
International Journal of Engineering Science Invention 

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 

www.ijesi.org ||Volume 4 Issue 4 || April 2015 || PP.46-51 

www.ijesi.org                                                                46 | Page 

Type Conversion Elimination by Dominant Flow Analysis 

Dae-Hwan Kim 
(Department of Computer and Information, Suwon Science College, 288 Seja-ro,  

Jeongnam-myun, Hwaseong-si, Gyeonggi-do 445-742, Rep. of Korea) 

 

 

ABSTRACT: Various data types are used in a program such as character and integer. Operand type is 

explicitly converted into another type or is implicitly converted when it is operated with another operand type. 

Additional conversion occurs when the size of a data type is less than that of an integer type, which promotes 

the value of the smaller type into an integer before computation in many high level programming languages 

such as C and C++ conforming to the standards. Type conversion often requires a sign or zero extension, which 

leads to code size increase and performance degradation. When multiple references of a variable need to be 

converted, it may not be necessary to convert all the conversions because the conversion of a previous reference 

may be live and hold the same value as the current conversion. Therefore, the proposed approach analyzes the 

flow of the definitions and uses of a variable, and minimizes the number of type conversions by inserting 

conversions only at dominant locations. Experimental results show that the proposed approach eliminates an 

average of 71.5% of type conversions. 

KEYWORDS – Compiler, code generation, flow analysis, optimization, type conversion 

 
I. INTRODUCTION 

Various data types such as character, short, and integer are supported in a program, each of which has 

its own size. The compiler writer often determines the size of each type based on the machine architecture. In a 

32-architecture where the width of register is 32 bits, the integer type is also 32-bit long while the sizes of short 

and character types are 16 bits and 8 bits, respectively. Type sizes are different in 8-bit architecture processors 

where a register is 8-bit wide. Character is 8-bit long while the widths of both integer and short types are 16 bits. 

Type conversions are more frequent than a programmer’s expectation due to the implicit type 

conversions. ANSI C standard enforces the value of smaller type than integer should be converted to the integer 

value before arithmetic operations [1]. Thus, even if all the variables are of character types, they are converted 

integers before computation. Note that in most compilers, the widths of character and short types are shorter 

than that of the integer type. 

Type conversion is accompanied by the sign/zero extension overhead. To change the value of a smaller 

signed type into a larger one, the sign bit of the smaller type is propagated to the remaining upper parts of a 

larger type. This conversion causes degradation in performance, and increases both code size and power 

consuming. Thus, the number of conversions should be minimized as much as possible. 

Reducing power consumption is one of the dominant and crucial paradigms for portable digital devices 

where power is dissipate mainly by the switching activity in the circuits. The sign or zero extended value is the 

input to an ALU. If the previous conversion is live at the current conversion whose value is the same as the 

previous one, we can eliminate the current conversion while preserving the semantics. This can avoid the 

switching of the upper bits, and accordingly, reduce power consumption. 

Often, the propagation of a sign/zero requires a pair of left shift and right shift instructions. To reduce 

such overhead, some architectures support type conversion instructions [2-3] such as the cbw (convert byte to 

word) instruction [2] in X86. This instruction automatically performs the sign bit propagation on the destination 

operand. In addition, many machines provide the instruction that loads a smaller value from memory into a 

register with a sign or zero extension. For example, ARM7TDMI [4] supports the loadsb instruction that 

performs a sign extension by loading a byte value from memory and extends the sign bit into the register. Even 

with the designated sign/zero extension instructions, type conversions still increase both code size and power 

consumption while degrading system performance. 

In many compilers, type conversion follows the path from the source type to the destination type. Fig. 1 

shows the type conversion path in the lcc compiler [5]. For example, an unsigned short type is converted into a 

signed char type as follows. Unsigned short is first converted into unsigned, and then, into integer, and finally 

integer is converted to a signed short type. 

 



Type Conversion Elimination by Dominant Flow Analysis 

www.ijesi.org                                                                47 | Page 

 
 

Figure 1. Type conversion path 

 

When several type conversions need to be performed for multiple references of a variable, it may not 

be necessary for all the references to be converted. This is because the previous conversion may have the value 

for the current conversion. Thus, the flow analysis is performed to identify the necessary conversions. To 

improve performance and code density, some commercial compilers such as RealView C compiler [6] for ARM 

processors and Keil compiler for C8051 [7] optimize type conversions or provide the directive for the type 

conversion. However, the algorithms are not known because they do not publish their techniques. Authors in [8-

9] briefly introduced the type conversion idea, but no details are described there. 

The rest of this paper is organized as follows. Section II presents the proposed algorithm with 

examples. Section III provides experimental results, and conclusions are presented in Section IV. 

II. PROPOSED ALGORITHM 
The proposed approach inserts type conversions at the dominant locations, and deletes all the 

conversions that have the same value and are reachable from the dominant positions. We say node ‘x’ of a flow 

graph dominates node ‘y’, if every path from the initial node to ‘y’ goes through ‘x’ [10]. Dominance analysis is 

widely used in a flow analysis, and one typical use of a dominator tree is the loop detection. After the dominator 

tree of the basic blocks is constructed, the loop can be easily detected by finding the backward edge in the 

control flow. Fig. 2 shows a control flow of basic blocks and its dominator tree. 

A web is a maximal union of definition-use chains (du-chains) that have a use in common, which is the 

basic unit for a register allocation and the proposed type conversion analysis. By analyzing the conversions in 

definitions and uses of a web, we can determine the dominant positions for the conversions. Then, we can delete 

other conversions that can be reachable from the dominant ones. 

Though type conversions can be classified in widening and narrowing, there is conceptually no 

discrimination between them. Both conversions can be performed by the similar sign/zero extension. For 

example, the type widening from character to integer extends the sign bit of character value into the upper parts 

of integer value. In a 32-bit processor, the data sizes are 8 bits and 32 bits for character and integer, respectively. 

When a signed character value is converted into an integer, the bits from 31 down to 8 are filled with the bit 7, 

which is the sign bit of the character value. Similarly, the narrowing from integer to character propagates the bit 

8 to the upper bits of the character type. Fig. 3 illustrates this property when ‘c’ and ‘i’ are of character and 

integer types, respectively.  

 

 
 

Figure 2. Control flow and its dominator tree 

 

 

 

 



Type Conversion Elimination by Dominant Flow Analysis 

www.ijesi.org                                                                48 | Page 

 
 

Figure 3. Type widening and narrowing 

 

The proposed algorithm runs in two steps. At the first stage, it identifies the necessary and irremovable 

conversions among the conversions at definitions and uses of a web. The first stage simply traverses all the 

intermediate code. Fig. 4 shows the code segment and its intermediate code structure in lcc compiler [5]. The 

intermediate code is represented as a forest of trees. While traversing, this stage propagates the type of root node 

to the children nodes. Thus, if the type of a root operation is an integer, the children of smaller types should be 

extended into integer to preserve the program semantics. If the root operator is of character type, integer 

promotions can be eliminated in the children because uses in the children already have the sing/zero extended 

value. This simple mechanism works correctly with the additional consideration for the operators that cat not be 

eliminated. For example, the character value in the explicit right shift operation should be extended into the 

integer value to keep the semantics. 

 

 
 

Figure 4. lcc intermediate code for ‘I = 1; I = I + 1;’ 

 

The second stage optimizes the conversion locations by moving the conversions detected at the first 

stage into the minimal cost positions, which can be determined by the dominator tree for a web. Fig. 5 shows the 

control flow for the references of variables. Both INST1 and INST2 convert integer types to character types 

whereas INST3 and INST4 are nodes for changing types from characters to integers. Now, INST3 and INST4 

require the type conversions, but the insertion of conversion at INST3 is enough because it dominates INST4. 

 

 
 

Figure 5. Example of dominance relation 

 

 



Type Conversion Elimination by Dominant Flow Analysis 

www.ijesi.org                                                                49 | Page 

To minimize the number of conversion operations, the proposed approach first constructs the 

dominator tree for references of a web. The dominance relations between uses of a web are constructed by using 

pre-built basic block dominator tree. Then, the definitions that can reach dominant uses are included as the 

parent of each dominant use. Fig. 6 (a) shows the control flow of basic blocks and accesses of variables, and (b) 

shows the dominator tree for web ‘i’. 

Node in a dominator tree is annotated by the overhead cost. Cost can be given considering for the target 

architecture and optimization purpose. Each cost is given as one for the code size optimization when the 

processor provides the sign extension instruction, and is given as two when the extension should be 

implemented by a pair of sequential left and right shift instructions. For the speed optimization, the cost is given 

as the execution time of an instruction for a node. 

After the annotation, the proposed approach identifies dominant conversion locations. For this 

detection, the dominator tree of each web is traversed in a bottom-up order until all the roots are visited. When 

the cost of a node is less than or equal to the sum of all the costs of the children, the type conversion code is 

generated at that node while no conversion code is emitted at all the conversion nodes in the children. Fig. 7 

shows the general algorithm of the proposed approach. 

 

 
Figure 6. Dominator tree of references of a variable 

 

 
 

Figure 7.  Proposed algorithm 

 

Fig. 8 shows the example of the proposed detection. The effects of other optimizations such as copy 

propagation are not considered to simplify the description. At INST1, INST2, and INST3, type narrowing is 

performed while the instructions from INST4 to INST8 perform type widening. In the dominator tree, INST4 

dominates all the positions from INST5 to INST8. Thus, for all the uses of variable ‘c’, only one conversion at 

INST4 is enough.  

 

Step 1.  For each intermediate node, identify the necessary conversions by propagating the type of the root 

operator into the children. 

Step 2.  For each web which has type conversion operations do the following 

1) make a dominator tree for the web. 

2) annotate the tree with the conversion cost. 

3) detect the valid conversion nodes in a tree. 

By traversing tree in a bottom-up order, move conversions into parents and remove the 

conversions at the children if the cost of the parent is less than the sum of the costs of the children. 

4)    detect the necessary conversions by analyzing the dominance relations. 

5)    emit conversion instructions for the valid and dominant nodes. 



Type Conversion Elimination by Dominant Flow Analysis 

www.ijesi.org                                                                50 | Page 

 
 

Figure 8. Dominator tree example 

 

III. EXPERIMENTAL RESULTS 
To evaluate the efficiency, the proposed type conversion elimination is implemented in lcc [5] targeting 

ARM7TDMI processor [4], which is one of the most widely used 32-bit embedded processors. The benchmarks 

are stanford, dhrystone, mpeg2, adpcm, g721, pgp, gsm and runlength programs. Stanford consists of a series of 

small real-world algorithms developed by John Hennessey of Stanford University. Dhrystone is one of the most 

widely used computing benchmark program to measure computer and compiler efficiency. G721, gsm and 

adpcm (adaptive differential pulse-code modulation) are three standard speech and voice codecs for the 

communication in the telecommunications network. Mpeg2 implements the standard for the generic coding of 

moving pictures and associated audio information. Pgp (pretty good privacy) is a public key encryption 

algorithm, and runlength is the implementation of a simple form of data compression. 

 

 
Figure 9. Type conversion elimination ratio 

 

Fig. 9 shows the ratio of the eliminated type conversion achieved by the proposed approach. In eight 

benchmarks, an average of 71.5% of type conversions can be eliminated by the proposed approach. Note that 

the reduction ratio ranges from 59.3% to 81.2%. The reduction ratio is high when the dominant conversions can 

replace the subsequent conversion operations. Mpeg2, adpcm, and runlength are such examples. 

 

IV. CONCLUSION 
In this paper, a new technique is proposed to eliminate type conversions, which are generated by the 

explicit casting, the use of different types for the operator, and the implicit conversion such as integer 

promotion. The propose approach constructs a dominator tree for the references of a variable. Then, the 

approach inserts the conversions only at the dominant locations, and removes reachable conversions from the 

dominant points. The dominant flow analysis of a variable can be easily performed by the traditional flow 

analysis technique. The elimination of the redundant type conversions can significantly reduce code size and 

power consumption while improving performance. 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

e
lim

in
at

io
n

 r
at

io
 (

%
) 



Type Conversion Elimination by Dominant Flow Analysis 

www.ijesi.org                                                                51 | Page 

V. ACKNOWLEDGEMENTS 
This research was supported by Business for Cooperative R&D between Industry, Academy, and 

Research Institute funded Korea Small and Medium Business Administration in 2014 (Grants No. C0213097). 

 

REFERENCES 
[1] H. Schildt, The annotated ANSI C Standard American National Standard for Programming Languages—C: ANSI/ISO 9899-

1990(Berkeley, CA: Osborne/McGraw-Hill, 1990). 

[2] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer Manuals, 2011. 

[3] ARM Ltd., Cortex-M3 technical reference manual, 2010. 
[4] S. Segars, K. Clarke, and L. Goudge, Embedded control problems, Thumb, and the ARM7TDMI , IEEE Micro, Vol. 15, No. 5, 1995, 

22-30. 

[5] C. W. Fraser, and D. R. Hanson, A retargetable C compiler: design and implementation (Redwood City, CA: Benjamin/Cummings, 
1995). 

[6] RVCT, Realview Compilation Tools. http://www.keil.com/arm/realview.asp. 

[7] C. E.  Nunnally , Teaching Microcontrollers, Proc. The 26th Frontiers in Education Annual Conference, Salt Lake City, Utah, 1996, 
434-436. 

[8] D. H. Kim, Advanced Compiler Optimization for Calm RISC8 Low-End Embedded Processor, Proc. 9th Int. Conf. on Compiler 

Construction, Berlin, Germany, 2000, 173-188. 
[9] N. E. Johnson, Code size optimization for embedded processors, Technical Report UCAM-CL-TR-607, (University of Cambridge 

Computer Laboratory, 2004) 

[10] S. S. Muchnick, Advanced compiler design and implementation (San Francisco, CA: Morgan Kaufmann, 1997). 


