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ABSTRACT: In this paper, we proposed two new classes of the Adomian polynomials for the well-known 

Adomian decomposition method (ADM). The regular polynomials 𝐴𝑛  in the ADM method is replaced by the new 

classes to solve nonlinear ordinary, partial and fractional differential equations. Numerical test examples 

indicates that the use of the proposed polynomials in the ADM method gives more accurate approximate 

solutions than the regular Adomian polynomials 𝐴𝑛 for the same number of solution components. 
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I. INTRODUCTION 
The Adomian decomposition method introduced by G.Adomian in the 1980's [1-3] has proven to be an 

efficient and powerful method to find the approximate solutions for a wide class of ordinary differential 

equations, partial differential equations,integral differential equations andfractional differential equations [4]. 

Some of the advantages of ADM method include the ability to solve nonlinear problems without linearization 

and perturbation or guessing the initial term and it is requires less number of calculation work than traditional 

approaches. In addition it gives series analytical solution which in general converge very rapidly for most 

problems. Many studies have been devoted to study the convergence for the ADM method include Hosseini [5], 

Bougoffa [6],Babolian [7], Abdelrazec [8] 

 

For nonlinear equations, the ADM method replaces the nonlinear term by a special series what are 

called Adomian polynomials 𝐴𝑛 , so that the polynomials 𝐴𝑛are generated for each nonlinearity. Several studies 

such as Rach [9], Adomian [10, 11], Behiry and Hashish [12] have been proposed to modified the regular 

Adomian polynomials 𝐴𝑛 . 

 

In this paper we use the general Taylor series expansion to construct two new classes of Adomian 

polynomials. The convergence of the analytical approximate solution by using these two classes in ADM 

method is faster than the Adomian polynomials 𝐴𝑛 . More over the simple definition of the two classes makes 

the generation of these two polynomials more easy by computer programs. 

 

II. THE ADOMIAN DECOMPOSITION METHOD  
Consider the nonlinear equation in the form  

 
𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔 𝑡 . 

(1) 

 

Where𝐿 is easily invertible differential operator, 𝑅 is a remainder linear differential operator, 𝑁 is an analytic 

nonlinear terms and 𝑔 is a known function. 

Taking the inverse linear operator 𝐿−1(. ) to both sides of Eq.(1) yields, 

 

𝑢 = 𝑐 𝑡 − 𝐿−1 𝑅𝑢 − 𝐿−1 𝑁𝑢 + 𝐿−1 𝑔  

 
(2) 

where 𝑐(𝑡) represents the terms arising from using the given conditions.The Adomian decomposition method 

introduces the solution by decomposing 𝑢(𝑡) to an infinite series 𝑢 𝑡 =  𝑢𝑛
∞
𝑛=0  and the nonlinear term 𝑁𝑢 by 

the infinite series 𝑁𝑢 =  𝐴𝑛
∞
𝑛=0  where 𝐴𝑛  are the Adomian polynomials which are generated for each 

nonlinearity and can be found by the formula 

 

𝐴𝑛 = 𝐴𝑛 𝑢0, 𝑢1 , … . . , 𝑢𝑛 =
1

𝑛!
 

𝑑𝑛

𝑑𝜆𝑛
𝑁   𝜆𝑖𝑢𝑖

∞

𝑛=0

  

𝜆=0

, 𝑛 = 0,1,2, … …. (3) 
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A number of algorithms to compute the regular Adomian polynomials 𝐴𝑛  have been proposed. See, for 

example, Rach [13], Wazwaz [14], Abdelwahid [15] and Zhu [16]. 

The first five Adomian polynomials for the one variable 𝑁𝑢 = 𝑓(𝑢(𝑡)) are given by, 

𝐴0 = 𝑓 𝑢0  

𝐴1 = 𝑢1𝑓 ′ 𝑢0  

 

𝐴2 = 𝑢2𝑓 ′ 𝑢0 +
1

2!
𝑢1

2𝑓 ′′  𝑢0  

 
(4) 

𝐴3 = 𝑢3𝑓 ′ 𝑢0 + 𝑢1𝑢2𝑓 ′′  𝑢0 +
1

3!
𝑢1

3𝑓(3) 𝑢0  

𝐴4 = 𝑢4𝑓 ′ 𝑢0 +  𝑢1𝑢3 +
1

2!
𝑢2

2 𝑓 ′′  𝑢0 +
1

2!
𝑢1

2𝑢2𝑓 3  𝑢0 +
1

4!
𝑢1

4𝑓 4  𝑢0 . 

Hence Eq.(2) become, 

 
 𝑢𝑛 = 𝑐 𝑡 + 𝐿−1 𝑔 − 𝐿−1𝑅  𝑢𝑛 − 𝐿−1𝑅 − 𝐿−1  𝐴𝑛

∞

𝑛=0

∞

𝑛=0

∞

𝑛=0

 (5) 

 

Consequently, we can write 

 𝑢0 = 𝑐 𝑡 + 𝐿−1 𝑔  

       𝑢 1 = −𝐿−1𝑅𝑢0 − 𝐿−1𝐴0 

   

    𝑢 2 = −𝐿−1𝑅𝑢1 − 𝐿−1𝐴1 (6) 

 

    𝑢 3 = −𝐿−1𝑅𝑢2 − 𝐿−1𝐴2 

              : 

  𝑢 𝑛 = −𝐿−1𝑅𝑢𝑛−1 − 𝐿−1𝐴𝑛−1. 

Finally, the 𝑛 th-term approximation solution for the Adomian decomposition method is given by 𝜙𝑛 =
 𝑢𝑘 ,    𝑛 ≥ 1𝑛−1

𝑘=0 and the solution 𝑢(𝑡) = lim𝑛→∞ ∅𝑛 . 

 

III. MAIN RESULTS  
The regular Adomian polynomials 𝐴𝑛 can be obtained by rearranging the terms of the Taylor series 

expansion for the nonlinear terms around the initial solution𝑢0, such that 𝐴0depends only on 𝑢0, 𝐴1depends only 

on 𝑢0 and 𝑢1 , 𝐴2 depends only on 𝑢0, 𝑢1, 𝑢2 and so on. This fact mean the Adomian polynomials 𝐴𝑛 are not 

uniquely defined. In this section we used two different formulas to rearrange the terms of the   Taylor series 

expansion for the nonlinear term 𝑁𝑢 = 𝑓(𝑢) to construct the two new classes of Adomian polynomials; the first 

polynomials will be denoted by 𝐴𝑛
∗ and the second polynomials will be denoted by  𝐴𝑛

∗∗. 

 

 

 

3.1 The class 𝑨𝒏
∗  

Define 𝑆𝑛 =  𝑢𝑘
𝑛
𝑘=0 and using Taylor series expansion about 𝑢0 for the nonlinear term 𝑓(𝑢) to define 

𝑇𝑛as follows 

           𝑇0 = 𝑓(𝑢0) 
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           𝑇1 = 𝑓 𝑢0 +  𝑆1 − 𝑆0 𝑓 ′ 𝑢0 + (𝑆1 − 𝑆0)2
1

2!
𝑓 ′′ (𝑢0) 

 

            𝑇2 = 𝑓 𝑢0 +  𝑆2 − 𝑆0 𝑓 ′ 𝑢0 +  𝑆2 − 𝑆0 2
1

2!
𝑓 ′′  𝑢0 + (𝑆2 − 𝑆0)3

1

3!
𝑓 ′′ ′(𝑢0) 

 

             𝑇3 = 𝑓 𝑢0 +  𝑆3 − 𝑆0 𝑓 ′ 𝑢0 +  𝑆3 − 𝑆0 2
1

2!
𝑓 ′′  𝑢0 + (𝑆3 − 𝑆0)3

1

3!
𝑓 ′′

′

 𝑢0 

+ (𝑆3 − 𝑆0)4
1

4!
𝑓(4)(𝑢0) 

            : 

 
  𝑇𝑛 =   𝑆𝑛 − 𝑆0 𝑘

1

𝑘!
𝑓 𝑘  𝑢0 ,        𝑛 ≥ 1

𝑛+1

𝑘=0

 (7) 

 

Now, to construct the first class of Adomian polynomials we define 

𝐴0
∗ = 𝑇0 = 𝑓(𝑢0) and 𝐴𝑛

∗ = 𝑇𝑛 − 𝑇𝑛−1,      𝑛 ≥ 1. 

Consequently 

               𝐴0
∗ = 𝑓 𝑢0  

𝐴1
∗ = 𝑢1𝑓 ′ 𝑢0 +

1

2!
𝑢1

2𝑓 ′′  𝑢0  

 

   𝐴2
∗  =𝑢2𝑓 ′ 𝑢0 +  2𝑢1𝑢2 + 𝑢2

2 
1

2!
𝑓 ′′  𝑢0 + (𝑢1

3 + 3𝑢1
2𝑢2 + 3𝑢1𝑢2

2 + 𝑢2
3)

1

3!
𝑓 3  𝑢0  

 
(8) 

𝐴3
∗  = 𝑢3𝑓 ′ 𝑢0 +  2𝑢1𝑢3 + 2𝑢2𝑢3 + 𝑢3

2 
1

2!
𝑓 ′′  𝑢0 +  3𝑢1

2𝑢3 + 6𝑢1𝑢2𝑢3 + 3𝑢2
2𝑢3 + 3𝑢1𝑢3

2 + 3𝑢2𝑢3
2 +

                         𝑢3313!𝑓3𝑢0+(𝑢1+𝑢2+𝑢3)414!𝑓4𝑢0 

: 

: 

To prove the convergence of this class using the definition of𝑇𝑛 , we take the infinity limit and obtain 

 

lim
𝑛→∞

𝑇𝑛 = lim
𝑛→∞

  𝑆𝑛 − 𝑆0 𝑘
1

𝑘!
𝑓 𝑘  𝑢0 =   𝑢𝑛 − 𝑢0 𝑘

1

𝑘!
𝑓 𝑘  𝑢0 =

∞

𝑘=0

𝑛+1

𝑘=0

𝑓 𝑢0 +  𝑢1 + 𝑢2 + ⋯  𝑓 ′ 𝑢0 

+  𝑢1
2 + 2𝑢1𝑢2 + 𝑢2

2 + 2𝑢1𝑢3 + 2𝑢2𝑢3 + ⋯  
1

2!
𝑓 ′′  𝑢0 

+  𝑢1
3 + 3𝑢1

2𝑢2 + 3𝑢1𝑢2
2 + ⋯  

1

3!
𝑓 3  𝑢0 + (𝑢1

4 + 4𝑢1
3𝑢2 + 6𝑢1

2𝑢2
2 + ⋯ )

1

4!
𝑓 4  𝑢0 . 

             = 𝐴𝑘
∗∞

𝑘=0 = 𝑓 𝑢0 +  𝑢 − 𝑢0 𝑓 ′ 𝑢0 + (𝑢 − 𝑢0)2 1

2!
𝑓 ′′  𝑢0 + (𝑢 − 𝑢0)3 1

3!
𝑓 ′′′  𝑢0 + ⋯ 

 

Which is the Taylor series expansion for the nonlinear term 𝑁𝑢 = 𝑓(𝑢) about the initial solution 𝑢0 , where              

𝑢 =  𝑢𝑘
∞
𝑘=0 . 

Thus 

lim
𝑛→∞

𝑇𝑛 = lim
𝑘→∞

 𝐴𝑘
∗

𝑛

𝑘=0

=  𝐴𝑘
∗

∞

𝑘=0

= 𝑓(𝑢) 

 

3.2 The class 𝑨𝒏
∗∗ 

Again define 𝑆𝑛 =  𝑢𝑘
𝑛
𝑘=0  and using Taylor series expansion about 𝑢0 for the nonlinear term 𝑓(𝑢) to 

define   𝑇𝑛as follows 

 
           𝑇0 = 𝑓(𝑢0) 

           𝑇1 = 𝑓 𝑢0 +  𝑆1 − 𝑆0 𝑓 ′ 𝑢0 + (𝑆1 − 𝑆0)2
1

2!
𝑓 ′′ (𝑢0) 

 

            𝑇2 = 𝑓 𝑢0 +  𝑆2 − 𝑆0 𝑓 ′ 𝑢0 +  𝑆2 − 𝑆0 2
1

2!
𝑓 ′′  𝑢0 + (𝑆1 − 𝑆0)3

1

3!
𝑓 ′′ ′(𝑢0) 
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             𝑇3 = 𝑓 𝑢0 +  𝑆3 − 𝑆0 𝑓 ′ 𝑢0 +  𝑆3 − 𝑆0 2
1

2!
𝑓 ′′  𝑢0 + (𝑆2 − 𝑆0)3

1

3!
𝑓 ′′

′

 𝑢0 

+ (𝑆1 − 𝑆0)4
1

4!
𝑓(4)(𝑢0) 

            : 

 
  𝑇𝑛 = 𝑓 𝑢0 +  𝑆𝑛 − 𝑆0 𝑓 ′ 𝑢0   𝑆𝑛−𝑘 − 𝑆0 𝑘+2

1

(𝑘 + 2)!
𝑓 𝑘+2  𝑢0 ,        𝑛 ≥ 1.

𝑛−1

𝑘=0

 (9) 

To construct the second class of Adomian polynomials we define𝐴0
∗∗ = 𝑇0 = 𝑓(𝑢0) and 𝐴𝑛

∗∗ = 𝑇𝑛 − 𝑇𝑛−1, 𝑛 ≥ 1. 
 

Consequently 

 
               𝐴0

∗∗ = 𝑓 𝑢0  

𝐴1
∗∗ = 𝑢1𝑓 ′ 𝑢0 +

1

2!
𝑢1

2𝑓 ′′  𝑢0  

 

   𝐴2
∗∗ =𝑢2𝑓 ′ 𝑢0 +  2𝑢1𝑢2 + 𝑢2

2 
1

2!
𝑓 ′′  𝑢0 + (𝑢1

3)
1

3!
𝑓 3  𝑢0  

 
(10) 

𝐴3
∗∗ = 𝑢3𝑓 ′ 𝑢0 +  2𝑢1𝑢3 + 2𝑢2𝑢3 + 𝑢3

2 
1

2!
𝑓 ′′  𝑢0 +  3𝑢1

2𝑢2 + 3𝑢1𝑢2
2 + 𝑢2

3 
1

3!
𝑓 3  𝑢0 

+           
1

4!
𝑢1

4𝑓 4  𝑢0  

: 

: 

The convergence proof for this class 𝐴𝑛
∗∗ is in a similar manner of convergence prove for class 𝐴𝑛

∗ . 

 

In view the definition of the two classes 𝐴𝑛
∗∗ and 𝐴𝑛

∗ , we note they are identical until 𝐴1and so the effect on 

convergence gradually starts after 𝑛 = 1. The convergence of the 𝐴𝑛
∗ is faster than the 𝐴𝑛

∗∗  but it needs more of 

computation work than 𝐴𝑛
∗ . However the convergence of the 𝐴𝑛

∗∗   and𝐴𝑛
∗ . is faster than each of the regular 

Adomian polynomials𝐴𝑛 , the modified Adomian polynomials 𝐴𝑛
    [11] and the modified Adomian polynomials 

𝐴(𝐼𝐼) [9]. 

 

IV. NUMERICAL EXAMPLES  
In this section we give five examples with various types of nonlinearity terms in the case of ordinary 

differential equations, partial differential equations and fractional differential equations. In the first four 

examples we make a comparison for the corresponding absolute error between the using of the proposed 

polynomials 𝐴𝑛
∗ , 𝐴𝑛

∗∗ in ADM method and the regular polynomials 𝐴𝑛 . For the last example the corresponding 

absolute error is computed for the using of 𝐴𝑛
∗ , 𝐴𝑛

∗∗,𝐴𝑛 , 𝐴𝑛
    , 𝐴(𝐼𝐼) in ADM method. 

 

4.1Example [17] 
Consider the second order initial value problem of Bratu-type 

 𝑢′′  𝑡 − 2𝑒𝑢 = 0,        0 ≤ 𝑡 ≤ 1 (11) 

𝑢 0 = 0,   𝑢′ 0 = 0. 
Applying the ADM method in to the Eq.(11), we obtain 

𝑢0 = 0 

𝑢𝑛 = 2𝐿−1 𝐴𝑛−1 ,     𝑛 ≥ 1 

where 𝐿−1(. ) is assumed a two-flod integral operator given by𝐿−1(. )=   .  𝑑𝑡𝑑𝑡
𝑡

0

𝑡

0
 and 𝐴𝑛 the regular Adomian 

polynomials. The exact solution of this problem is given by 𝑢(𝑡) = −2𝑙𝑛[𝑐𝑜𝑠(𝑡)]. 
Table(1) shows the exact solution 𝑢(𝑡) and the corresponding absolute error of approximate solution ∅5by using 

each of, the regular Adomian polynomials 𝐴𝑛  and the proposed polynomials 𝐴𝑛
∗ , 𝐴𝑛

∗∗. 

 

4.2Example [18] 
Consider the first order initial value problem with 𝑠𝑖𝑛(𝑢) nonlinearity 

 𝑢′ 𝑡 − sin⁡(𝑢(𝑡)) = 0,        0 ≤ 𝑡 ≤ 1 (12) 

𝑢 0 = 𝑐0 . 
Applying ADM method in to the Eq.(12) with given initial condition, we obtain 

𝑢0 = 𝑐0 

𝑢𝑛 = −𝐿−1 𝐴𝑛−1 ,     𝑛 ≥ 1 
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where the operator 𝐿−1(. )is given by  .  𝑑𝑡
𝑡

0
.The exact solution of this problem can be expressed as 

𝑢 𝑡 = 2𝑐𝑜𝑡−1[𝑒𝑡cot⁡(
𝑐0

2
)] 

Table(2) shows the exact solution 𝑢(𝑡)  when𝑐0 =
𝜋

2
  and the corresponding absolute error of approximate 

solution ∅5by using each of, the regular Adomian polynomials 𝐴𝑛  and the proposed polynomials 𝐴𝑛
∗ , 𝐴𝑛

∗∗. 

 

                         Table (1) the exact solution and corresponding absolute error for example (1) 

t    exact  𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴𝑛
   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗∗   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗  

0.1 0.0100167 4.38𝐸-13 1.46𝐸-15 9.26𝐸-16 

0.2 0.0402695 4.54𝐸-10 3.78𝐸-12 1.55𝐸-12 

0.3 0.0913833 2.66𝐸-08 4.37𝐸-10 1.40𝐸-10 

0.4 0.1644580 4.84𝐸-07 1.36𝐸-08 3.87𝐸-09 

0.5 0.2611684 4.66𝐸-06 2.03𝐸-07 5.49𝐸-08 

0.6 0.3839303 3.01𝐸-05 1.91𝐸-06 5.08𝐸-07 

0.7 0.5361715 1.48𝐸-04 1.31𝐸-05 3.50𝐸-06 

0.8 0.7227814 6.00𝐸-04 7.18𝐸-05 1.96𝐸-05 

0.9 0.9508848 2.10𝐸-03 3.32𝐸-04 9.51𝐸-05 

1.0 1.2312529 6.64𝐸-03 1.36𝐸-03 4.14𝐸-04 

 

                           Table (2) the exact solution and corresponding absolute error for example (2) 

t    exact  𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴𝑛
   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗∗   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗  

0.1 1.4709625 4.15E−07 5.32E−10 1.37E−10 

0.2 1.3721164 1.31E−05 6.70E−08 1.69E−08 

0.3 1.2751976 9.86E−05 1.11E−06 2.73E−07 

0.4 1.1810552 4.07E−04 8.04E−06 1.89E−06 

0.5 1.0904152 1.21E−03 3.65E−05 8.11E−06 

0.6 1.0038607 2.93E−03 1.23E−04 2.54E−05 

0.7 0.9218242 6.13E−03 3.40E−04 6.37E−05 

0.8 0.8445915 1.15E−02 8.06E−04 1.33E−04 

0.9 0.7723140 1.99E−02 1.69E−03 2.40E−04 

1.0 0.7050268 3.24E -02 3.24E -03 3.76E−04 

 

4.3Example [19] 
Consider the sine-Gordon hyperbolic equation 

 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + sin 𝑢 = 0,    − ∞ ≤ 𝑥 ≤ ∞ (13) 

𝑢 𝑥, 0 = 0,     𝑢𝑡 𝑥, 0 = 4𝑆𝑒𝑐𝑕(𝑥) 

Applying ADM method in to the Eq.(13) with given initial conditions, we obtain 

𝑢0 = 4𝑡𝑠𝑒𝑐𝑕(𝑥) 

𝑢𝑛 = −𝐿𝑡𝑡
−1 𝑢𝑥𝑥  − 𝐿𝑡𝑡

−1 𝐴𝑛−1 ,     𝑛 ≥ 1 

where the operator 𝐿𝑡𝑡
−1(. ) is given by    .  𝑑𝑡𝑑𝑡

𝑡

0

𝑡

0
.The exact solution of this problem can be expressed as 

𝑢(𝑥, 𝑡) = 4 𝑡𝑎𝑛−1[𝑡 𝑠𝑒𝑐𝑕(𝑥)]. 
Table(3) shows the exact solution 𝑢(𝑡) and the corresponding absolute error of approximate solution ∅5  by 

using each of, the regular Adomian polynomials 𝐴𝑛  and the proposed polynomials 𝐴𝑛
∗ , 𝐴𝑛

∗∗, 𝑠𝑖𝑛(𝑢) is expressed 

in three terms of Taylor series to facilitate the  computation of integrals. 

 

4.4Example [20] 

Consider the fractional differential equation with  𝑢nonlinearity 

 𝐷∗
∝𝑢 =

9

4
 𝑢 + 𝑢,     1 ≤∝≤ 2,   𝑡 ≥ 0 (14) 

𝑢 0 = 1,      𝑢′ 0 = 2 

where 𝐷∗
∝(. ) represent the Caputo fractional derivative of order ∝. Applying ADM method in to the Eq.(14) 

with given initial conditions, we obtain 

𝑢0 = 1 + 2𝑡 
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𝑢𝑛 = 𝐽∝ 𝑢𝑛−1 +
9

4
𝐽∝ 𝐴𝑛−1 ,     𝑛 ≥ 1 

where 𝐽∝ .   is the Riemann-Liouville fractional integral. For more details and some basic properties of Caputo 

fractional derivative and Riemann-Liouville fractional integral we refer the reader to the reference[21]. The 

exact solution of Eq.(14) when∝= 2 given by𝑢 𝑡 =
9

4
[

3

2
𝑒 .5𝑡 +

1

6
𝑒−.5𝑡 − 1]2. 

Table(4) shows the exact solution 𝑢(𝑡)  when ∝= 2  and the corresponding absolute error of approximate 

solution ∅4 by using each of, the regular Adomian polynomials 𝐴𝑛and the proposed polynomials𝐴𝑛
∗ , 𝐴𝑛

∗∗. 

 

       Table (3) the exact solution and corresponding absolute error when x= 2.0 and x= 2.5 for example (3) 

t/x 

 

                             2.0       2.5  

   exact  uexact − ∅An
   uexact − ∅A∗∗     exact  uexact − ∅An

   uexact − ∅A∗∗  

0.2 0.2124418 2.65E-12 2.64E-12 0.1304107 9.51E-14 9.51E-14 

0.4 0.4236918 2.09E-09 2.08E-09 0.2605448 8.52E-11 8.48E-11 

0.6 0.6325980 1.27E-07 1.25E-07 0.3901291 5.52E-09 5.45E-09 

0.8 0.8380841 2.54E-06 2.47E-06 0.5188974 1.12E-07 1.10E-07 

1.0 1.0391806 2.68E-05 2.58E-05 0.6465935 1.18E-06 1.14E-06 

1.2 1.2350467 1.86E-04 1.77E-04 0.7729742 8.11E-06 7.69E-06 

1.4 1.4249843 9.70E-04 9.14E-04 0.8978117 4.07E-05 3.80E-05 

1.5 1.5175522 2.03E-03 1.91E -03 0.9595853 8.35E-05 7.76E-05 

 

           Table (4) the exact solution when∝= 2 and corresponding absolute error for example (4) 

t    exact  𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴𝑛
   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗∗   𝑢𝑒𝑥𝑎𝑐𝑡 − ∅𝐴∗  

0.1 1.2169781 4.29E−11 7.02E−12 6.76E−12 

0.2 1.4709903 8.32E−09 1.61E−09 1.40E−09 

0.3 1.7670492 1.67E−07 3.71E−08 2.76E−08 

0.4 2.1107408 1.34E−06 3.38E−07 1.99E−07 

0.5 2.5082874 6.60E−06 1.86E−06 7.67E−07 

0.6 2.9666165 2.38E−05 7.51E−06 1.65E−06 

0.7 3.4934376 6.99E−05 2.44E−05 4.79E−07 

0.8 4.0973272 1.76E−04 6.82E−05 1.27E−05 

0.9 4.7878229 3.97E−04 1.69E−04 6.71E−05 

1.0 5.5755276 8.19E−04 3.83E−04 2.32E−04 

 

4.5Example  
Consider the second order initial value problem with 𝑢5 nonlinearity 

 𝑢′′  𝑡 − 3𝑢5 = 0,        0 ≤ 𝑡 ≤ 1 (15) 

𝑢 0 =
1

2
,   𝑢′ 0 =

−1

8
. 

 

Applying the ADM method in to the Eq.(15), with given initial conditions, we obtain 

𝑢0 =
1

2
−

1

8
𝑡 

𝑢𝑛 = 3𝐿−1 𝐴𝑛−1 ,     𝑛 ≥ 1 

where the operator𝐿−1(. ) is given by    .  𝑑𝑡𝑑𝑡
𝑡

0

𝑡

0
. The exact solution of this problem is given by 

𝑢(𝑡) = (2𝑡 + 4)
−1

2 . 
Table(5) shows the exact solution 𝑢(𝑡) and the corresponding absolute error of approximate solution ∅4  by 

using each of, the regular Adomian polynomials 𝐴𝑛 , 𝐴𝑛
    [11], 𝐴(𝐼𝐼)[9] and the proposed polynomials 𝐴𝑛

∗ , 𝐴𝑛
∗∗. 
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                              Table (5) the exact solution and corresponding absolute error for example (5) 

t    exact  uexact − ∅An
   uexact − ∅An       uexact − ∅

An
(II )   uexact − ∅A∗∗  uexact − ∅A∗ 

0.1 0.4879500 3.33E−16 3.33E−16 0.000000 0.000000 0.000000 

0.3 0.4662524 1.68E−11 1.50E−11 2.22E−12 1.05E−13 6.41E−14 

0.5 0.4472135 1.95E−09 1.75E−09 2.71E−10 2.06E−11 7.73E−12 

0.7 0.4303314 3.98E−08 3.60E−08 5.91E−09 6.79E−10 1.73E−10 

0.9 0.4152273 3.48E−07 3.17E−07 5.57E−08 8.96E−09 1.74E−09 

1.1 0.4016096 1.85E−06 1.69E−06 3.20E−07 6.75E−08 1.10E−08 

1.3 0.3892494 7.05E−06 6.51E−06 1.33E−06 3.49E−07 5.15E−08 

1.5 0.3779644 2.12E−05 1.97E−05 4.38E−06 1.38E−06 1.93E−07 
 

V. CONCLUSION 
In this paper, two different formulas are used to rearrange the terms of a Taylor series expansion about 

the initial solution 𝑢0 to produce a new classes of Adomian polynomials. Although the proposed polynomials 

cost more computational work, the simple definitions make the generation by computer programs easier. The 

given examples showed that using these polynomials are more accurate than the regular Adomian polynomials 

𝐴𝑛  and it's modifications𝐴𝑛
    , 𝐴(𝐼𝐼) for solving nonlinear problems. 

 

APPENDIX 
1-  Mathematica code for the polynomials 𝐴𝑛

∗∗. 

 
2-  Mathematica code for the polynomials 𝐴𝑛

∗ . 

 

 
 

 

REFERENCES 
[1]      G. Adomian, Nonlinear Stochastic Operator Equations. 1986. 

[2]      G. Adomian, Solving frontier problems of physics: the decomposition method, Vol. 60, Springer Science & Business Media, 
2013. 

[3]      G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Mathematical and 

Computer Modelling 13 (7) (1990) 17-43. 
[4]     Hytham. A. Alkresheh, A. I. Md. Ismail, "An algorithm for positive solution of boundary value problems of nonlinear fractional 

differential equations by Adomian decomposition method", Journal of Interpolation and Approximation in Scientific Computing, 

Volume 2016, No. 1 (2016), 25-37.  

[5]       M. M. Hosseini, H. Nasabzadeh, On the convergence of Adomiandecomposition method, Applied mathematics and computation 

182     (1) (2006) 536-543. 

[6]     L. Bougoffa, R. C. Rach, S. El-Manouni, A convergence analysis of the Adomian decomposition method for an abstract Cauchy                        
problem of a system of first-order nonlinear differentialequations, International Journal of Computer Mathematics 90 (2) (2013) 

360-375. 

[7]       E. Babolian, J. Biazar, On the order of convergence of Adomian method, Applied Mathematics and Computation 130 (2) (2002) 
383- 387. 

[8]      A. Abdelrazec, D. Pelinovsky, Convergence of the Adomian decomposition method forinitial-value problems, Numerical 

Methods for Partial Differential Equations 27 (4) (2011) 749-766. 
[9]      B. H. Rudall, R. C. Rach, A new definition of the adomian polynomials, Kybernetes 37 (7) (2008) 910-955. 

[10]      G. Adomian, A review of the decomposition method in applied mathematics, Journal of mathematical analysis and applications 

135 (2) (1988) 501-544. 
[11]      G. Adomian, R. Rach, Modified Adomian polynomials, Mathematical and computer modelling 24 (11) (1996) 39-46. 

[12]      S. Behiry, H. Hashish, I. El-Kalla, A. Elsaid, A new algorithm for the decomposition solution of nonlinear differential equations, 

Computers & Mathematics with Applications 54 (4) (2007) 459-466. 
 



New classes of Adomian polynomials… 

www.ijesi.org                                                          44 | Page 

[13]      R. Rach, A convenient computational form for the Adomian polynomials, Journal of mathematical analysis and applications 102 

(2) (1984) 415-419. 

[14]      A.-M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied Mathematics and 
computation 111 (1) (2000) 33-51. 

[15]      F. Abdelwahid, A mathematical model of Adomian polynomials, Applied Mathematics and Computation 141 (2) (2003) 447-

453. 
[16]      Y. Zhu, Q. Chang, S. Wu, A new algorithm for calculating adomian polynomials, Applied Mathematics and Computation 169 (1) 

(2005) 402-416. 

[17]      A.-M. Wazwaz, Adomian decomposition method for a reliable treatment of the bratu-typeequations, Applied Mathematics and 
Computation 166 (3) (2005) 652-663. 

[18]      J.-S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by 

the rach-adomian-meyers modified decompositionmethod, Applied Mathematics and Computation 218 (17) (2012) 8370-8392. 
[19]      M. Chowdhury, I. Hashim, Application of homotopy-perturbation method to klein-Gordon and sine-gordon equations, Chaos, 

Solitons & Fractals 39 (4) (2009) 1928-1935. 

[20]      I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional ivps, Communications in Nonlinear Science and 
Numerical Simulation 14 (3) (2009) 674-684. 

[21]      S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theoryand applications. 1993, Gordon and 

Breach, Yverdon. 
 

 

 
 

 

 
 

 


