
International Journal of Engineering Science Invention

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org Volume 3 Issue 7ǁ July 2014 ǁ PP.19-27

www.ijesi.org 19 | Page

Software Quality Attributes for Secured Web Applications

M Sankar , Dr. Anthony Irudhyaraj,

Dean- IT AVIT, Vinayaka Missions University

ABSTRACT: Quality attributes are the overall factors that affect run-time behavior, system design, and user

experience. They represent areas of concern that have the potential for application wide impact across layers

and tiers. Some of these attributes are related to the overall system design, while others are specific to run time,

design time, or user centric issues. The extent to which the application possesses a desired combination of

quality attributes such as usability, performance, reliability, and security indicates the success of the design and

the overall quality of the software application. When designing applications to meet any of the quality attributes

requirements, it is necessary to consider the potential impact on other requirements. You must analyze the

tradeoffs between multiple quality attributes. The importance or priority of each quality attribute differs from

system to system; for example, interoperability will often be less important in a single use packaged retail

application than in a line of business (LOB) system. This chapter lists and describes the quality attributes that

you should consider when designing your application. To get the most out of this chapter, use the table below to

gain an understanding of how quality attributes map to system and application quality factors, and read the

description of each of the quality attributes. Then use the sections containing key guidelines for each of the

quality attributes to understand how that attribute has an impact on your design, and to determine the decisions

you must make to addresses these issues. Keep in mind that the list of quality attributes in this chapter is not

exhaustive, but provides a good starting point for asking appropriate questions

KEYWORDS: SQA, web application, software engineering, reliability, scalability.

I. INTRODUCTION
 The software that powers Web applications is distributed, is implemented in multiple languages and

styles, incorporates much reuse and third-party components, is built with cutting edge technologies, and must

interface with users, other Web sites, and databases. Although the word ―heterogeneous‖ is often used for Web

software, it applies in so many ways that the synonymous term ―diverse‖ is more general and familiar, and

probably more appropriate. The software components are often distributed geographically both during

development and deployment, and communicate in numerous distinct and sometimes novel ways (diverse

communication). Web applications consist of diverse components including traditional and non-traditional

software, interpreted scripting languages, plain HTML files, mixtures of HTML and programs, databases,

graphical images, and complex user interfaces. As such,engineering an effective Web site requires large teams

of people with very diverse skills and backgrounds. These teams include programmers, graphics designers,

usability engineers, information layout specialists, data communications and network experts, and database

administrators. This diversity has led to the notion of Web site engineering. [1]

II. ASPECT OF WEB APPLICATION SOFTWARE

 To develop the web based software is not an easy task for the software developers. When they actually

developed the software, they have to integrated many components which affect the quality of the web

application. To ensure high quality for Web systems composed of very loosely coupled components, we need

novel techniques to achieve and evaluate these components’ connections. Web-based software offers the

significant advantage of allowing data to be transferred among completely different types of software

components that reside and execute on different computers. However, using multiple programming languages

and building complex business applications complicates the flow of data through the various Web software

pieces. When combined with the requirements to keep data persistent through user sessions, persistent across

sessions, and shared among sessions, the list of abilities unique to Web software begins to get very long. Thus,

software developers and managers working on Web software have encountered many new challenges. Although

it is obvious that we struggle to keep up with the technology, less obvious is our difficulty in understanding just

how Web software development is different, and how to adapt existing processes and procedures to this new

type of software.

http://msdn.microsoft.com/en-us/library/ee658094.aspx

Software Quality Attributes for Secured…

www.ijesi.org 20 | Page

III. ECONOMIC CHANGES
 We evaluate software by measuring the quality of attributes such as reliability, usability, and

maintainability, yet academics often fail to acknowledge that the basic economics behind software production

has a strong impact on the development process. Although the field of software engineering has spent years

developing processes and technologies to improve software quality attributes, most software companies have

had little financial motivation to improve their software’s quality. Software contractors receive payment

regardless of the delivered software’s quality and, in fact, are often given additional resources to correct

problems of their own making. So-called ―shrink wrap‖ vendors are driven almost entirely by time to market; it

is often more lucrative to deliver poor-quality products sooner than high quality products later. They can deliver

bug fixes as new releases that are sold to generate more revenue for the company. For most application types,

commercial developers have traditionally had little motivation to produce high-quality software. Web-based

software, however, raises new economic issues. When I recently surveyed a number of Web software

development managers and practitioners, I found that companies that operate through the Web depend on

customers using and, most importantly, returning to their sites. Thus, unlike many software contractors, Web

application developers only see a return on their investment if their Web sites satisfy customer needs. And

unlike many software endors, if a new company puts up a competitive site of higher quality, customers will

almost immediately shift their business to the new site once they discover it. [4]

IV. CRITERIA FOR WEB APPLICATION

 Of course, this is hardly a complete list of important or even relevant quality attributes, but it provides a

solid basis for discussion. Certainly speed of execution is also important, but network factors influence this

more than software does, and other important quality attributes such as customer service, product quality, price,

and delivery stem from human and organizational rather than software factors. [1, 5–8] suggesting wide

agreement that successful Web software development depends on satisfying these quality attributes.

COMMON QUALITY ATTRIBUTES :The following table describes the quality attributes covered in this chapter. It

categorizes the attributes in four specific areas linked to design, runtime, system, and user qualities. Use this

table to understand what each of the quality attributes means in terms of your application design.

Category Quality attribute Description

Design Qualities Conceptual Integrity Conceptual integrity defines the consistency and coherence of the overall design. This

includes the way that components or modules are designed, as well as factors such as

coding style and variable naming.

Maintainability Maintainability is the ability of the system to undergo changes with a degree of ease.

These changes could impact components, services, features, and interfaces when

adding or changing the functionality, fixing errors, and meeting new business
requirements.

Reusability Reusability defines the capability for components and subsystems to be suitable for

use in other applications and in other scenarios. Reusability minimizes the duplication

of components and also the implementation time.

Run-time Qualities Availability Availability defines the proportion of time that the system is functional and working.
It can be measured as a percentage of the total system downtime over a predefined

period. Availability will be affected by system errors, infrastructure problems,

malicious attacks, and system load.

Interoperability Interoperability is the ability of a system or different systems to operate successfully

by communicating and exchanging information with other external systems written
and run by external parties. An interoperable system makes it easier to exchange and

reuse information internally as well as externally.

Manageability Manageability defines how easy it is for system administrators to manage the
application, usually through sufficient and useful instrumentation exposed for use in

monitoring systems and for debugging and performance tuning.

Software Quality Attributes for Secured…

www.ijesi.org 21 | Page

Performance Performance is an indication of the responsiveness of a system to execute any action
within a given time interval. It can be measured in terms of latency or throughput.

Latency is the time taken to respond to any event. Throughput is the number of events

that take place within a given amount of time.

Reliability Reliability is the ability of a system to remain operational over time. Reliability is
measured as the probability that a system will not fail to perform its intended functions

over a specified time interval.

Scalability Scalability is ability of a system to either handle increases in load without impact on

the performance of the system, or the ability to be readily enlarged.

Security Security is the capability of a system to prevent malicious or accidental actions outside
of the designed usage, and to prevent disclosure or loss of information. A secure

system aims to protect assets and prevent unauthorized modification of information.

System Qualities Supportability Supportability is the ability of the system to provide information helpful for
identifying and resolving issues when it fails to work correctly.

Testability Testability is a measure of how easy it is to create test criteria for the system and its

components, and to execute these tests in order to determine if the criteria are met.

Good testability makes it more likely that faults in a system can be isolated in a timely
and effective manner.

User Qualities Usability Usability defines how well the application meets the requirements of the user and

consumer by being intuitive, easy to localize and globalize, providing good access for

disabled users, and resulting in a good overall user experience.

The following sections describe each of the quality attributes in more detail, and provide guidance on the key

issues and the decisions you must make for each one:

 Availability

 Conceptual Integrity

 Interoperability

 Maintainability

 Manageability

 Performance

 Reliability

 Reusability

 Scalability

 Security

 Supportability

 Testability

 User Experience / Usability

Availability

Availability defines the proportion of time that the system is functional and working. It can be measured as a

percentage of the total system downtime over a predefined period. Availability will be affected by system errors,

infrastructure problems, malicious attacks, and system load. The key issues for availability are:

 A physical tier such as the database server or application server can fail or become unresponsive, causing

the entire system to fail. Consider how to design failover support for the tiers in the system. For example,

use Network Load Balancing for Web servers to distribute the load and prevent requests being directed to a

server that is down. Also, consider using a RAID mechanism to mitigate system failure in the event of a

disk failure. Consider if there is a need for a geographically separate redundant site to failover to in case of

natural disasters such as earthquakes or tornados.

 Denial of Service (DoS) attacks, which prevent authorized users from accessing the system, can interrupt

operations if the system cannot handle massive loads in a timely manner, often due to the processing time

http://msdn.microsoft.com/en-us/library/ee658094.aspx#Availability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#ConceptualIntegrity
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Interoperability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Maintainability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Manageability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Performance
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Reliability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Reusability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Scalability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Security
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Supportability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#Testability
http://msdn.microsoft.com/en-us/library/ee658094.aspx#UserExperienceUsability

Software Quality Attributes for Secured…

www.ijesi.org 22 | Page

required, or network configuration and congestion. To minimize interruption from DoS attacks, reduce the

attack surface area, identify malicious behavior, use application instrumentation to expose unintended

behavior, and implement comprehensive data validation. Consider using the Circuit Breaker or Bulkhead

patterns to increase system resiliency.

 Inappropriate use of resources can reduce availability. For example, resources acquired too early and held

for too long cause resource starvation and an inability to handle additional concurrent user requests.

 Bugs or faults in the application can cause a system wide failure. Design for proper exception handling in

order to reduce application failures from which it is difficult to recover.

 Frequent updates, such as security patches and user application upgrades, can reduce the availability of the

system. Identify how you will design for run-time upgrades.

 A network fault can cause the application to be unavailable. Consider how you will handle unreliable

network connections; for example, by designing clients with occasionally-connected capabilities.

 Consider the trust boundaries within your application and ensure that subsystems employ some form of

access control or firewall, as well as extensive data validation, to increase resiliency and availability.

Conceptual Integrity

Conceptual integrity defines the consistency and coherence of the overall design. This includes the way that

components or modules are designed, as well as factors such as coding style and variable naming. A coherent

system is easier to maintain because you will know what is consistent with the overall design. Conversely, a

system without conceptual integrity will constantly be affected by changing interfaces, frequently deprecating

modules, and lack of consistency in how tasks are performed. The key issues for conceptual integrity are:

 Mixing different areas of concern within your design. Consider identifying areas of concern and grouping

them into logical presentation, business, data, and service layers as appropriate.

 Inconsistent or poorly managed development processes. Consider performing an Application Lifecycle

Management (ALM) assessment, and make use of tried and tested development tools and methodologies.

 Lack of collaboration and communication between different groups involved in the application lifecycle.

Consider establishing a development process integrated with tools to facilitate process workflow,

communication, and collaboration.

 Lack of design and coding standards. Consider establishing published guidelines for design and coding

standards, and incorporating code reviews into your development process to ensure guidelines are followed.

 Existing (legacy) system demands can prevent both refactoring and progression toward a new platform or

paradigm. Consider how you can create a migration path away from legacy technologies, and how to isolate

applications from external dependencies. For example, implement the Gateway design pattern for

integration with legacy systems.

Interoperability : Interoperability is the ability of a system or different systems to operate successfully by

communicating and exchanging information with other external systems written and run by external parties. An

interoperable system makes it easier to exchange and reuse information internally as well as externally.

Communication protocols, interfaces, and data formats are the key considerations for interoperability.

Standardization is also an important aspect to be considered when designing an interoperable system. The key

issues for interoperability are:

 Interaction with external or legacy systems that use different data formats. Consider how you can enable

systems to interoperate, while evolving separately or even being replaced. For example, use orchestration

with adaptors to connect with external or legacy systems and translate data between systems; or use a

canonical data model to handle interaction with a large number of different data formats.

 Boundary blurring, which allows artifacts from one system to defuse into another. Consider how you can

isolate systems by using service interfaces and/or mapping layers. For example, expose services using

interfaces based on XML or standard types in order to support interoperability with other systems. Design

components to be cohesive and have low coupling in order to maximize flexibility and facilitate

replacement and reusability.

 Lack of adherence to standards. Be aware of the formal and de facto standards for the domain you are

working within, and consider using one of them rather than creating something new and proprietary.

Maintainability : Maintainability is the ability of the system to undergo changes with a degree of ease. These

changes could impact components, services, features, and interfaces when adding or changing the application’s

Software Quality Attributes for Secured…

www.ijesi.org 23 | Page

functionality in order to fix errors, or to meet new business requirements. Maintainability can also affect the

time it takes to restore the system to its operational status following a failure or removal from operation for an

upgrade. Improving system maintainability can increase availability and reduce the effects of run-time defects.

An application’s maintainability is often a function of its overall quality attributes but there a number of key

issues that can directly affect maintainability:

 Excessive dependencies between components and layers, and inappropriate coupling to concrete classes,

prevents easy replacement, updates, and changes; and can cause changes to concrete classes to ripple

through the entire system. Consider designing systems as well-defined layers, or areas of concern, that

clearly delineate the system’s UI, business processes, and data access functionality. Consider implementing

cross-layer dependencies by using abstractions (such as abstract classes or interfaces) rather than concrete

classes, and minimize dependencies between components and layers.

 The use of direct communication prevents changes to the physical deployment of components and layers.

Choose an appropriate communication model, format, and protocol. Consider designing a pluggable

architecture that allows easy upgrades and maintenance, and improves testing opportunities, by designing

interfaces that allow the use of plug-in modules or adapters to maximize flexibility and extensibility.

 Reliance on custom implementations of features such as authentication and authorization prevents reuse and

hampers maintenance. To avoid this, use the built-in platform functions and features wherever possible.

 The logic code of components and segments is not cohesive, which makes them difficult to maintain and

replace, and causes unnecessary dependencies on other components. Design components to be cohesive and

have low coupling in order to maximize flexibility and facilitate replacement and reusability.

 The code base is large, unmanageable, fragile, or over complex; and refactoring is burdensome due to

regression requirements. Consider designing systems as well defined layers, or areas of concern, that clearly

delineate the system’s UI, business processes, and data access functionality. Consider how you will manage

changes to business processes and dynamic business rules, perhaps by using a business workflow engine if

the business process tends to change. Consider using business components to implement the rules if only

the business rule values tend to change; or an external source such as a business rules engine if the business

decision rules do tend to change.

 The existing code does not have an automated regression test suite. Invest in test automation as you build

the system. This will pay off as a validation of the system’s functionality, and as documentation on what the

various parts of the system do and how they work together.

 Lack of documentation may hinder usage, management, and future upgrades. Ensure that you provide

documentation that, at minimum, explains the overall structure of the application.

Manageability : Manageability defines how easy it is for system administrators to manage the application,

usually through sufficient and useful instrumentation exposed for use in monitoring systems and for debugging

and performance tuning. Design your application to be easy to manage, by exposing sufficient and useful

instrumentation for use in monitoring systems and for debugging and performance tuning. The key issues for

manageability are:

 Lack of health monitoring, tracing, and diagnostic information. Consider creating a health model that

defines the significant state changes that can affect application performance, and use this model to specify

management instrumentation requirements. Implement instrumentation, such as events and performance

counters, that detects state changes, and expose these changes through standard systems such as Event

Logs, Trace files, or Windows Management Instrumentation (WMI). Capture and report sufficient

information about errors and state changes in order to enable accurate monitoring, debugging, and

management. Also, consider creating management packs that administrators can use in their monitoring

environments to manage the application.

 Lack of runtime configurability. Consider how you can enable the system behavior to change based on

operational environment requirements, such as infrastructure or deployment changes.

 Lack of troubleshooting tools. Consider including code to create a snapshot of the system’s state to use for

troubleshooting, and including custom instrumentation that can be enabled to provide detailed operational

and functional reports. Consider logging and auditing information that may be useful for maintenance and

debugging, such as request details or module outputs and calls to other systems and services.

Performance :Performance is an indication of the responsiveness of a system to execute specific actions in a

given time interval. It can be measured in terms of latency or throughput. Latency is the time taken to respond to

any event. Throughput is the number of events that take place in a given amount of time. An application’s

Software Quality Attributes for Secured…

www.ijesi.org 24 | Page

performance can directly affect its scalability, and lack of scalability can affect performance. Improving an

application’s performance often improves its scalability by reducing the likelihood of contention for shared

resources. Factors affecting system performance include the demand for a specific action and the system’s

response to the demand. The key issues for performance are:

 Increased client response time, reduced throughput, and server resource over utilization. Ensure that you

structure the application in an appropriate way and deploy it onto a system or systems that provide

sufficient resources. When communication must cross process or tier boundaries, consider using coarse-

grained interfaces that require the minimum number of calls (preferably just one) to execute a specific task,

and consider using asynchronous communication.

 Increased memory consumption, resulting in reduced performance, excessive cache misses (the inability to

find the required data in the cache), and increased data store access. Ensure that you design an efficient and

appropriate caching strategy.

 Increased database server processing, resulting in reduced throughput. Ensure that you choose effective

types of transactions, locks, threading, and queuing approaches. Use efficient queries to minimize

performance impact, and avoid fetching all of the data when only a portion is displayed. Failure to design

for efficient database processing may incur unnecessary load on the database server, failure to meet

performance objectives, and costs in excess of budget allocations.

 Increased network bandwidth consumption, resulting in delayed response times and increased load for

client and server systems. Design high performance communication between tiers using the appropriate

remote communication mechanism. Try to reduce the number of transitions across boundaries, and

minimize the amount of data sent over the network. Batch work to reduce calls over the network.

Reliability : Reliability is the ability of a system to continue operating in the expected way over time.

Reliability is measured as the probability that a system will not fail and that it will perform its intended function

for a specified time interval. The key issues for reliability are:

 The system crashes or becomes unresponsive. Identify ways to detect failures and automatically initiate a

failover, or redirect load to a spare or backup system. Also, consider implementing code that uses

alternative systems when it detects a specific number of failed requests to an existing system.

 Output is inconsistent. Implement instrumentation, such as events and performance counters, that detects

poor performance or failures of requests sent to external systems, and expose information through standard

systems such as Event Logs, Trace files, or WMI. Log performance and auditing information about calls

made to other systems and services.

 The system fails due to unavailability of other externalities such as systems, networks, and databases.

Identify ways to handle unreliable external systems, failed communications, and failed transactions.

Consider how you can take the system offline but still queue pending requests. Implement store and

forward or cached message-based communication systems that allow requests to be stored when the target

system is unavailable, and replayed when it is online. Consider using Windows Message Queuing or

BizTalk Server to provide a reliable once-only delivery mechanism for asynchronous requests.

Reusability :Reusability is the probability that a component will be used in other components or scenarios to

add new functionality with little or no change. Reusability minimizes the duplication of components and the

implementation time. Identifying the common attributes between various components is the first step in building

small reusable components for use in a larger system. The key issues for reusability are:

 The use of different code or components to achieve the same result in different places; for example,

duplication of similar logic in multiple components, and duplication of similar logic in multiple layers or

subsystems. Examine the application design to identify common functionality, and implement this

functionality in separate components that you can reuse. Examine the application design to identify

crosscutting concerns such as validation, logging, and authentication, and implement these functions as

separate components.

 The use of multiple similar methods to implement tasks that have only slight variation. Instead, use

parameters to vary the behavior of a single method.

 Using several systems to implement the same feature or function instead of sharing or reusing functionality

in another system, across multiple systems, or across different subsystems within an application. Consider

exposing functionality from components, layers, and subsystems through service interfaces that other layers

Software Quality Attributes for Secured…

www.ijesi.org 25 | Page

and systems can use. Use platform agnostic data types and structures that can be accessed and understood

on different platforms.

Scalability : Scalability is ability of a system to either handle increases in load without impact on the

performance of the system, or the ability to be readily enlarged. There are two methods for improving

scalability: scaling vertically (scale up), and scaling horizontally (scale out). To scale vertically, you add more

resources such as CPU, memory, and disk to a single system. To scale horizontally, you add more machines to a

farm that runs the application and shares the load. The key issues for scalability are:

 Applications cannot handle increasing load. Consider how you can design layers and tiers for scalability,

and how this affects the capability to scale up or scale out the application and the database when required.

You may decide to locate logical layers on the same physical tier to reduce the number of servers required

while maximizing load sharing and failover capabilities. Consider partitioning data across more than one

database server to maximize scale-up opportunities and allow flexible location of data subsets. Avoid

stateful components and subsystems where possible to reduce server affinity.

 Users incur delays in response and longer completion times. Consider how you will handle spikes in traffic

and load. Consider implementing code that uses additional or alternative systems when it detects a

predefined service load or a number of pending requests to an existing system.

 The system cannot queue excess work and process it during periods of reduced load. Implement store-and-

forward or cached message-based communication systems that allow requests to be stored when the target

system is unavailable, and replayed when it is online.

Security : Security is the capability of a system to reduce the chance of malicious or accidental actions outside

of the designed usage affecting the system, and prevent disclosure or loss of information. Improving security

can also increase the reliability of the system by reducing the chances of an attack succeeding and impairing

system operation. Securing a system should protect assets and prevent unauthorized access to or modification of

information. The factors affecting system security are confidentiality, integrity, and availability. The features

used to secure systems are authentication, encryption, auditing, and logging. The key issues for security are:

 Spoofing of user identity. Use authentication and authorization to prevent spoofing of user identity. Identify

trust boundaries, and authenticate and authorize users crossing a trust boundary.

 Damage caused by malicious input such as SQL injection and cross-site scripting. Protect against such

damage by ensuring that you validate all input for length, range, format, and type using the constrain, reject,

and sanitize principles. Encode all output you display to users.

 Data tampering. Partition the site into anonymous, identified, and authenticated users and use application

instrumentation to log and expose behavior that can be monitored. Also use secured transport channels, and

encrypt and sign sensitive data sent across the network

 Repudiation of user actions. Use instrumentation to audit and log all user interaction for application critical

operations.

 Information disclosure and loss of sensitive data. Design all aspects of the application to prevent access to

or exposure of sensitive system and application information.

 Interruption of service due to Denial of service (DoS) attacks. Consider reducing session timeouts and

implementing code or hardware to detect and mitigate such attacks.

Supportability : Supportability is the ability of the system to provide information helpful for identifying and

resolving issues when it fails to work correctly. The key issues for supportability are:

 Lack of diagnostic information. Identify how you will monitor system activity and performance. Consider a

system monitoring application, such as Microsoft System Center.

 Lack of troubleshooting tools. Consider including code to create a snapshot of the system’s state to use for

troubleshooting, and including custom instrumentation that can be enabled to provide detailed operational

and functional reports. Consider logging and auditing information that may be useful for maintenance and

debugging, such as request details or module outputs and calls to other systems and services.

 Lack of tracing ability. Use common components to provide tracing support in code, perhaps though Aspect

Oriented Programming (AOP) techniques or dependency injection. Enable tracing in Web applications in

order to troubleshoot errors.

Software Quality Attributes for Secured…

www.ijesi.org 26 | Page

 Lack of health monitoring. Consider creating a health model that defines the significant state changes that

can affect application performance, and use this model to specify management instrumentation

requirements. Implement instrumentation, such as events and performance counters, that detects state

changes, and expose these changes through standard systems such as Event Logs, Trace files, or Windows

Management Instrumentation (WMI). Capture and report sufficient information about errors and state

changes in order to enable accurate monitoring, debugging, and management. Also, consider creating

management packs that administrators can use in their monitoring environments to manage the application.

Testability : Testability is a measure of how well system or components allow you to create test criteria and

execute tests to determine if the criteria are met. Testability allows faults in a system to be isolated in a timely

and effective manner. The key issues for testability are:

 Complex applications with many processing permutations are not tested consistently, perhaps because

automated or granular testing cannot be performed if the application has a monolithic design. Design

systems to be modular to support testing. Provide instrumentation or implement probes for testing,

mechanisms to debug output, and ways to specify inputs easily. Design components that have high cohesion

and low coupling to allow testability of components in isolation from the rest of the system.

 Lack of test planning. Start testing early during the development life cycle. Use mock objects during

testing, and construct simple, structured test solutions.

 Poor test coverage, for both manual and automated tests. Consider how you can automate user interaction

tests, and how you can maximize test and code coverage.

 Input and output inconsistencies; for the same input, the output is not the same and the output does not fully

cover the output domain even when all known variations of input are provided. Consider how to make it

easy to specify and understand system inputs and outputs to facilitate the construction of test cases.

User Experience / Usability : The application interfaces must be designed with the user and consumer in mind

so that they are intuitive to use, can be localized and globalized, provide access for disabled users, and provide a

good overall user experience. The key issues for user experience and usability are:

 Too much interaction (an excessive number of clicks) required for a task. Ensure you design the screen and

input flows and user interaction patterns to maximize ease of use.

 Incorrect flow of steps in multistep interfaces. Consider incorporating workflows where appropriate to

simplify multistep operations.

 Data elements and controls are poorly grouped. Choose appropriate control types (such as option groups

and check boxes) and lay out controls and content using the accepted UI design patterns.

 Feedback to the user is poor, especially for errors and exceptions, and the application is unresponsive.

Consider implementing technologies and techniques that provide maximum user interactivity, such as

Asynchronous JavaScript and XML (AJAX) in Web pages and client-side input validation. Use

asynchronous techniques for background tasks, and tasks such as populating controls or performing long-

running tasks.

IV. ARCHITECTURE
 The technology has changed because the old two-tier model did not support the high quality

requirements of Web software applications. It failed on security, being prone to crackers who only need to go

through one layer of security on a computer that is, by definition, open to the world to provide access to all data

files. It failed on scalability and maintainability because as Web sites grow, a 2-tier model cannot effectively

separate presentation from business logic, and the applications thus become cumbersome and hard to modify. It

failed on reliability: whereas previous Web software generations relied on CGI programs, usually written in

Perl, many developers have found that large complex Perl programs can be hard to program correctly,

understand, or modify. Finally, it failed on availability because hosting a site on one Web server imposes a

bottleneck: any server problems will hinder user access to the Web site. Figure 1 illustrates current Web site

software. Instead of a simple client-server model, the configuration has expanded first to a three-tier model and

now more generally to an N-tier model. Clients still use a browser to visit Web sites, which are hosted and

delivered by Web servers. But to increase quality attributes such as security, reliability, availability, and

scalability, as well as functionality, most of the software has been moved to a separate computer—the

application server. Indeed, on large Web sites, a collection of application servers typically operates in parallel,

and the application servers interact with one or more database servers that may run a commercial database. [11]

Software Quality Attributes for Secured…

www.ijesi.org 27 | Page

V. CONCLUSION
 Even with the current economic downturn, the university output is not enough. If universities could

double the production of computer scientists, we still could not put a dent in the need. (Most economists and

business leaders currently believe last year’s many layoffs and bankruptcies in the ecommerce sector resulted

from temporary problems, and expect significant growth in the near future. I optimistically accept this

prognosis; if it is wrong, then this article will be irrelevant anyway.) We can only meet this need by Retraining

experienced engineers to work with the new technology Applying knowledge and technology to increase

efficiency, thereby reducing the number of engineers needed. Finding ways to let people with less education

and skills contribute.

REFERENCES
[1] T.A. Powell, Web Site Engineering:Beyond Web Page Design, Prentice Hall,Upper Saddle River, N.J., 2000.

[2] D.A. Menascé, Scaling for E-Business:Technologies, Models, Performance, and Capacity Planning, Prentice Hall, Upper Saddle

River, N.J., 2000.
[3] E. Dustin, J. Rashka, and D. McDiarmid, Quality Web Systems: Performance, Security, and Usability, Addison- Wesley,

Reading, Mass., 2001.

[4] L.L. Constantine and L.A.D. Lockwood, Software for Use: A Practical Guide to the Models and Methods of Usage Centered
Design, ACM Press, New York, 2000.

[5] S. Murugesan and Y. Deshpande, ―Web Engineering: A New Discipline for Development of Web-Based Systems,‖ Web

Engineering 2000, Lecture Notes in Computer Science 2016, Springer-Verlag, Berlin, 2001, pp. 3–13.
[6] N. Kassem and the Enterprise Team, Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition, Sun

Microsystems, Palo Alto, Calif., 2000.

[7] J. Nielsen, Designing Web Usability, New
[8] Riders Publishing, Indianapolis, Ind., 2000.

[9] M.E. Segal and O. Frieder, ―On-the-Fly Program Modification: Systems for Dynamic Updating,‖ IEEE Software, vol. 10, no. 2,

Mar. 1993, pp. 53–65.
[10] Wrox Multi Team, Professional Java Server Programming, J2EE edition, Wrox Press, Chicago, 2000.

[11] Scharl, Evolutionary Web Development, Springer- Verlag, Berlin, 2000.

