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Abstract: The paper is concerned with a thermoelastic belavian infinite elastic layer of finite thickness
with a crack in it lying in the middle of the layand parallel to the faces of the layer. The faakthe layer are
maintained at constant temperature of different niagle. The problem is a steady state thermoelastic
problem. The layer surfaces are supposed to bedaote by symmetrically applied concentrated forcés o
magnitude 2 with respect to the centre of the crack. The ambkoncentrated force may be compressive or
tensile in nature. The problem is solved by usitiggral transform technique .The solution of thelppem has
been reduced to the solution of a Cauchy type ngntegral equation, which requires numerical atenent.
The stress-intensity factor and the crack openiispldcement are determined and thermal effectsasious
subjects of physical interest are shown graphically
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I. Introduction
Thermal loading on solids has significant effectsheir after load behavior and so should be deigfit utmost
care. As such, the study of thermoelastic probléas always been an important branch in solid méctan
(Nowacki [1] ; Nowinski [2]). In the design of argtture in engineering field, considerable attentia thermal
stress is a natural task, because many structomgd@nents are subjected to severe thermal loadmghvwnight
cause significant thermal stresses in the compenespecially around any defect present in thel sdliermal
stresses along with the stresses due to mechdoérhhgs can give rise to stress concentratiomiaraund the
defects and can lead to considerable damage strineture.
In literature, problems related to defects suchrasks in solids have been studied in detail forous kinds of
solid medium. Cracks in a solid may be generatezltduseveral reasons: such as uncertainties ito#uing
process, compositional defects in materials, inadei@s in the design, deficiencies in constructmn
maintenance of environmental conditions, and séwthars. Consequently, almost all structures dordeacks,
either due to manufacturing defects or due to ingqate thermal or mechanical loading. If propgertion to
load condition is not paid, the size of the crackws, leading to a catastrophically structure failuA
comprehensive list of work on crack problems byieamvestigators has been provided in Zhou anddda
[3], Chaudhuri and Ray [4], Fabrikant [5], Dag &€f&d, Dag and Erdogan [7], Sherief and El-MahrgB};
Chen et al. [9], Lee [10], Matbuly [11] etc. Amonige recent works on crack problems in solids ofvabo
mentioned characteristics, notable are the work€aofaun [12], Barik et al.[13], Birinci et al. [14Rekik et al.
[15], Wang and Han [16], Beom and Jang [17], Chaeh\&ang [18], Chen and Hu [19], Chang and Wang,[20]
Chudnovsky [21], Markov and Kanaun [22], Ding et[2B], Wang et al. [24], Matysiak and Pauk [25]}.et
For a solid with a crack in it loaded mechanicaitythermally, determination of stress-intensitytéaqSIF)
becomes a very important task in fracture mecharfibe SIF is a parameter that gives a measurere$sst
concentration around cracks and defects in a s8lil. needs to be understood if we are to desigrtura
tolerant materials used in bridges, buildings, raiitc or even bells. Polishing just won't do if wetect crack.
For a thermoelastic crack problem thermal strensity factor is a very important subject of plogsinterest.
Literature survey shows good number of papers mnigalith thermal stress intensity factors. Amongnthe
mention may be made of the works of Lee and Pafk [ou [27], Liu and Kardomateas [28], Nabavi and
Shahani [29], Hu and Chen [30] etc.
The present investigation aims to find the elaastassolution in an infinite layer with a crackitrand is under
steady state thermal loading as well as mechatiealing. Following the integral transform technigne
problem has been reduced to a problem of Cauchg $ypgular integral equation, which has been solved
numerically. Finally, the stress-intensity factarsl the crack opening displacements are deternfianedirious
thermal and mechanical loading conditions and #®eiated numerical results have been shown graphic
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II. Formulation of the Prablem
We consider an infinitely long elastic layer ofdkmess 2h weakened by the presence of an interack of
length 2b lying in the middle of the layer. The akas opened by an uniform internal pressyrg along its
surface. The strip is under the action of steadtesthermal loading with its surfaces maintainedlitierent
constant temperatures. The layer is subjected todifferent types of mechanical loadings on itfaes in a

direction perpendicular to its length (i) a symneepair of compressive concentrated normal Ioagbl,s(ii) a

symmetric pair of tensile concentrated normal Ioagds[Fig. 1(a) , (b)]. The gravitational force hast leen

taken into consideration. The problem is formulate€artesian co-ordinate system (x ,y) in whichogr lies
along x-axis with origin at the centre of the crack
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(a) concentrated compressive load condition (b) concentrated tensile load condition

Fig. 1 Geometry of the Problem

The strain displacement relations, linear stressrstelations and equations of equilibrium arspestively,
given by
du ov 1 ,0u

szar gy=a_yr __(_ _V) (1)

Oy = % [(1T+©)ex + B —1)gy]

oy = ﬁ[@ —1)eg + (1 +1)gy] 2)
xy = 21y
acx 6TXY
T = 0 3
Ity "& -
ax + dy - (4)

where k =3 —4v, vis the Poisson’s ratio and is the elastic parameter. Before further procegdiwill
be convenient to adopt non-dimensional variablesebgaling all length variables by the problenrsyta scale
b and the temperature variable by the referencpeesture scald :

7_u '_V V_X '_y h'_h
u—b;V—b;X—b;y—b, v’

,—l ,—h 1_2 "

T —To,Tl—TO,TZ—TO,a =T, . 5)

where «a is the thermal expansion coefficient .

In the analysis below, for notational convenienee,shall use only dimensionless variables and giadire the
dashes on the transformed non-dimensional variabfieghematically, the problem under consideratien i
reduced to the solution of thermoelasticity equetio
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(i) Equilibrium equations:

2(1—v)%+(1—2v)327:+6i2;y= 2(1+v)al 6)
(1—2v)%+2(1—v)%+£:y=2(1+v)ag—§ @)
(ii) Steady state heat conduction equation:
az_T+az_T=() (=00 < x < 0) (8
ax2  ay? !
and
(iii) The boundary conditions:
(a) Thermal boundary conditions:
Tx,-h) =T, (x| <) ©)
Tx,h)=T,, (x|< ) (10)
_0T<;<;°*> = 2022 = HIT(x,09) = T(x, 001, (IxI < 1) (11)
T(x,0*) =T(x,07), (Ix| =1) (12)
aT(x,0%) _ aT(x,07)
T =TELD (= 1) (13)
(b) Elastic boundary conditions:
Ty (%,0) =0, (00 <x <) (14)
TXy(X! h) = 0! (—OO < X < OO) (15)
oy (x,h) = i[ga(x—a)+§5(x+a)], (—o0 < x < o) (16)
2 _(flxl<1;
S weoo) =S (17)
oy(x,0) = —py, (-1 =x<1) (18)

where u and v are the x and y components of isgatement vectow,, o,, 7, are the normal and shearing
stress components; the quantity H is the dimenssenthermal conductivity of the crack surface dfirn
Carslaw and Jaeger [31]; f(x) is an unknown funtt@md §(x) is the Dirac delta function. In equation (16)
positive sign indicates tensile force while negatsign corresponds to compressive force.

I11. Method Of Solution
(a) Thermal part:
To determine temperature field T(x,y) from etipra(8) and boundary conditions (9) -(13) we assum

Txy) =Uxy) + W(y) (19)
whereU(x,y) and W(y) are two unknown functions satisfying the condision

U(x,—h) =U(x,h) =0, (20)
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and
W(=h)=T,, Wh) =T,. (21)

Under these considerations we get

T,-T T1+T
W(y) = Ly ¢ (22)
and
ey = |0 V=Y 23)
x,¥y) = — 1+e2Mh
(eny —e n(2h+y)) 1+:—znh 1 <0;

for certain constantj;.

The appropriate temperature field satisfying therfatary conditions and regularity condition can kpressed
as:

T(x,y) = [ [eW — e"@=9D(m)e ™Ndn + W(y), y=0 (24)
T(x,y) = [ [eW — e M@+, D()e ™dn + W(y), y<0 (25)

where D(n) is an unknown function to be determined and

1 2nh
ab = Tz - (26)
Let us introduce the density functidd(x), as
0(x) = 9Tx,0h) _ 0T(x0T) (27)
ax ax
It is clear from the boundary conditions (12) ahd)(that
1
J,0(s)ds =0 (28)
and
0(x) = 0,(Ix| = D). (29)
Substituting (24) and (25) into (27) and using keuinverse transform, we have
D)= —re )11 g (gyeiong 1 1 Ve
()= ooy -, 0()eds, (=1 < s <1). I

Substituting (24) and (25) into (11) and applyihg telation (30), we get the singular integral ¢iguafor
B(s) as follows

1L Rt Es)|eEds =1 (31)
where
Y 2H | 2+e2Nhye—2nhy |
kl(X, S) = fO [1 - 7 + W] Sin T](X - S)dT] (32)

After determining®(s) from the singular integral equation (31) we hawetemperature field along the axes as
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f sign(x — s)0(s)ds + = T1+T2 ,y=0;
T(x0) = 1 T1+T2 (33)
f sign(x — s)0(s)ds + +—2 ,y < 0;
Y —Tf{:n“ [emn@hy) — ] ZE 4(n) [1 0(s) ds + Z 4+ T2y 2 0;
TOy) =4 " ’ (34)
— 411-[ fow lj‘fﬂh - [e'fly —e 11(2h+y)] sin (Sn) d( )f O(S) ds + 21 T2 Tl + T1‘;"1‘2 Y <0;
(b) Elastic part:

First of all we observe that due to symmetry of ¢heck location with respect to the layer and @& #pplied
load with respect to the crack, it is sufficientcmnsider solution of the problem in the reglbs x < «. To

solve the partial differential equations (6) anyi Fourier transform is applied to the equationthwespect to
the variable x. The equations in the transformh@thain can be written as

(1-2v) 37; — 282(1 = V) — 5 = ~2iE(1 +v)oT 513

d2v _ ..du dT
2(1—v)d—y:—(1—2v)v—1f,£=2(1+v)a$ (36)

where 1 and v are the Fourier transforms of u and v, respectivati respect to x. Now, elimination oft
from the equations (35) and (36) yields a diffeis@rgquation irv ;

d*v d?v —
i Bt EV=0. (37)

Equation (37) is an ordinary differential equatiorindependent variable y, its general solution loarbtained
as

v (Ey) = (A+By)e ™™ + (C+ Dy)ety (38)
where A, B, C and D are the unknown constants.dfisg88) in equations (35) and (36) yields

u(y = %[{f (C + Dy) + Dk}e® + {—&(A + By) + Bx}e™%V] — ZaTXE—K)

where i =+/—1. Application of Fourier inversion formula on thguations (38) and (39) we get

(39)

ux,y) = if_ww [{A + (y - g) B} e”y — {C + (y + g) D} eéy] e I&xdg +o a ~(7—%) fw lT e I&d¢  (40)

and v(x,y) = = [% [(A+ By)e™™ + (C + Dy)e¥] e 1¥%dg . (41)

Substituting (40) and (41) into the transformediegjent forms of equations (1) and (2) in dimenkss
variables, we obtain

! +2k-3 2+ 2c—3 :
T R e
a(1+x)(7-x)
—14(1 Z) T(x,y) (42)
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—-2xk+1 2 _2k+1 .
y( X,y) == f [ Ee VA + { &y — %} e YB + &eVC + {E,y - ﬁ} eEyD] e”ioxdg
— S0 T(x,y) (43)

4(1-x)

+1 K+
}e‘gyB —&eYC+ {—E,y -

1 i i gy 1 Ty —ix
ﬁTxy(Xry) = % f [_ée A+ {_ }e D] e dg

1a(7 K) © 16T —iEx
+—/ wTdy dg (44)

Utilizing of the boundary conditions(14) -(17), thmmknown constants A,B,C and D can be found out and
substitution of these values into the equation {ti)lead to the following singular integral eqicmn:

210 [ + k()] de = <2 [ -2 e 4—wk3(x)]
a7 —x)(x+1) a3 —Kk)(7—x)(k+1)
k(60 + S0 T(x, 0)]

4(3 K)T*

— - DE - - T + ] (-1 <x< D, (45)

T,, y =20;

where T Z{Tl,y <0; (46)
oo (142Eh+282h2)e28h_g~48h
ky(t) = =2 [ rathe P e Sin E(x — t)dE (47)
w2~ [14+&h+( 1)
ks(x) = J; 2 111:;25’35—4;’1 [cos E(x — a) + cos é(x + a)] d& (48)
and
_ (k— 1)(1+e_2“h) {1+2(1-Kk+4n2h?)e~2Nhe—4nh}
ky(t%) = f N(k+1)(e MM —1)(1+4nhe—2nh_e—4nh)
—-nh(ex—3nh ,-5nh —2nh_
Bnhe (e e *11) (e A1) sinn(t —x)dn (49)

(e=#nh—1)(1-e~4nh+4nhe—2nh)

The kernels k, (t,x), k3 (x) and k,(t,x) are bounded and continuous in the closed intertak x < 1. The
integral equations must be solved under the folvgingle-valuedness condition

JL f(®dt = 0. (50)

IV. Solution of the Integral Equations
(a) Thermal part:
The singular integral equation (31) is a Cauchyetgmgular integral equation for an unknown funct(s).
For the evaluation of thermal stress it is necgsasolve the integral equation (31).For this magwe write

Y(s)

Nt

0(s) = (-1<s<1) (51)

whereY(s) is a regular and bounded unknown function. Sulisig (51) into equation (31) and using Gauss-
Chebyshev formula (Erdogan and Gupta [32]), weinbta
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%[2521{51{ — 4 Ky (x, s} Y| =2 i=12,...,N-1 (52)
and
L IR Y(s) =0 (53)
where s, andx; are given by
s = cos (22n), (k=123 ., N) (54)
Xx; = cos (E) (i=123 . ...,N—1). (55)

We observe that corresponding(®— 1) collocation pointsx; = cos(

aset of N linear equations in N unknowi(s, ), Y(s,), ... ..., Y(sy).
This linear algebraic system of equations are sbiugmerically by utilizing Gaussian elimination rned.

i
2(N+1)) , 1=12, .. , (N — 1) we have

(b) Elastic part:
The singular integral equation (45) is a Cauchyetgmgular integral equations for an unknown fuoreti(t).
Expressing now the solution of equation (45) infiven

f(t) = fﬂ (-1<t<1) (56)

where y(t) is a regular and bounded unknown function andgu§iauss-Chebyshev formula (Erdogan and
Gupta [32]) to evaluate the integral equation (48 ,0btain, for y > 0

k+1 po
— Ltk — + ko (ty, r)] Yt | = T ZH 4mp ks (xr)
a7 -k +1) aB -7 - +1
+%‘_KK);K“)(T1 +T,)
— S [ - 1)(5 — (T~ T) + 280 r =12 N1 (57)
IS () =0 o
and for y<0
1 K+ 1 po
N z [tk X, + kz(tk; Xr)] lp(tk) Zu 4-T[|J. 3( r)]
7 - +1 3 -0 - +1
Z[ & 61{1-)(: )ko,(tk,Xr) a ];)2((1 —K))(K )S ign(x; — ti) | W(ty)
+ GBTOTO0HD) (g 4 Ty

16(1-x)

www.ijesi.org 27 | Page



Steady State Thermoelastic Problem in an Infinitsttc Layer Weakened by a Crack Lying in The ..

w[ (k=15 —1)(T, — T,) + 2E= K)Tl],r =12, ,N=1  (59)

SI () = 0 (60)
where t, andx, are given by

tie = cos (50n), (k=123 oo, N) (61)

X—COS( ) r=123,. N —1). (62)
We observe that corresponding ¢ — 1) collocation pointsx, = cos (Z(NL)) r=12,.... ,(N—1) the

equations (58) ,(59) or equations (60) ,(61) regmes a set of N linear equations in N unknowns
W(ty), Y(ty), ... ..., P(ty). This linear algebraic system of equations arevesblnumerically by utilizing
Gaussian elimination method.

V. Determination of Stress Intensity Factor
Presence of a crack in a solid significantly afeitte stress distribution compared to the statenvthere is no
crack. While the stress distribution in a solidiwé crack in the region far away from the crackads much
disturbed, the stresses in the neighbourhood ofithek tip assumes a very high magnitude. In oral@redict
whether the crack has a tendency to expand furtherstress intensity factoBIF), a quantity of physical
interest, has been defined in fracture mechanibe.|®ad at which failure occurs is referred tolss fracture
strength. The stress intensity factor is defined as

k(b) = limy; y/2b(x* — 1) 6} (x", 0) (63)

Use of the equations (18), (45) and having som&iwgs, the expression for k(b) is obtained as

K+1

7 K(b) = K'(b) (say)= —w(1) (64)
where y(1) can be found out fromy(tk), (k = 1,2,3,...,N) using the interpolation formulas given by Krenk
[33].

Following the method as in Gupta and Erdogan [3dJobtain the crack surface displacement in the form

vi(%0) = X J"ﬂdt (-1<x<1) 56
where v'(x,0) = V(XO) (66)

which can be obtained numerically, using say, Sbnpssl; integration formula and appropriate interpolation
formula.

V1. Numerical Results And Discussions
The present study is related to the study of aeriatl crack problem in an infinite elastic layettwihermal
effect. The main objective of the present discusssoto study the effects of temperature as webfagpplied
loads on stress intensity factor and crack opedisglacement. Solution of the problem can be okthinsing
numerical methods. Following the standard numernicathod described in section 4, the normal dispfereg
component and the stress intensity factor are ctedpand shown graphically.

Fig. 2(a) shows temperature distribution on theckraces for various values cif . As expected, the result

shows that temperature distribution increases thighdecrease of layer thickness. Fig. 2(b) showmpégature
distribution along x = 0, takin@, > T, .Temperature decreases linearly from the loweheaupper surface of

the layer. There is one point to note here thattéingperature at a particular point on x = 0 belbw fine of
crack varies inversely with the layer thicknesserdas the behavior is opposite for a point on xabfve the
line of crack.
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Fig. 2(a) Temperature distribution on crack face and extension line
for diffrerent b/h when K=1.8, H=1.0, ¢=1.5,T,=2.5,T>=1.0

—e—1b/h=0.73 ——b/h=1.0| = — B/h=15 | |
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Fig. 2(b)Temperature on crack faces at different b/h (K=1.8, H=1.0,
a=15, T,=2.5,T,=1.0)

The variation of normalized stress intensity factith E are shown in Figs. 3(upper layer), 4(lower layer) f

both the cases of two symmetric pair of compresaive tensile concentrated forces. It is observenh fFigs.
3(a), 4(a) that for compressive concentrated #the normalized stress-intensity facto(b) decreases with
the increase of the load ratio Q, and the increasek'(b) is quite significant for smaller values of Q.dtadlso
observed from Figs. 3(a), 4(a) that the load rgtibas not of much effect on the stress intensitjofak'(b)
when the crack length is sufficiently small. Comyréo this, in Figs. 3(b), 4(b) where the forceoistensile
nature, k'(b) increases with Q. For small crack length, the bigaof k'(b) is similar to the case of
compressive concentrated load. Figs 5 and 6 shewahations in the stress intensity factor wita thistance of
the point of application of compressive / tensilad for fixed load ratio Q. It is observed thabith layers for
compressive load conditions normalized stress-gitigfactor increases witkf; while the effect is opposite for

tensile load conditions.
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12 -

10 +

0 > b/h
0 0.5 1 1.5
Fig. 3 (a) Variation of normalized stress-intensity factor k'(b) with b/h for
different loads Q in the case of compressive forces for the upper
layer when a/b=0.0,K=1.8 , H=1.0, 0=1.5,T=2.5,T,=1.0
K'(b
12 ¥,
8 -
4 -
o 1 i : ; b/h
0 0.5 1 1.5
Fig. 3(b) Variation of normalized stress-intensity factor k'(b) with b/h for
different loads Q in the case of tensile forces for upper layver
when a/b=0.0, K=1.8, H=1.0, a=1.5, T1=2.5,T>=1.0
b/h

Fig. 4 (a) Variation of normalized stress-intensity factor k'(b) with b/h for
different loads Q in the case of compressive forces for the lower
laver when a/b=0.0.K=1.8 , H=1.0, a=1.5,T1=2.5, T,=1.0
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Fig. 4(b) Variation of normalized stress-intensity factor k'(b) with b/h for
different loads Q in the case of tensile forces for lower laver
when a/b=0.0, K=1.8, H=1.0,0=1.5,T=2.5, T,=1.0

k'(b)

T
——a/b=0.75

a/b=1.0

6 L L .
——a/b=1.25

R R CEE TR T LR P EE EEEER LR LR . :

4 : : i
0 t t > b/h

0 0.5 1 1.5
Fig. 5(a) Variation of normalized stress intensity factor k'(b) for different

values of a/b in the case of compressive forces for upper layer
when Q=5.0, K=1.8, H=1.0,a=1.5,T;=2.5, T,=1.0

V

0 0.5 1 1.5
Fig. 5(b) Variation of normalized stress intensity factor k'(b) for different values
of a/b in the case of tensile forces (Q=5.0, K=1.8, H=1.0,0=1.5,T,=2.5, T+=1.0)
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b/h

Fig. 6(a) Variation of normalized stress intensity factor k'(b) for different
values of a/b in the case of compressive forces for lower layer
when Q=5.0, K=1.8, H=1.0, 0=1.5, T\=2.5, T,=1.0
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Fig. 6(b) Variation of normalized stress intensity factor k'(b) for different
values of a/b in the case of tensile forces forlower layer
when Q=5.0, K=1.8 H=1.0,0=1.5, T,=2.5, T,=1.0

Figs. 7 and 8 depict the variation of normalizeac&rsurface displacement(x,0) with x for different values

of load ratio Q. It is clear from Figs. 7(a), 8(&#)at for compressive nature of forces the norredlizrack
surface displacement'(x,0) decreases as load ratio Q increases, but forédnsid conditions it increases as
Q increases. For both the cases of compressivetegile concentrated forces the graphs show that th
normalized crack surface displacement is symmétriddn respect to the origin. We have one more ratu
observation here. The crack surface displacemenalmaost a peak value near the centre of the doadkensile
load conditions, whereas for compressive load ¢ it has the local minimum value. The effectiofon
normalized crack surface displacemeitk, 0) is observed in Figs. 9 and 10 for both the casemmpressive
and tensile concentrated forces. It is observddgn. 9(a), 10(a), that for compressive concerdriiading the
normalized crack surface displacement increasds thé increased values cif but behavior is just opposite

(Figs. 9(b),10(b)) for tensile concentrated loading
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An important observation may be available from H¢a), under the compressive load condition: we fimat
with the increase of Q, there is a critical cragkdth for which the stress intensity factor ha® zerlue. From
Fig. 3(a), if Q = 9.0, the critical crack lengthaigproximately 0.08.

0

-1 -0.5 N
Fig. 7(a) Variation of normalized crack surface displacement v'(x,0) for
different loads Q in the case of compressive forces for upper layer
when a/b=0.0, b/h=1.0, K=1.8 , H=1.0, ¢=1.5, T=2.5, T»=1.0

=

-1 -0.5 0 0.5 1
Fig. 7(b) Variation of normalized crack surface displacement v'(x,0) for
different loads Q in the case of tensile forces for upper layer
when a/b=0.0, b/h=1.0, K=1.8, H=1.0, 0¢=1.5, T1=2.5, T+=1.0

v'(x,0)
4 -

% Q=10 -q=3.0 —ta=s.0

0o T T T s
-1 -0.5 o 0.5 1
Fig. 8(a) Variation of normalized crack surface displacement v'(x,0) for

different loads QQ in the case of compressive forces for lower layer

when a/b=0.0, b/h=1.0, K=1.8 . H=1.0, ¢=1.5, T1,=2.5, T-=1.0
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-1 -0.5 0 0.5 1

Fig. 8(b) Variation of normalized crack surface displacement v'(x,0) for
different loads Q in the case of tensile forces for lower layer
when a/b=0.0, b/h=1.0.K=1.8 , H=1.0, o=1.5, T,=2.5, T=1.0

0

B Lt DE

>4 X
- -0.5 o 0.5 1
Fig. 9(a) Variation of normalized crack surface displacement v'(x,0) for various
values of a/bin the case of compressive forcesfor upper layer
when Q=1.5,b/h=1.0, K=1.8 ,H-1.0, o=1.5, T,-2.5, T;-1.0

v'(x.0)

6 7 !

4 "

2 fr . :
—+—a/b=0.75{ ——a/b=1.00 —+—a/b=1.25| :

0 ; ; ; Sy

Fig. 9(b) Variation of normalized crack surface displa(;ement v'(x,0) for
various values of a/b in the case of tensile forces for upper layer
when Q=1.5, b/h=1.0, K=1.§, H=1.0, 0=1.5, T\=2.5, T,=1.0
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Fig. 10(a) Variation of normalized crack surface displacement v'(x,0) for various
values of a/bin the case of compressive forces for lower layer
when Q=L.5, b/b=1.0, K=1.8, H=1.0, 0=1.5, T,=2.5, T=1.0
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Fig. 10(b) Variation of normalized crack surface displacement v'(x,0) for various
values of a/bin the case of tensile forces forlower layer

when Q=1.5, b/h=1.0, K=1.8,H=1.0, 0=1.5, T,=2.5, T=1.0
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