝛼 = 𝑛∞ ⋅ 𝜆𝐻𝛼  

As a consequence, if both observers use the periodic time 𝑇𝐻𝛼 of the 𝐻𝛼  – line as the unit of time, then they 

observe the same light travel distance, see Fig. (4). Altogether, we proved all parts of the theorem. 

 

3.3 Propagation of relative additional volume  

In this section, we analyze the propagation of relative additional volume.  

Theorem 3.3. If a mass 𝑀 fulfills the conditions of theorems (2.1, 2.2, 3.1, 3.2), and if faster-than-c 

signals are excluded (causality is not provided automatically in the case of faster-than-c signals [65, § 3], [66, 

section 3.1], however, causality should be provided, at least in natural volume), then the following holds:  

(1) A portion of relative additional volume propagates at a velocity 𝑣 ≥ 𝑐. As faster-than-c signals are 

excluded, see above, relative additional volume propagates at c. Of course, faster-than-c correlations 

are possible. 

(2) A portion of relative additional volume propagates parallel or antiparallel to the radial direction. In the 

following, we model relative additional volume propagating parallel to the radial direction, that is the 

outward propagation: 

𝐿(𝜏0 − 𝜏) = 𝐿(𝜏0) + 𝑐 ⋅ 𝜏  with 𝑑𝜏 = 𝑑𝑡 ⋅ 𝜀𝐸,   thus, 

 
𝜕𝐿

𝜕𝜏
= 𝑐, with direction vector 𝑒 𝐿 of propagation      (3.9) 

(3) The propagation of relative additional volume is driven by the potential. Thus, unidirectional 

propagation is as follows:  
𝜕

𝜕𝐿
Φ𝐿 = −𝑐

2 𝜕𝜏

𝜕𝐿
⋅
𝜕

𝜕𝜏
𝜀𝐿, thus, we derive the DEQ: 

𝜕

𝜕𝐿
Φ𝐿 = −𝑐 ⋅

𝜕

𝜕𝜏
𝜀𝐿, with direction vector 𝑒 𝐿 of propagation     (3.10)  

In order to prove part (1), we realize that each portion of volume has zero rest mass, 𝑚0 = 0. Hence, the energy 

momentum relation 𝐸2 = 𝑚0
2𝑐4 + 𝑝2𝑐2  takes the form 𝐸2 = 𝑝2𝑐2 , corresponding to 𝑣 = 𝑐  [27, § 9]. Thus, 

volume does not propagate at a velocity smaller than the velocity of light c.  

In order to prove part (2), we realize that relative additional volume in the vicinity of a mass 𝑀 represents a steady 

state of propagating volume. According to symmetry, the net propagation of the relative additional volume must 
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be parallel or antiparallel to the radial direction. If the radial position of a portion of relative additional volume is 

𝐿(𝜏0) at a time 𝜏0 according to the 𝑑𝐿𝑇 - map, then its time evolution is given by Eq. (3.9).  

In order to prove part (3), we use the true equation 
𝜕

𝜕𝐿
Φ𝐿 =

𝜕

𝜕𝐿
Φ𝐿, we insert the potential in part (2) in theorem 

(3.2), and we substitute via 
𝜕

𝜕𝐿
=
𝜕𝜏

𝜕𝐿
⋅
𝜕

𝜕𝜏
. Next, we apply Eq. (3.9), in order to derive the differential equation, 

DEQ. Altogether, we proved all parts of the theorem. 

3.4 A four-scalar of relative additional volume 

In this section, we derive four-scalars and four-vectors [27, § 6] describing the relative additional 

volume. Each four-scalar is invariant under any rotation of the four-dimensional coordinate system, in particular 

under Lorentz transformations [27, § 6]. A four-scalar is called a Lorentz invariant or a Lorentz scalar. With the 

four-scalar, we provide a generalization. 

Theorem 3.4. If a mass 𝑀 fulfills the conditions of theorems (2.1, 2.2, 3.1, 3.2, 3.3), then the following 

holds:  

(1) Relative additional volume is described by the following equation:  

0 = −𝑐2 ⋅ (
𝜕

𝜕𝜏
𝜀𝐿)

2

+ (𝐺 ∗)
2
      or  

0 = −𝑐2 ⋅ (
𝜕

𝜕𝜏
𝜀𝐿)

2

+ (𝐺𝑥
∗)2 + (𝐺𝑦

∗)
2
+ (𝐺𝑧

∗)2 = 𝑅𝐺𝑆𝐿     (3.11) 

Hereby, the term denoted by 𝑅𝐺𝑆𝐿  is a Lorentz scalar. It is formed by the rate of change of relative 

additional volume 
𝜕

𝜕𝜏
𝜀𝐿 and by the gravitational field 𝐺 ∗. Accordingly, it is named rate gravity scalar, 

𝑅𝐺𝑆𝐿 . It is the four-vector scalar product, also called four-scalar, [27, paragraph 6] of the following rate 

gravity four-vector, whereby the sign convention [27, paragraph 2] with a negative sign at the zeroth 

component is used and represented by the tensor (𝜂𝑖𝑘) in Eq. (3.13): 

𝑅𝐺𝑉𝐿 =

(

 
 

𝑐
𝜕

𝜕𝜏
𝜀𝐿

𝐺𝑥
∗

𝐺𝑦
∗

𝐺𝑧
∗
)

 
 

        (3.12) 

The rate gravity scalar is obtained with the sign convention (𝜂𝑖𝑘) as follows: 

(𝜂𝑖𝑘) = (

−1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

)   and   𝑅𝐺𝑆𝐿 = ∑ ∑ 𝑅𝐺𝑉𝐿,𝑘 ⋅ 𝜂𝑖𝑘 ⋅ 𝑅𝐺𝑉𝐿,𝑖
3
𝑘=𝑜

3
𝑖=0   (3.13) 

Hereby, (𝜂𝑖𝑘) represents the matrix notation.  

(2) The rate gravity scalar 𝑅𝐺𝑆𝐿  is a function of the gravitational field only. Thus, the volume dynamics, 

VD, does not only hold in the vicinity of a mass 𝑀. Instead, the VD holds generally, thus the VD is not 

restricted to the vicinity of a mass 𝑀 or to a radius or distance 𝑅.  

(3) In local orthonormal coordinates including 𝐿 , the corresponding gradient 𝜕 𝐿  can be applied to the 

potential Φ𝐿, see part (2) in theorem (3.2). The spatial coordinates can be named 𝐿1, 𝐿2 and 𝐿3. The 

𝑅𝐺𝑆𝐿  can be expressed in terms of the derivatives of the potential Φ𝐿, and the resulting Lorentz invariant 

scalar can be named slope four-scalar, 𝑆𝐹𝑆𝐿 [24]:  

0 = −𝑐2 ⋅ (
𝜕

𝜕𝜏
𝜀𝐿)

2

+ (
𝜕

𝜕𝐿1 
Φ𝐿)

2

+ (
𝜕

𝜕𝐿2 
Φ𝐿) + (

𝜕

𝜕𝐿3 
Φ𝐿) = 𝑆𝐹𝑆𝐿    (3.14) 

In order to prove part (1), we apply part (2) in theorem (3.2) to the DEQ in theorem (3.3). Then we apply the 

square, and we simplify so that zero is at the left-hand side. This shows Eq. (3.14). Next, we derive the invariance 

of Eq. (3.14) under Lorentz transformations:  

Firstly, Eq. (3.14) holds for each 𝑅 ≥ 𝑅𝑆, as we derived the equation independently of the particular value of 𝑅 ≥
𝑅𝑆. Similarly, Eq. (3.14) holds for each time 𝜏 and for each angular coordinate 𝜗 and 𝜑.  

Secondly, we show that Eq. (3.14) holds for each motion at a constant velocity: The field 𝐺 ∗ is measured via the 

acceleration in the gravitational field, see section (2). That acceleration does not depend on a constant velocity, 

according to the equivalence principle. A motion at a constant velocity does not change the own time 𝑑𝜏. A motion 

at a constant tangential velocity does neither change the field nor the relative additional volume. Thus, for such a 

motion, Eq. (3.14) is invariant. A motion at a constant radial velocity changes the field and the relative additional 

volume 𝜀𝐿 = 1 − 𝜀𝐸 = 1 −
𝑑𝑅

𝑑𝐿
 (remind that 𝑑𝑅 and 𝑑𝐿 can be measured in a local manner, see section (2)), so that 

Eq. (3.14) is invariant. Altogether, a motion at a constant velocity does not change Eq. (3.14). Thus, the 𝑅𝐺𝑆𝐿  is 

invariant under a boost. Hence, the 𝑅𝐺𝑆𝐿  is invariant under a Lorentz transformation. Hence, the 𝑅𝐺𝑆𝐿  is a 

Lorentz invariant and a Lorentz scalar. In order to prove part (2), we remind that the Lorentz scalar 𝑅𝐺𝑆𝐿  is a 

Lorentz invariant. Thus, frames can be transformed accordingly. Moreover, the 𝑅𝐺𝑆𝐿  does not depend on 𝑀, so 
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the 𝑅𝐺𝑆𝐿  holds generally, not restricted to the vicinity of a mass 𝑀. Correspondingly, the 𝑅𝐺𝑆𝐿  does not depend 

on 𝑅, so the 𝑅𝐺𝑆𝐿  holds generally, not restricted to a distance or radial coordinate or distance 𝑅.  

In order to prove part (3), we apply the procedure described in part (3). As that procedure does not change the 

effect of a Lorentz transformation, the 𝑆𝐹𝑆𝐿 is a Lorentz scalar and a Lorentz invariant. Altogether, we proved all 

parts of the theorem.  

Corollary 3.1. The 𝑅𝐺𝑆𝐿  and the 𝑆𝐹𝑆𝐿  are invariant under Lorentz transformations. Similarly, local Lorentz 

invariance is analyzed in several systems of GR [67]. Moreover, the 𝑅𝐺𝑆𝐿  and the 𝑆𝐹𝑆𝐿  are valid for all 𝑀 and 

𝑅. Furthermore, the 𝑅𝐺𝑆𝐿  and the 𝑆𝐹𝑆𝐿 hold generally, not restricted to the vicinity of a mass 𝑀 or distance 𝑅. 

Additionally, we emphasize that the 𝑅𝐺𝑆𝐿  and the 𝑆𝐹𝑆𝐿  exhibit a very clear and unique structure, which is a well-

known advantage [1, p. 237], [2, p. 237]. 

3.5 Waves of relative additional volume  

In this section, we derive plane waves of relative additional volume. Moreover, we derive a 

corresponding differential equation.  

Theorem 3.5. If a mass 𝑀 fulfills the conditions of theorems (2.1, 2.2, 3.1, 3.2, 3.3, 3.4), then the 

following holds:  

(1) The following plane waves are solutions of the DEQ 
𝜕

𝜕𝐿
Φ𝐿 = −𝑐 ⋅

𝜕

𝜕𝜏
𝜀𝐿 of relative additional volume in 

Eq. (3.10), whereby the waves propagate towards positive values of 𝐿 (it is marked by the subscript 𝐿, + 

in Eq. (3.17):  

𝜀𝐿,𝜔 = 𝜀�̂�,𝜔 ⋅ exp (𝑖 ⋅ 𝜔 ⋅ 𝜏 − 𝑖 ⋅ 𝑘 ⋅ 𝐿)   and    

Φ𝐿,𝜔 = Φ̂𝐿,𝜔 ⋅ exp (𝑖 ⋅ 𝜔 ⋅ 𝜏 − 𝑖 ⋅ 𝑘 ⋅ 𝐿), with direction vector 𝑒 𝐿 of propagation   (3.15) 

(2) Inserting of the waves into the DEQ yields the following relations:  

Φ̂𝐿,𝜔 = 𝜀�̂�,𝜔 ⋅ 𝑐
2 and Φ𝐿,𝜔 = 𝜀𝐿,𝜔 ⋅ 𝑐

2   and the DEQ for relative additional volume 

 −𝑐
𝜕

𝜕𝐿
ε𝐿,𝜔 =

𝜕

𝜕𝜏
𝜀𝐿,𝜔         (3.16)  

(3) All finite, discrete infinite or continuously infinite sufficiently converging linear combinations are also 

solutions of the DEQ in part (2). Thus, even non-periodic solutions are included. Accordingly, the only 

particular property of these solutions is the propagation in the positive direction of the unit vector 𝑒 𝐿. 

Correspondingly, we mark these solutions by a plus sign: 

−𝑐
𝜕

𝜕𝐿
ε𝐿,+ =

𝜕

𝜕𝜏
𝜀𝐿,+, with direction vector 𝑒 𝐿of propagation     (3.17)  

In order to prove parts (1) and (2), we insert the proposed solutions in Eq. (3.15) into the DEQ in Eq. (3.10). We 

simplify the resulting equation, in order to derive the relation of amplitudes Φ̂𝐿,𝜔 = 𝜀�̂�,𝜔 ⋅ 𝑐
2 . We insert that 

relation into the proposed solutions, in order to derive the relation of solutions Φ𝐿,𝜔 = 𝜀𝐿,𝜔 ⋅ 𝑐
2. We insert that 

relation into the original DEQ in Eq. (3.10), in order to derive the DEQ for these solutions of waves −𝑐
𝜕

𝜕𝐿
ε𝐿,𝜔 =

𝜕

𝜕𝜏
𝜀𝐿,𝜔.  

In order to prove part (3), we realize that the DEQ in part (2) is a linear DEQ. Altogether, we proved all parts of 

the theorem.  

3.6 Relative additional volume implies the Schrödinger equation 

In this section, we use the DEQ of relative additional volume in part (3) in theorem (3.5), in order to derive the 

SEQ.  

Theorem 3.6. If a mass 𝑀 fulfills the conditions of theorems (2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 3.5), then the following 

holds:  

(1) The time derivative is applied to the DEQ of relative additional volume in Eq. (3.17), and the DEQ is 

multiplied by 𝑖ℏ. Thus, the following DEQ describes relative additional volume:  

𝑖ℏ
𝜕

𝜕𝜏
𝜀�̇�,+ = −𝑖ℏ𝑐

𝜕

𝜕𝐿
ε̇𝐿,+ with 𝜀�̇�,+: =

𝜕

𝜕𝜏
𝜀𝐿,+       (3.18)  

(2) We introduce the product of the rate of relative additional volume 𝜀�̇�,+ and of a normalization factor 𝑡𝑛 

as the wave function Ψ(𝑡, �⃗� ). As a consequence, the absolute square |Ψ(𝑡, �⃗� )|2 of the wave function is 

proportional to the probability density 𝑓𝑅(𝑡, �⃗� )  that a portion of relative additional volume can be 

observed at (𝑡, �⃗� ).  Thus, the wave function fulfills Born’s statistical interpretation of quantum physics 

[17–19]. Accordingly, the wave function fulfills the postulates about the statistical properties of quantum 

physics, including entanglement [20–23,51,52,68,69]: 

𝑓𝑅(𝑡, �⃗� ): = probability density,  

𝑡𝑛: = normalization factor and  

Ψ(𝑡, �⃗� ): = 𝜀�̇�,+(𝑡, �⃗� ) ⋅ 𝑡𝑛 = wave function, consequently,  

|Ψ(𝑡, �⃗� )|2 ∝ 𝑓𝑅(𝑡, �⃗� )         (3.19)  

(3) The DEQ (3.18) for the relative additional volume implies the DEQ for wave functions: 
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 𝑖ℏ
𝜕

𝜕𝜏
Ψ = −𝑖ℏ𝑐

𝜕

𝜕𝐿
Ψ         (3.20)  

(4) The solutions of the DEQ for wave functions form a linear vector space. Hereby, a scalar product can 

be introduced so that the solutions form a Hilbert space 𝐻 [20–23,51,52]. Accordingly, operators in 𝐻 

correspond to observables in reality [21–23,51,52]. So, the operator of momentum 𝑝𝐿 , the operator of 

energy 𝐸 = 𝑝𝐿 ⋅ 𝑐 and the Schrödinger equation, SEQ, are as follows [13–16,21,22,51,52]:  

�̂�𝐿: = −𝑖ℏ
𝜕

𝜕𝐿
 = momentum operator, �̂� = 𝑐 ⋅ �̂�𝐿  = Hamilton operator and 

𝑖ℏ
𝜕

𝜕𝜏
Ψ = �̂�Ψ is the SEQ         (3.21)  

In order to prove part (1), we apply the operations described in part (1).  

In order to prove part (2), we realize that the square of the rate of relative additional volume 𝜀�̇�,+(𝑡, �⃗� ) is 

proportional to the absolute square of the gravitational field, according to the 𝑅𝐺𝑆𝐿  in theorem (3.4): 

|𝜀�̇�,+(𝑡, �⃗� )|
2 ∝ |𝐺 ∗(𝑡, �⃗� )|

2
 

The absolute square of the gravitational field |𝐺 ∗(𝑡, �⃗� )|
2
 is proportional to the positive part of the energy density 

of the considered relative additional volume, see e. g. [21–24]. Note that the positive part of the energy density of 

the gravitational field can be interpreted as a kinetic energy, see e. g. [24]. Note that the energy density of the 

gravitational field has a similar mathematical structure as the energy density of the electric field, whereby the 

signs are different [21,24,27,70,71,80,81]. Our algebraic analysis is based on the Schwarzschild metric only. As 

the Schwarzschild metric fulfills the law of energy conservation, see e. g. [27, Eq. 88.9], and as our analysis fulfills 

exactly that conservation of energy, for details, see e. g. [21–24], we can apply the law of energy conservation. 

Thus, we can analyze a longer accumulation of observations taking place at a constant rate [72]. Thereby, the 

amount of relative additional volume observed at (t, R ) is proportional to the positive part of the energy density, 

which is proportional to |𝐺 ∗(𝑡, �⃗� )|
2
. Hence, the probability density of an observation of relative additional volume 

at (t, R ) is proportional to |𝐺 ∗(𝑡, �⃗� )|
2
 and to |𝜀�̇�,+(𝑡, �⃗� )|

2 and to |Ψ(𝑡, �⃗� )|2. In order to prove part (3), we realize 

that the DEQ in part (2) is a linear DEQ. In order to prove part (4), we insert the wave function in Eq. (3.19) in 

the DEQ for the rate 𝜀�̇�,+(𝑡, �⃗� ) in Eq. (3.18). Altogether, we proved all parts of the theorem.  

Corollary 3.2. The SEQ derived in theorem (3.6) is interpreted as follows:  

(1) The SEQ in theorem (3.6) is derived for the case of volume.  

(2) Matter forms from volume via a phase transition, see e. g. [54,73,74].  

(3) If objects undergo a phase transition, then the fundamental dynamics of the objects does not change, see 

e. g. [75, chapter 1], as the phase transition only represents a breaking of symmetry [76,77].  

(4) Accordingly, when an object with a rest mass 𝑚0 forms from volume via a phase transition, then the 

SEQ derived for volume in theorem (3.6) holds for the rest mass 𝑚0 as well.  

(5) If the momentum of the rest mass 𝑚0 is relatively small compared to 𝑚0 ⋅ 𝑐, then the DEQ (3.21) takes 

the following particular form, according to the relativistic momentum energy relation 𝐸2 = 𝑚0
2𝑐4 +

𝑝2𝑐2, and in linear order in 
𝑝

𝑚0⋅𝑐
: 

𝑖ℏ
𝜕

𝜕𝜏
Ψ = √𝑚0

2𝑐4 + �̂�2𝑐2 Ψ =̇ 𝑚0𝑐
2Ψ+

p̂2

2𝑚0
Ψ      (3.22) 

In non-relativistic physics, the term 𝑚0𝑐
2 of the rest energy is subtracted from the Hamiltonian [78, § 

17]. Thus, the non-relativistic SEQ is derived:  

�̂�𝑛𝑜𝑛−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 ≔ �̂� − 𝑚0𝑐
2, thus, 𝑖ℏ

𝜕

𝜕𝜏
Ψ =

p̂2

2𝑚0
Ψ      (3.23)  

(6) The relativistic SEQ in theorem (3.6) is a generalization of the non-relativistic SEQ in Eq. (3.23) or [9, 

Eq. 1.1].  

(7) The DEQs of additional relative volume in theorem (3.4) are Lorentz invariant generalizations of the 

relativistic SEQ in in theorem (3.6). For Lorentz invariants, see e. g. [29, p. 137], [27, § 6]. Moreover, 

the DEQs of relative additional volume hold in general, these DEQs are not restricted to the vicinity of 

a mass or dynamical mass 𝑀 or to a radial coordinate or distance 𝑅.  

(8) Furthermore, there are even more general DEQs for relative additional volume with a general tensor 

structure [22,24,74,79,80,81]. These can provide physics of cosmology, fundamental interactions and of 

matter. 

(9) The DEQ (3.23) can be supplemented by a term describing an electromagnetic, electroweak or 

chromodynamic interaction or by using any less fundamental interaction [55,74,79,80,81]. 
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IV. CONCLUSION 
In the present paper, we realize that the volume and the various forms of vacuum proposed in physics 

should be distinguished. Moreover, we realize that the concept of volume in nature should provide a description 

of the space of the universe at each time, and thus the definition of volume is the same for each time, while the 

amount and tensor structure (isotropic or unidirectional or anisotropic) of the volume is consequence of the 

dynamics. Thus, we arrive at the concept of a dynamical volume, DV. On that basis, we analyze the volume 

dynamics, VD. As a first example, we analyze the isotropic formation of volume in an isotropic, homogeneous 

and globally flat universe. As a second example, we analyze the formation of volume in the vicinity of a mass or 

dynamical mass 𝑀. For it, we apply the Schwarzschild metric. As a result, we arrive at the local formation of 

anisotropic unidirectional volume forming in the radial direction only. Note that this local and unidirectional 

formation of volume adds up to the global and isotropic formation of volume, see e. g. [80]. 

Moreover, we show that the volume dynamics, VD, exactly implies the curvature of spacetime as well 

as the gravitational field and the gravitational potential. Thus, the VD exactly explains the curvature of spacetime 

at a semiclassical level of description. In this manner, the VD exactly explains the gravitational field and the 

gravitational potential at the level of a semiclassical description. Hereby, the VD explains the propagation of the 

gravitational interaction. Note that a propagation of gravity had been proposed in terms of a hypothetical graviton 

[82]. Furthermore, we derive the Schrödinger equation from the VD.  

The VD derived here are the basis for many further derived results: For instance, on the basis of the VD, 

the postulates of quantum physics have been derived [21–23,80]. Furthermore, the VD have been used in order to 

derive the theoretical value of the energy density of volume, 𝑢vol,theo, whereby no hypothesis has been introduced, 

no fit parameter has been proposed, and no fit has been executed, see e. g. [21,24,80,83]. Additionally, the 

observed 𝐻0 tension [37] has been solved by using the VD [21,24,25,80], whereby neither a hypothesis has been 

proposed nor a fit has been executed. Also, the transition from volume to matter, as proposed by the Higgs 

mechanism [73] and as confirmed by observation [55,84,85], has been derived on the basis of the VD 

[54,74,79,80,81], whereby the observed mass of the Higgs boson has been derived and neither a hypothesis has 

been proposed nor a fit has been executed. On the basis of that transition, the quantum postulates derived from 

the VD here are transferred to elementary particles and to matter in general. Likewise, the six parameters of the 

standard model of cosmology have been derived from the VD [74], whereby neither a hypothesis has been 

proposed nor a fit has been executed. Similarly, the fundamental electromagnetic, weak and electroweak 

interactions have been derived from the VD, including the respective charges, coupling constants and the weak 

angle, whereby neither a hypothesis has been proposed nor a fit has been executed [79,80,81]. Altogether, the VD 

provide many deep results in fundamental physics. Thereby, a precise accordance with observation is achieved.  

Thus, the VD provide a high evidentiality [8]. Moreover, in the above listed derivations from the VD, 

neither a hypothesis, nor a fit, nor an ununified parameter, nor a change of fundamental or universal constants of 

nature G, c and h [86, p. 561] have been proposed. Thence, these derivations from the VD exhibit a low 

metaphysical weight [8]. Hence, the above listed derivations from the VD exhibit a large unifying power, which 

is the ratio of the evidentiality divided by the metaphysical weight [8]. In contrast, the standard model of 

elementary particles uses approximately 26 ununified parameters [55,87], the standard model of cosmology 

exhibits six ununified parameters [46,55], and other proposed theories of dark energy use ad hoc hypotheses and 

proposed fit parameters [88]. 

In summary, the present derivation of the Schrödinger equation from the VD is a good example for 

unification in modern physics [8]. The present derivations are exact, as no approximation has been used. This fact 

represents an additional advantage of the present paper, see e. g. [1, p. 245] or [2]. 
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