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ABSTRACT : The goal of this paper is to analyse efficient encryption schemes in wireless sensor networks 

and in devices with low computing power and resources. Embedded devices are also being used for information 

transfer and hence the need of network security is arising for these domain specific systems. Elliptic Curve 

Cryptography (ECC) has emerged as the most trusted solution for providing security on such systems.  As these 

systems are classified to be resource constrained, the small key size of ECC makes it effective to implement on 

such systems.  The good thing about ECC is that it can be faster than RSA and uses smaller keys, but still 

provides the same level of security. The security of ECC relies on the difficulty of solving the Elliptic Curve 

Discrete Logarithm Problem (ECDLP). A comparative study of ECC with RSA is made in terms of key size, 

computational power and other factors. 
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I. INTRODUCTION 
Wireless Sensor Networks play a very important role in the era of pervasive computing. These 

networks have various energy and computational constraints due to its ad-hoc nature of existence. The scale of 

deployments of wireless sensor networks requires careful decisions and trade-off among various security 

measures. Many security protocols designed for sensor networks tend to use symmetric key algorithms. 

However, constraints in sensor networks impose the need for high speed and less complex cryptographic 

algorithms which focus on localization, time synchronization and energy efficient routing. The vast majority of 

the products and standards that use public-key cryptography for encryption and digital signatures use RSA. As 

we know, the bit length for secure RSA use has increased over recent years, and this has put a very heavier 

processing burden on different applications using RSA [1]. Energy consumption is very high due to this heavy 

load processing and this burden has many difficulties, especially for electronic commerce sites that conduct 

large numbers of secure transactions. Recently, a competing system that has emerged is ECC [2, 3]. ECC was 

proposed in 1985 by Neal Koblitz and Victor Miller. Public-Key Cryptography (PKC) systems can be used to 

provide secure communications over insecure channels without exchanging a secret key. In public key 

cryptography, each user or the device taking part in the communication generally have a pair of keys, a public 

key and a private key, and a set of operations associated with the keys to do the cryptographic operations. Only 

the particular user knows the private key whereas the public key is distributed to all users taking part in the 

communication. Some public key algorithm may require a set of predefined constants to be known by all the 

devices taking part in the communication. „Domain parameters‟ in ECC is an example of such constants. Public 

key cryptography, unlike private key cryptography, does not require any shared secret between the 

communicating parties but it is much slower than the private key cryptography The key distribution and storage 

problems, which are very common in private key cryptography is solved by the public key cryptography 

conception. Previous work shows public key algorithms are a good choice for use in wireless sensor networking. 

ECC with smaller keys and certificates will be significant in such systems.  ECC can be used to achieve 

authentication and key management. Rest of the paper is organized as follows. We explore concepts of Wireless 

Sensor Networks in Section II. Cryptography with elliptic curves is briefly explained in Section III. Key 

Management mechanisms are explained in section IV.  Security and elliptic curve discrete logarithm problem 

are discussed in section V and VI respectively. 
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II. WIRELESS SENSOR NETWORK 
A WSN is a collection of spatially distributed autonomous sensors to monitor physical or 

environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through 

the network to a main location [4].  The development of WSNs was mainly motivated by military applications 

such as battlefield surveillance but today such networks are used in many applications, such as industrial process 

monitoring and control, machine health monitoring, and so on.  Normally, the WSN consists of "nodes" – from 

a few to several hundreds or even thousands, where each node is connected to one or sometimes several sensors. 

Each node has typically several parts: a radio transceiver with an internal antenna or connection to an external 

antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a 

battery or an embedded form of energy harvesting. A sensor node might vary in size from that of a shoebox 

down to the size of a grain of dust, although functioning "motes" of genuine microscopic dimensions have yet to 

be created. The cost of sensor nodes is similarly variable, ranging from a few to hundreds of dollars, depending 

on the complexity of the individual sensor nodes. Size and cost constraints on sensor nodes result in 

corresponding constraints on resources such as energy, memory, computational speed and communications 

bandwidth. The topology of the WSNs can vary from a simple star network to an advanced multi-hop wireless 

mesh network. The propagation technique between the hops of the network can be routing or flooding. In 

computer science and telecommunications, wireless sensor networks are an active research area with numerous 

workshops and conferences arranged each year. 

 

 
 

Fig. 1. A wireless sensor network[4] 

 

In many applications, a WSN communicates with a Local Area Network or Wide Area Network 

through a gateway. The Gateway acts as a bridge between the WSN and the other network [4]. This enables data 

to be stored and processed by device with more resources, for example, in a remotely located server. The power 

restrictions of sensor nodes are raised due to their small physical size and lack of wires. Since the absence of 

wires results in lack of a constant power supply, not many power options exist. Sensor nodes are typically 

battery-driven. However, because a sensor network contains hundreds to thousands of nodes, and because often 

WSN are deployed in remote or hostile environments, it is difficult to replace or recharge batteries. The power is 

used for various operations in each node, such as running the sensors, processing the information gathered and 

data communication. Energy is the scarcest resource of WSN nodes, and it determines the lifetime of WSNs. 

WSNs are meant to be deployed in large numbers in various environments, including remote and hostile 

regions, where ad-hoc communications are a key component. Power limitations greatly affect security, since 

encryption algorithms introduce a communication overhead between the nodes; more messages must be 

exchanged, i.e. for key management purposes, but also messages become larger as authentication, initialization 

and encryption data must be included. Energy Consumption of the sensing device should be minimized and 

sensor nodes should be energy efficient since their limited energy resource determines their lifetime. In this 

context the use of ECC comes into play.  

 

III. CRYPTOGRAPHY WITH ELLIPTIC CURVES 

ECC is a public key cryptosystem like RSA but the security of it lies on the discrete logarithm problem 

over the points on an elliptic curve. The main attraction of ECC over RSA is that the best known algorithm for 

solving the underlying hard mathematical problem in ECC takes full exponential time. RSA take sub-
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exponential time. This means that significantly smaller parameters can be used in ECC than RSA, but with 

equivalent levels of security. A typical example of the size in bits of the keys used in different public key 

systems, with a comparable level of security(against known attacks), is that a 160-bit ECC key is equivalent to 

RSA with a modulus of 1024 bits. In practical terms, the performance of ECC depends mainly on the efficiency 

of finite field computations and fast algorithms for elliptic scalar multiplications. In addition to the numerous 

known algorithms for these computations, the performance of ECC can be increased by selecting particular 

underlying finite fields and or elliptic curves. For ECC, we are concerned with a restricted form of elliptic curve 

that is defined over a finite field.  Strength of RSA [1] lies in integer factorization problem. That is when we are 

given a number n; we have to find its prime factors. It becomes quite complicated when dealing with large 

numbers and this is the strength of RSA.Elliptic Curves are a specific class of algebraic curves. The 

“Weierstrass form“of an elliptic curve E is the equation [2]:- 
2 3 2

1 3 2 4 6:E y a xy a y x a x a x a       

The constant 1 2 3 4 6, , , ,a a a a a  and the variables ,x y  can be complex, real, integers, polynomials, 

or even any other field elements. So, the mathematics of elliptic curve cryptography is so deep and complicated. 

But in practice we must specify which field, F, these constants and the variables, ,x y  belong to and 0  , 

where   is the discriminant of E and is defined as follows:- 
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    

 

We say that E is defined over K when the coefficients 
1 2 3 4 6
, , , ,a a a a a  (and of course, the variables x and y) 

of the equations come from the elements of the field K. So, we sometimes write ( )E K to indicate that E is 

defined over K, and K is called the underlying field. If E is defined over K, then E is also defined over any 

extension field of K. 

 

Elliptic Curve over Galois Fields 

We hardly use real numbers in cryptography as it is very difficult to store them precisely in computer 

and predict how much storage will be needed for them. This difficulty is solved by using Galois Fields. In a 

Galois field, the number of elements is finite. Since the number of elements is finite [5], we can find a unique 

representation for each of them, which allows us to store and handle the elements in an efficient way. Galois had 

shown that the number of elements in a Galois field is always a positive prime power, and is denoted 

by ( )nGF p . Two special Galois fields are very standard in Elliptic Curve Cryptography and they are ( )GF p  

when 1n   and (2 )nGF when 2p  .  

 

  1.1 Elliptic Curve over prime Galois Fields 

An elliptic curve over a prime Galois Field uses a special elliptic curve of the form  

2 3
mod mod( ) ( )y p x ax b p    

 where , ( ),0a b GF p x p    and 
3 2

16(4 27 ) mod 0.a b p    The constants a and b are non-negative 

integers smaller than the prime p. The condition that  
3 2

16(4 27 ) mod 0a b p    implies that the curve has 

no “singular points”[6]. 

Group Law 

The mathematical property which  makes elliptic curves very useful for cryptography is simply that if we 

take two (distinct) points on the curve, then the chord joining them intercepts the curve in a third point (because 

we have a cubic curve). If we then reflect that point in the x-axis we get another point on the curve (since the 

curve is symmetric about the x-axis). This is the “sum” of the first two points. Together with this addition 
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operation, the set of points ( )E K  forms an abelian group with 0 serving as its identity [7]. It is this group that 

is used in the construction of elliptic curve cryptographic systems. Algebraic formulae for the group law can be 

derived from the geometric description and they are reproduced here. 

1.2.1  Group law for 
2 3y x ax b    over ( ).GF p  

(1) Identity: 0 0P P P     for all ( ).P E K  

(2) Negative: If ( , ) ( )P x y E K  , then ( , ) ( , ) 0x y x y   . The point ( , )x y is denoted by -P 

and is called the negative of P; note that -P is indeed a point in ( )E K . Also, 0 0  . 

 

(3) 
Point addition: Let 1 1( , ) ( )P x y E K  and 2 2( , ) ( )Q x y E K  where P Q  .Then 

3 3( , )P Q R x y  , where 
2

3 1 2 3 1 3 1, ( )x x x y x x y        and  2 1

2 1

.
y y

x x






 

(4) Point doubling: Let 1 1( , ) ( )P x y E K  , where P P  . Then 3 32 ( , ),P R x y   where 

2

3 1 3 1 3 12 , ( )x x y x x y       and 1

2

1

3
.

2

x a

y



  

 

Geometrical Interpretation of Group Law 

1.  Negative of a Point 

Let‟s take a point 1 1( , ).P x y  The formula for finding 1 1is ( , )P P x y     as shown in the fig. 2. 

 
 

Fig. 2.Negative of a Point 

 

Addition of two points 

As mentioned before, we can define the addition of any two points on an elliptic curve by drawing a line 

between the two points and finding the point at which the line intersects the curve. The negative of the 

intersection point is defined as the “elliptic sum” of the two points by mathematicians and it is shown in fig. 3. 
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Fig. 3.  Addition of two points 

 

Fig. 4.  Doubling  a point 

 

Mathematically we write: 

R = P + Q. 

This “addition” satisfies all the usual algebraic properties that we associate with integers, provided we 

define a single additional point “the point at infinity”, which plays the role of 0 in the integers. In mathematical 

terms, we can define a finite additive abelian group on the points of the curve, with the zero being the point at 

infinity. 
 

Doubling of a point 

If 1 1( , ),P x y then the double of P, denoted by, 3 3( , )R x y , is defined as follows. First draw the 

tangent line to the elliptic curve at P. This line intersects the elliptic curve in a second point. Then R is the 

reflection of this point in the x –axis. This is depicted in fig. 4. We can extend this idea to define 

3 ,P P P P   and extending this idea further, we can define ...P P P k    times kP , for any 

integer k, and hence define the order of P, being the smallest integer k such that 0kP  , where 0 denotes the 

point at infinity[7]. Fig. 5 shows some multiples of  ( 1, 2)P       on the curve
2 3 5 .y x x 
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Fig. 5. Some multiples of ( 1, 2).P     

To elucidate doubling of a point, consider the elliptic curve 

  
2 3

mod4( 23)y x x    

defined over (23).GF  This curve is represented by 23 (1, 4).E  We first note that 

3 2
4 27 4 432 436 22(mod 23) 0(mod 23).a b      The points in 23(1,4)E  are the following:- 

 Table 1. Points on the curve 23(1,4)E  

0 (0,2) (0,21) (1,11) (1,12) (4,7) (4,16) (7,3) 

(7,20) (8,8) (8,15) (9,11) (9,12) (10,5) (10,18) (11,9) 

(11,14) (13,11) (13,12) (14,5) (14,18) (15,6) (15,17) (17,9) 

(17,14) (18,9) (18,14) (22,5) (22,19) -- -- -- 

 

Let (4,7) and (13,11).P Q  Then 3 3( , )P Q R x y   is computed as follows-

  

1

2
3 3

11 7 4
4 9 ( mod 23) 4 18( mod 23) 72 mod 23 3

13 4 9

3 4 13 8 15 (mod23), and 3(4 15) 7 40 6 (mod23)x y

 
       



           

  

Hence, (15,6).R   
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Again, let (4,7).P   Then 2P P P  is calculated as follows:- 

2
1

2
3 3

3 4 1
49 14 49 5 245 ( mod 23 ) 15

14

15 8 217 10(mod 23) and 15(4 10) 97 18(mod 23).

Hence, 2 (10,18).

x y

P

  
 
 

 
      

        



 

  2.  Elliptic Curve over prime Galois Fields 

Let‟s look at elliptic curves over (2 )nGF . Mathematicians say that we cannot use the simplified 

version of equation, which we used for integer numbers, in our elliptic curve equations over prime Galois fields. 

They tell us that we need to use either this version: 

2 3 2y xy x ax b     
(1) 

or this version
 

2 3y y x ax b     

 

(2) 

 

But, the mathematicians say that the second form above, (2), has the advantage that it can be very 

quickly computed and has some very special properties. These special properties make such curves unsuitable in 

cryptography. 

The curves of equation (1) are excellent for cryptographic applications. We must be careful in choosing 

the coefficients to get maximum security benefits. Experts argue that a poor choice will create a curve that is 

easier for the hackers to attack. For equation (1) to be valid, b must never be 0. However, a can be 0. Here we 

give the group laws of the first form of the curve [6]. 

2.1 Group law for 
2 3 2y xy x ax b     over (2 )nGF   

1. Identity: 0 0P P P     for all .P E  

2.  Negative: If ( , ) ,P x y E   then ( , ) ( , ) 0.x y x x y    The point ( , )x x y  is denoted by -

P and is called the negative of P; note that -P is indeed a point in E. Also, 0 0.   

3. Point addition: Let 1 1( , )P x y E  and 2 2( , )Q x y E   where P Q  .Then 

3 3( , )P Q R x y  , where 
2

3 1 2x x x a       and 3 1 3 3 1( )y x x x y     with 

2 1

2 1

.
y y

x x






 

4.  Point doubling: Let 1 1( , ) ,P x y E   where P P  .  Then 3 32 ( , ),P R x y   where 

2

3x a       and  
2

3 1 3 3y x x x    with 
1

1

1

.
y

x
x

      

 

To explain the mathematics behind the group law, let us take an elliptic curve, 
2 3 3 2 1y xy x g x     over  

3(2 )GF   under the irreducible polynomial 
3( ) 1.f x x x    Here the 
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generator, g, satisfies the relation 
3 1 0g g    or 

3 1g g  as the arithmetic is over (2).GF  The 

following table 2 shows the values of 'g s  and the points on the curve are given in table 3.  

 

Table 2: Possible values of  g‟s 
 

0 1 g g
2
 

3 1g g   
4 2g g g   

5 2 1g g g    
6 2 1g g   

000 001 010 100 011 110 111 101 

 

 

Table 3: Points on the given curve 

    0  (0,1)  2( ,1)g  
2 6( , )g g  

3 2( , )g g
 

3 5( , )g g  
5( ,1)g  

5 4( , )g g  
6( , )g g  

6 5( , )g g
 

 

Let (0,1)P   and 
2( ,1).Q g We have 3 3( , )P Q R x y    and it is computed as follows.  

3 3

2

2 2 3 5 5 5

1 2 1 3 3 1

5 2 4

1 1
0

0

0 0 0 and ( ) 0(0 ) 1

1 .

g

x x x a g g g y x x x y g g

g g g g



  


 



                  

    

 So, 
5 4( , ) (111,110).R g g   

Again take 
2

3 3( ,1). 2 ( , ).P g P P P R x y      

 3

2 2 5 3

2

2 6 3 3 6 2

3 1 3 3

4 9 6 4 2 2

4 2 5

1
1

and

( 1)

1 ( ) 1

g g g g g
g

x a g g g g y x x x

g g g g g g

g g g g



  

      

         

      

     

 

Therefore, 
6 5

3 3( , ) ( , ) (101,111).R x y g g    

  

Security of ECC 

Let E be an elliptic curve defined over a finite field and let, P be a point (called base point) on E of 

order n and k is a scalar. Calculating the point Q kP from P is very easy and Q kP can be computed by 

repeated point additions of P. However, it is very hard to determine the value of k knowing the two points: 

kP and .P  This lead leads to the definition of Elliptic Curve Logarithm Problem (ECDLP) [6], which is 

defined as: “Given a base point P and the point Q kP , lying on the curve, find the value of scalar  k”. The 

integer k is called the elliptic curve discrete logarithm of Q to the base P, denoted as log .Pk Q
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IV. KEY MANAGEMENT MECHANISM 
Key Management is very much essential for secure communication either in case of symmetric key or 

asymmetric key algorithms. For the implementation of various security schemes, key distribution is not typical 

in WSNs, but constraints such as small memory capacity makes centralized key distribution techniques 

impossible. Straight pair wise key sharing between every two nodes in a network is not suitable for large 

growing networks. A security scheme in WSNs must use efficient and reliable key distribution for secure 

communication between all relevant nodes. Various cryptographic solutions based on symmetric and 

asymmetric algorithms have been proposed. Symmetric algorithms provide confidentiality while fulfilling the 

power, space and memory requirements of WSN [8]. However they fail to provides authenticity and proper key 

exchange mechanisms which is achieved through public key cryptography. In symmetric key cryptography data 

are encrypted and decrypted with a single shared key so it has key exchange problem. Secure key distribution of 

keys securely to communicating hosts is a significant problem since pre-distributing the keys is not always 

possible. Asymmetric cryptosystems were not considered as an option for constrained devices due to their 

extensive mathematical calculations. These calculations require large amount of space and power. An energy 

efficient key management scheme for WSN using ECC can be designed. A typical WSN can be assumed as a 

combination of both large number of normal sensor nodes also known as cluster heads and small number of 

special nodes. Cluster nodes have more computational power than that of special nodes. Cluster nodes can be 

made according to energy carrying capacity of sensor nodes evolved in the WSN.  Before the pre-distribution of 

the sensor nodes, a server based on ECC can be used to generate both public/private key pair. Due to openness 

of wireless sensor networks, secure communication between nodes is one of the necessary works in security 

arrangement. There are many encryptions way in the public key encryption system, the reason why choosing 

ECC is that under the same working strength request, ECC needs a very shorter key length. At the same time, 

ECC also has certain superiorities in the computation load, the operating speed and the spatial consumption 

aspect. Table 4 compares ECC and RSA in term of key length still providing the same security level. Table 5 

shows the energy consumption rate [9, 10] of ECC with that of RSA. 

 

Table 4.  Comparison of key length in bit of Key of ECC and RSA 

RSA ECC ECC: RSA 

512 112 1:5 

1024 160 1:6 

2048 224 1:9 

3072 256 1:12 

7680 384 1:20 

15360 512 1:30 

 

Key Exchange 

Key exchange can be done in the following manner. A large integer 2nq  is picked and elliptic curve 

parameters a and b. This defines an elliptic curve group of points. Now, choose a base point 1 1( , )G x y  in 

( , )E a b whose order is a very large value n. The elliptic curve E and G are the parameters known to all 

participants. A key exchange between users A and B can be accomplished as follows: 
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Table 5: Comparison of energy consumption rate of  ECC and  RSA 

Algorithm                        Signature          Key exchange 

Signature Verification Client Server 

RSA-1024 304 11.9 15.4 304 

ECDSA-160 22.82 40.093 22.3 22.3 

RSA-2048 2302.7 53.7 57.2 2302.7 

ECDSA-224 61.54 121.983 60.4 60.4 

 
1. 

A selects an integer An  less than n . This is A‟s private key. A then generates a public key A AP n G ; the 

public key is a point on E. 

2. 
B similarly selects a private key Bn   and computes a public key .B BP n G  

3. 
A generates the secret key A BK n P  and B generates the secret key .B AK n P  

 

The calculations in step 3 produce the same result. ( ) ( ) .A B A B B A B AK n P n n G n n G n P     

To break this scheme, an attacker would need to be able to compute k given G and kG, which is assumed to be 

hard. 
 

Encryption using ECC 

The plaintext message m is taken as input in the form of bits of varying length. This message m is 

encoded and is sent in the cryptographic system as x-y point .mP  This point is encrypted as cipher text and 

subsequently decrypted. As with the key exchange system, an encryption and decryption system requires a point 

G and an elliptic group ( , )E a b as parameters. User A selects a private key An  and generates a public 

key A AP n G . Similarly, user B selects a private key Bn  and generates a public key B BP n G .  To encrypt 

and send a message mP  to B, A chooses a random positive integer k and produces the cipher text mC consisting 

of pair of points { , }.m m BC kG P kP   

 
Decryption using ECC 

To decrypt the cipher text, B multiples the first point in the pair by B's private key Bn  and subtracts the result 

from the second point as shown by equation.  

( ) ( ) .m B B m B B mP kP n kK P k n G n kG P       

 

V. SECURITY IN WIRELESS SENSOR NETWORKS 
The main advantage ECC has over RSA is that the basic operation in ECC is point addition which is 

known to be computationally very expensive.  

 
 

Table 6: Comparison of strength of RSA and ECC in breaking the system. 

Time to break 

(in MIPS-years) 

RSA key size(in bits) ECC key size( in bits) 

104 

 

518 

 

106 

 

108 

 

768 

 

132 

 

1011 

 

1024 

 

160 

 

1020 

 

2048 

 

210 

 

1078 21000 600 
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This is one of the reasons why it is very unlikely that a general sub-exponential attack on ECC will be 

discovered in the near future, though ECC has a few attacks on a few particular classes of curves. These curves 

can be readily distinguished and can be avoided. On the other hand, RSA already has a known sub-exponential 

attack which works in general. We compare the performance of ECC with RSA in terms of key sizes for the 

same level of security, data sizes, encrypted message sizes, and computational power. RSA takes sub-

exponential time and ECC takes full exponential time. For example, RSA with key size of 1024 bits takes 
113 10x  MIP years with best known attack where as ECC with 160 bit key size takes 

119.6 10x  MIP years. 

Therefore, ECC offers same level of security with smaller key sizes. Data size for RSA is smaller than ECC. 

Encrypted message is a function of key size and data size for both RSA and ECC. Since ECC key size is 

relatively smaller than RSA key size, encrypted message in ECC is smaller. As a result, computational power is 

smaller for ECC. Thus, to maintain the same degree of security in view of rising computing power, the number 

of bits required in the RSA generated key pair will rise much faster than in the ECC generated key pair.  

Menezes and Jurisic, in their paper [11], said that to achieve reasonable security, a 1024-bit modulus would 

have to be used in a RSA system, while 160-bit modulus should be sufficient for ECC. Most attacks on ECC are 

based on attacks on similar discrete logarithm problems, but these work out to be much slower due to the added 

complexity of point addition. Also, methods to avoid each of the attacks have already been designed [12].The 

one thing working against ECC is that though elliptic curves have been a well-researched field, its cryptographic 

applications have been noticed only recently. This is the only advantage that RSA has over ECC. RSA has been 

well-researched and has been the topic of many seminal theses. In fact, the cryptographic use for elliptic curves 

was only discovered in the process of finding out new attacks on the RSA system [13].ECC and some related 

work about wireless communication that is based on elliptic curve cryptographic techniques. Presently, RSA 

algorithm demands a key length be not less than 1024bits for long term security and we know that ECC with 

only a160 bits modulus offers the same level of security as RSA with 1024-bit modulus. 

 

Table 7: Strength of Diffie Hellman  vs Elliptic Curve Keys 

Security Level(bits) Ratio of DH key: ECC key 

80 3:1 

112 6:1 

128 10:1 

192 32:1 

256 64:1 
  

 Thus, using ECC in wireless communication system is extremely recommended. In short functional 

requirement of even such basic electronic gadgets are increasing, into the requirement of more comprehensive 

software Development platforms. This has resulted into the introduction of embedded operating systems and 

compilers of various high level languages for embedded systems. The progress is almost on the similar lines 

how computer systems have evolved into various layers of hardware, operating systems and application 

programs, which later got clubbed with communication networks. Table 7 shows a comparison of elliptic curve 

keys with Diffie Hellman Keys [14]. 

VI. Elliptic Curve Discrete Logarithm Problem 

The fastest known technique for breaking the Elliptic Curve Discrete Logarithm is known as the 

Pollard rho method. Table 8 compares the efficiency of this method with factoring a number into two primes 

using the GNFS. From Table 8, it can be inferred that a considerably smaller key size can be used for ECC 

compared to RSA. Furthermore, for equal key lengths, the computational effort required for ECC and RSA is 

comparable. Thus, there is a Computational advantage by using ECC with a shorter key length when compared 

to the secure RSA scheme. This work focuses on the performance advantages that can be obtained by using 

ECC in a wireless environment. ECC over prime fields is implemented for obtaining better performance 

characteristics in securing SSL. The algorithm for ECC over binary fields is further speeded up by using the 

Ring representation technique. This algorithm with lesser complexity and higher speed is implemented for 

sensor networks taking its constraints into account and is found to the ideal in a wireless sensor network 

environment. 
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Table 8  Comparision of ECDLP and IFP 

ECDLP Using the Pollard rho method IFP Using General Number Field Sieve 

Key size MIPS-Years Key size MIPS-Years 

150 3.8 × 10
10

 512 3 × 10
4
 

205 7.1 × 10
18

 768 2×10
8
 

234 
1.6 ×10

28
 

 
1024 3×10

11
 

 

VII. CONCLUSION 
Wireless sensor networks are devices with low computing power and resources. Elliptic Curve 

Cryptography (ECC) fits well in such systems. The security of Elliptic Curve Cryptosystem depends on how 

difficult it is to determine k given kP and .P This is referred to as the elliptic curve logarithm problem. The 

fastest known technique for taking the elliptic curve logarithm is known as the Pollard rho method. It has been 

seen that a considerably smaller key size can be used for ECC compared to RSA. Thus, there is a computational 

advantage to using ECC with a shorter key length than a comparably secure RSA. The results show that ECC is 

efficient in terms of the size of Data files and Encrypted files. The above information is useful for wireless 

communication due to low data rate transmission and for constrained devices because of low power 

requirements. 
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