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ABSTRACT: The reliability and accuracy of experimental with predictions data of two models ("MC model" 

Marshall and Coberly model, [1] and modified model by Ibrahim et al. [2] are investigated for the effective 

radial thermal conductivity (Ker), and the wall heat transfer coefficient (hw) in packed beds in the absence of 

chemical reactions. The results were evaluated by the modified mathematical model as to the boundary bed inlet 

temperature; (To) number of terms of the solution series and number of experimental points used in the estimate. 

Very satisfactory was attained between the predicted and measured temperature profiles for a range of 

experiments. These cover a range of tube to (equivalent) particle diameter ratios from dt/dp = 4 to 10; Reynolds 

numbers ranged between 3.8-218 for particle, and elevated pressure from 11 to 20 bar for particle catalyst 

pellets. In all cases the fluid flowing throughout the bed has been air. The results indicate to the choice of the 

inlet boundary condition can have a large impact on the values of obtained parameters. And model parameters 

have been shown to be dependent on the pressure inside the reactor. 

The following correlations for both (hw) and (Ker) respectively under a given conditions obtained by using 

multiple regressions of our results that based on the modified mathematical model: 

 Nuw = 67.9Re
0.883

(dt/dp)
-0.635

(P/Po)
-1.354

 

Ker =  0.2396 + 0.0041Re 

The results accuracy of these correlations obtained from the modified mathematical model are more than the 

results accuracy of correlations obtained from MC model with respect to experimental data; these accuracy of 

both correlations reach up to 91% and 65% for (hw) and (Ker) respectively; which these results indicate to the 

reliability of the modified mathematical model to obtained the parameters of heat transport in packed bed 

reactors. 
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I. Introduction 

Diabatic packed bed tubes with fluid flow are frequently used in industries as adsorbers or chemical reactors. A 

major problem with such equipments is runway to very high or low temperatures. It is important to prevent these 

and order to develop such equipment reliable prediction of heat transfer in the randomly arranged packed bed is 

necessary to study the behavior of such equipments by computer simulation. For this purpose a good 

mathematical model of packed beds is needed, capable of predicting the temperature and concentration profiles 

in the packed bed specially the reactors, given a certain reactor design and operating conditions. Here the 

description of heat transport in wall-heating packed beds at low tube-to-particle diameter ratio, using the 

pseudo-homogeneous two dimensional continuum models is discussed.  

 

II. Models Equations 

The system studied is gas flow (air), heating down in a wall-heating packed tube packing with a pellet catalyst 

[3]. To model the heat transport in the experimental equipment as used, we made the following assumptions: 

1. The system is in steady state and no chemical reaction carried out. 

2. The system is considered to be pseudo-homogeneous. 

3. There is no axial dispersion of heat. 

4. There is no free convection or radiation of heat. 

5. There is no variation of superficial gas velocity. 

6. The pressure is constant throughout the packed bed. 

7. The physical properties of the gas and solid are independent of temperature. 

 

A heat balance an infinitesimally small ring yields the following pseudo-homogeneous two dimensional models: 



Radial Heat Transport In Packed Beds-III: Correlations Of Effective Transport Parameters At High...  

www.ijesi.org                                                                78 | Page 





































r

T
 

r

1
 

r

T
  K 

z

T
GCp

2

2

er
                                                                                     ……..   (1) 

 

Several studies have been presented on gas flow discussing experimental, statistical and theoretical aspects 

depending on equation (1) and the results are quite conclusive [3-9]. These studies usually contain effective heat 

transfer coefficients (Ker and hw), which are preferably obtained from experimental at atmospheric pressure.  

 

In the available literature the known methods for simultaneous estimation of both values considered. The 

theoretical basis of all those methods was formed on the integration of Eqn. (1) for the following boundary 

conditions: 

oTTrz    , all   0,                                                                                                                      ……..   (2) 
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In dimensionless form; Eqn. (1) becomes: 
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The boundary conditions in Eqns. (2), (3) and (4) respectively become: 

1  , all   0,  Trζ               ……..   (6) 
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               ……..   (7) 
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   , all   ,1               ……..   (8) 

 

The integration of Eqn. (5) was performed on the assumption that the wall temperature (Tw) is uniform and also 

the inlet gas temperature (To) be uniform over the whole inlet cross section of the bed. 

Marshall and Coberly [1] have first made use of the equation: 
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2                                    ……..   (9) 

 

Eqn. (9) result of integration of Eqn. (5) for boundary conditions (6), (7) and (8) and on the assumption the bed 

depth is fairly high. Jo and J1 are the Bessel functions of the first kind of order zero and one, respectively, and 

(
jn

λ ) are the roots to: 

)()(
jjj noin1n

λJβλJλ              ……..   (10) 

 

The temperature (T  ) in these equations is made dimensionless according to: 

ow

zrw
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TT
T






 ,                                     ……..   (11) 

 

In Eqn. (11) (
o

T ) is the inlet temperature of the gas at the bed entrance, taken constant over the radius. In the 

experimental set-up this temperature is taken as the average of three temperatures at the bed entrance, measured 

at three different radial locations of r 0, 0.39 and 0.79, respectively [3]. 

 

It is also possible to take the first measured radial temperature profile in the packed bed as the inlet temperature 

profile and use the location of this profile as the bed entrance point. If this radial temperature profile is described 

by a polynomial function [2, 10, 11] the following model equations are found: 
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where: 

A = (a+b+c+d) 

B = (4c+9d) 

C = (b+2c+3d) 

jn
λ  is found from Eqn. (10). 

Eqn. (12) is solved with modified boundary conditions that may be writing as: 

         values. allfor   0at    rδrdrcrbarθ
32

                      ……..   (13) 

 . values allfor  0,at     0 δr
r

θ





                                   ……..    (14) 

   values. allfor  ,1at     δrθ
r

θ

i





                                                 ……..   (15) 

 

In these Equations θ and δ  are given by: 
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Eqn. (12) describes the axial and radial temperature profiles with two model parameters α   and 
i

β  containing 

the effective radial heat conductivity Ker and the wall heat transfer coefficient hw respectively. Values for Ker , 

hw, a , b , c and  d , for the two models are obtained by fitting Eqns. (9), (12) and (13) to experimentally 

determined temperature profiles [10]. 
 

III. Experimental Set-Up 
The set-up to measure radial and axial temperature profiles contains the heat exchanger reactor tube constructed 

from stainless steel. The tube reactor are filled with a packing and heating from the wall with steam, flowing 

through a jacket, flows upwards through the tube reactor and is heating down at the wall. The lower section or 

calming section (50.88 mm inside diameter, and 360 mm long) was surrounded by a jacket through which a 

steam was passed through the jacket under pressure. Stainless steel rasching rings 5.56 mm diameters were 

packed in order to obtain uniform velocity and temperature profile to the set section. The two sections are 

separated from each other by a gasket of low thermal conductivity (insulating rubber gasket) in order to 

minimize any heat escape by conduction from test section to the calming section through the tube wall. The test 

section (50.88 mm inside diameter and 750 mm in length) contains a stainless steel jacket, in which the steam 

was passed through the jacket under pressure to serve heating the reactor tube. In the steady state, the radial 

temperature profile is measured in the packed bed by eight thermocouples (0.5 mm diameter) were placed above 

the packing at different distance from the center of the cross through the middle of hypodermic tube. A ninth 

thermocouple was attached to the stainless steel tube holder at the wall to record the inside wall temperature 

reactor. The temperature of the air at the inlet of the packed bed, the pressure before and after the bed and the air 

flow rate are also measured. During the measurements, the bed can easily to repacked as appropriate to take into 

account the angular temperature fluctuations. Combination of the averaged radial temperature profiles, as 

obtained for different axial positions at the same experimental conditions, yields temperature field for the whole 

tube. All experiments reported here have been performed with air at high pressure (11 and 20.7 bar). For more 

detailed description of the set-up and the measuring procedure [3]. 
 

IV. Choice Of The Inlet Boundary Condition 
By using Eqns. (9) and (12) it is possible to calculate temperature profiles for wall-heating packed bed, with flat 

or polynomial shaped inlet temperature profile, respectively. In Figures (1) examples of such profiles are given 

for arbitrary chosen values of the model parameters. In these figures the difference in temperature profiles can 

be seen. Also it can be seen that the temperature at the wall of the tube approximately  identical with 

experimental readings in case a polynomial inlet temperature profile used, whereas it does not do so for the 

model with a flat inlet temperature profile (MC model), for the same conditions.  
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Figure (1):  Radial temperature distribution for a flat and polynomial shaped inlet temperature profile and 

comparison them with experimental data for arbitrary conditions 

 

These deviations of temperatures profiles between two models with respect to experimental data reflecting on 

the variation of the parameters values extracted from these models when fitting with experimentally determined 

temperature profiles. This deviation resulting from the change of the inlet boundary condition. For more 

discussion of the influence of this choice of the inlet boundary condition [2]. 

 

V. Results And Discussion 
5.1 Correlations for the Effective Transport Coefficients 

Values for the Ker and hw, for two models, were obtained by fitting Eqns. (9) and (12) to experimentally 

determine temperature profiles. In Figures (2) and (3) values Ker and hw are obtained for different gas flow rates, 

pressure and packing diameter evaluated by using Eqn. (12) (modified mathematical model).  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) For (dt/dp=10 pellets catalyst)                         (b) For (dt/dp=4 pellets catalyst) 

Figure (2):  Variation of the Effective Radial Thermal Conductivity with Particle Reynolds number                   

and elevated of pressure. 

 

 

 

 

 

 
 

 

 

 

 

                 

(a) For (dt/dp=10 pellets catalyst)           (b) For (dt/dp=4 pellets catalyst) 

Figure (3):  Variation of the Wall Heat transfer coefficient with Particle Reynolds number                                            

and elevated of pressure. 
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Other pellet packing sizes investigated, from these figures it can be seen that the pressure effect largely the 

values of Ker and hw  also the particles diameter have affect on these values. So; by taking into our accounts 

these conditions and their effects on these parameters to obtain general correlations of them. The correlations 

obtaining by using the multiple regressions of the values of  Ker and hw that extracted from Eqn. (12) (modified 

mathematical model) illustrate as Eqns. (17) and (18). Whereas the confidence intervals are 91% and 65% for 

both equations respectively: 
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Also, by using the same procedure of regression, correlate the values of the Ker and hw  extracted from Eqn. (9), 

(MC model) illustrate at Eqns. (19) and (20); with confidence intervals reach up to 74.2% and 15% for both 

equations respectively: 
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All these correlations obtained for air flow through the packed bed and at the same criterion conditions: 

(38 < Re < 218), (10 < P < 20 bar) and (4 < (dt/dp) <10). 

 

Together with the correlations for Ker and hw as given above, Eqns. (17) and (18) together and Eqns. (19) and 

(20) together also, obtained from modified mathematical model and MC model respectively for all the available 

data. For more discussions of these correlations and other results [11]. 

 

5.2 Effect of the Inlet Boundary Condition 

In the previous section we assumed the radial gas inlet temperature to be ploynomially shaped, (Eqn. (13). 

However, often the inelt temperature condition used is uniform in the initial cross section of the bed (Eqn.(6)) is 

generally not valid; for there always exists a tempearture gradient along the radius, which especially large near 

the wall [2, 12, 13]. In order to fufill this condition as best as possible it is necessary to consider the initial 

profile as the one existing just at the entrance to the bed; (for a more general discussion of this condition 

presented by Ibrahim et al. [2]. 

 

The expermintal measurments of the radial temperature profiles above the bed for its different and the data of 

the radial and axial temperature profiles resulting of MC model, are the reason of further uncertinly in 

estimation of Ker and hw values and make the model rather time-consuming [11, 13]. At the same time the results  

indictes to the good temperature profiles obatined from tme modified mathematical model with respect to 

expermintal data. 

 

5.3 Effect Of High Pressure 

From Figure (3), wenote that; the effect of pressure greater than atmospheric on the readial themal conducitivty 

(Ker) at different particle Reynolds number, the plots suggest that the radial thermal conductiovity is a strong 

effects increased with increasing pressure. Also from Figure (2), the wall heat transfer coefficients (hw) 

increased by the increase of particle Rynolds number at the same pressure. Also, at the same Ryenolds number 

the wall heat transfer coefficient decreased by the increase of pressure. This can be explained due to the 

variation of gas properties with respect to elevated pressure, (More discussion of the effect of elevated pressures 

on the parameters of heat transfer in packed beds [3].  

 

5.4 Effect of Radial Velocity Profile 

The results are plotted in Figure (4), it can be noted that the influence of tube-particle diameter ratio (dt/dp) upon 

the the wall heat transfer coefficient (hw), whereas, an increase in the ratio of dt/dp  leads to decrease particle 

Reynolds number followed by decreasing in the wall heat transfer coefficient. The reason for this influence is 

the increase in contact area between the pellets and the tube wall. An increase in the ratios of dt/dp means that 

more pellets are adjacent to the tube wall, and thus givinig a greater area for heat transfer by pellet conduction 

and a smaller area for heat transfer by gas convection. So, the effective radial thermal conductivity (Ker), will be 

increaseing with increase of dt/dp, generally this effects may be noted in Figure (5). 
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   (a) For (P= 11 bar)        (b) For (P=20 bar) 

Figure (4):  Effect of tube-particle diameter ratios upon the wall heat transfer coefficient 

 of catalyst pellets at elevated pressure 

 

 

 

  

 

 

 

 

 

 

 

 

 

(a) For (P= 11 bar)        (b) For (P=20 bar) 

Figure (5):  Effect of tube-particle diameter ratios upon the effective radial thermal conductivity                           

of catalyst pellets at elevated pressure 

 

VI. Conclusions 
One should be careful in chossing the inlet boundary condition, when modelling the heat transport in 

packed beds. If the inelt temperature profile is assumed to be radially flat, whereas the actual profile is curved, 

an apparent dependence of the heat transports coefficents on the inlet boundary condition of the temperature. 

The effective radial heat conductivity and the wall heat transfer coefficient are found to be strongly affected by 

the pressures throughout the bed. The results accuracy of the correlations obtained from the modified 

mathematical model are more than the results accuracy of correlations obtained from MC model with respect to 

experimental data; which these results indicate to the reliability of the modified mathematical model to obtained 

the parameters of heat transport in packed bed reactors. 
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Tr,z Temperature at any position through the bed.. (
o
C) 

Tw Wall temperature tube. (
o
C) 

To Inlet temperature to the reactor. (
o
C) 

Tc. Center temperature of the first experimentally determined 

radial temperature profile. (
o
C)

 

Vp Volume of particle. (m
3
) 

Z Axial coordinate (bed depth). (m) 

zo The axial position of the first experimentally determined radial 

temperature profile. (m) 

g
  Dynamic viscosity of the gas. (Pa.sec) 
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