
International Journal of Engineering Science Invention

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org ||Volume 5 Issue 9|| September 2016 || PP. 57-61

 www.ijesi.org 57 | Page

Practical Guidelines to Improve Defect Prediction

Model – A Review

B. Dhanalaxmi
1
, Dr. G. Apparao Naidu

2
, Dr.K.Anuradha

3

1
Associate Professor, Institute of Aeronautical Engineering, IT Dept, Hyderabad, TS, India
2
Professor, J.B. Institute of Engineering & Technology, CSE Dept, Hyderabad, TS, India

3
Professor & HOD, GRIET, CSE Dept, Hyderabad, TS, India.

Abstract: Defect prediction models are used to pinpoint risky software modules and understand past pitfalls

that lead to defective modules. The predictions and insights that are derived from defect prediction models may

not be accurate and reliable if researchers do not consider the impact of experimental components (e.g.,

datasets, metrics, and classifiers) of defect prediction modeling. Therefore, a lack of awareness and practical

guidelines from previous research can lead to invalid predictions and unreliable insights. Through case studies

of systems that span both proprietary and open-source domains, find that (1) noise in defect datasets; (2)

parameter settings of classification techniques; and (3) model validation techniques have a large impact on the

predictions and insights of defect prediction models, suggesting that researchers should carefully select

experimental components in order to produce more accurate and reliable defect prediction models.

Keywords: Software Quality Assurance, experimental components, performance estimates, Support Vector

Machines

I. Introduction
Defect models, which identify defect-prone software modules using a variety of software metrics, serve two

main purposes. First, defect models can be used to predict modules that are likely to be defect-prone. Software

Quality Assurance (SQA) teams can use defect models in a prediction setting to effectively allocate their limited

resources to the modules that are most likely to be defective. Second, defect models can be used to understand

the impact that various software metrics have on the defect-proneness of a module.

The insights derived from defect models can help software teams to avoid past pitfalls that lead to defective

modules The predictions and insights that are derived from defect prediction models may not be accurate and

reliable if researchers do not consider the impact those experimental components (e.g., datasets, metrics, and

classifiers) of defect prediction modeling. Indeed, there exists a plethora of research that raise concerns about

the impact of experimental components on defect prediction modeling. For example, Sheppard et al. Found that

the reported performance of a defect prediction model shares a strong relationship with the group of researchers

who construct the models. Their observations suggest that many published defect prediction studies are biased,

and calls their validity into question. To assess the impact of experimental components on defect prediction

modeling, the association between the reported performance of a defect model and the used experimental

components (i.e., datasets, metrics, and classifiers) are considered. Experimental components (i.e., metrics) are

used to construct defect prediction models share a stronger relationship with the reported performance than

research group does, suggesting that experimental components of defect prediction modeling may impact the

conclusions of defect prediction studies.

This paper, investigate the impact of (1) noise in defect datasets and (2) parameter settings of classification

techniques have on the predictions and insights of defect prediction models. In addition, defect prediction

models may produce an unrealistic estimation of model performance when inaccurate and unreliable model

validation techniques are applied, which could lead to incorrect model selection in practice and unstable

conclusions of defect prediction studies. Thus, the impact of (3) model validation techniques have on the

accuracy and reliability of performance estimates that are produced by defect prediction models. .

Practical Guidelines To Improve Defect Prediction Model – A Review

 www.ijesi.org 58 | Page

II. Typical Software Defect Prediction Model

Fig.1.Overview of Software Defect Prediction model

The main goal of most software defect prediction studies is (1) to predict where defects might appear in the

future and (2) to quantify the relative importance of various factors (i.e., independent variables) used to build a

model. Ideally, these predictions will correctly classify software artifacts (e.g., subsystems and files) as being

defect-prone or not and in some cases may also predict the number of defects, defect density (the number of

defects / SLOC) and/or the likelihood of a software artifact including a defect. Figure 1 shows an overview of

the software defect prediction process. First, data is collected from software repositories, which archive

historical data related to the development of the software project, such as source code and defect repositories.

Then, various metrics that are used as independent variables (e.g., SLOC) and a dependent variable (e.g., the

number of defects)are extracted to build a model. The relationship between the independent variables and

dependent variable is modeled using statistical techniques and machine learning techniques.

Finally, the performance of the built model is measured using several criteria such as precision, recall and AUC

(Area Under the Curve) of ROC (the Receiver Operating Characteristic).Each of the four aforementioned steps

are explained next.

A. Data

In order to build software defect prediction models, a number of metrics that make up the independent and

dependent variables are needed. Large software projects often store their development history and other

information, such as communication, in software repositories. Although the main reason for using these

repositories is to keep track of and record development history, researchers and practitioners realize that this

repository data can be used to extract software metrics. For example, prior work used the data stored in the

source control repository to count the number of changes made to a file and the complexity of changes, and

used this data to predict files that are likely to have future defects. Software defect prediction work generally

leverages various types of data from different repositories, such as (1) source code repositories, which store and

record the source code and development history of a project, (2) defect repositories, which track the bug/defect

reports or feature requests filed for a project and their resolution progress and (3) mailing list repositories, which

track the communication and discussions between development teams. Other repositories can also be leveraged

for defect prediction.

B. Metrics

When used in software defect prediction research, metrics are considered to be independent variables, which

mean that they are used to perform the prediction (i.e., the predictors). Also, metrics can represent the dependent

variables, which means they are the metrics being predicted (i.e., these can be pre- or post-release defects).

Previous defect prediction studies used a wide variety of independent variables (e.g., process, organizational or

code metrics to perform their predictions. Moreover, several different metrics were used to represent the

dependent variable as well. For example, previous work predicted different types of defects (e.g., pre-release,

post release], or both).

Practical Guidelines To Improve Defect Prediction Model – A Review

 www.ijesi.org 59 | Page

C. Model Building

Various techniques, such as linear discriminant analysis , decision trees , Naive Bayes , Support Vector

Machines and random forest, are used to build defect prediction models. Each of the aforementioned techniques

have their own benefits (e.g., they provide models that are robust to noisy data and/or provide more explainable

models).Generally speaking, most defect prediction studies divide the data into two sets: a training set and a test

set. The training set is used to train the prediction model, whereas the testing set is used to evaluate the

performance of the prediction model.

D. Performance Evaluation

Once a prediction model is built, its performance needs to be evaluated. Performance is generally measured in

two ways: predictive power and explanative power.

Predictive Power: Predictive power measures the accuracy of the model in predicting the software artifacts that

have defects. Measures such as precision, recall, f-measure and AUCROC, which plots the false positive rate on

the x-axis and true positive rate on the y-axis over all possible classification thresholds, are commonly-used in

defect prediction studies.

Explanative Power: In addition to measuring the predictive power, explanatory power is also used in defect

prediction studies. Explanative power measures how well the variability in the data is explained by the model.

Often the R
2
 or deviance explained measures are used to quantify the explanative power. Explanative power is

particularly useful since it enables us to measure the variability explained by each independent variable in the

model, providing us with a ranking as to which independent variable is most “useful”.

III. Three Major Experimental Components In Defect Prediction Modeling:
This paper addresses three major experimental components in defect prediction modeling:

1. Overlooking noise generated by issue report mislabeling and investigates the impact that realistic noise

generated by issue report mislabeling has on the predictions and insights of defect prediction models.

2. Overlooking the optimal parameter settings of classification techniques and investigate the impact that

parameter settings of classification techniques have on the accuracy and reliability of the performance of

defect prediction models when automated parameter optimization is applied.

3. Overlooking the most accurate and reliable model validation techniques and investigate the impact that

model validation techniques have on the accuracy and reliability of the performance of defect prediction

models.

1) Overlooking noise generated by issue report mislabeling

Motivation

The accuracy and reliability of a prediction model depends on the quality of the data from which it was trained.

Therefore, defect prediction models may be inaccurate and unreliable if they are trained using noisy data.

Recent research shows that noise that is generated by issue report mislabeling, i.e., issue reports that describe

defects but were not classified as such (or vice versa), may impact the performance of defect models . Yet, while

issue report mislabeling is likely influenced by characteristics of the issue itself e.g., novice developers may be

more likely to mislabel an issue than an experienced developer - the prior work randomly generates mislabeled

issues.

Approach.

Investigate whether mislabeled issue reports can be accurately explained using characteristics of the issue

reports themselves, and what is the impact that a realistic amount of noise has on the predictions and insights

derived from defect models. Using the manually curated dataset of mislabeled issue reports provided by Herzig

et al. generate three types of defect datasets: (1) realistic noisy datasets that contain mislabeled issue reports as

classified manually by Herzig et al., (2) random noisy datasets that contain the same proportion of mislabeled

issue reports as contained in the realistic noisy dataset, however the mislabeled issue reports are selected at

random, and (3) clean datasets that contain no mislabeled issues.

Results

The results find that (1) issue report mislabeling is not random; (2) precision is rarely impacted by mislabeled

issue reports; (3) however, models trained on noisy data typically achieve 56%-68% of the recall of models

trained on clean data; and (4) only the metrics in top influence rank of defect models are robust to the noise

introduced by mislabeling.

Practical Guidelines To Improve Defect Prediction Model – A Review

 www.ijesi.org 60 | Page

2) Overlooking the parameters of classification Techniques

Motivation.

 Defect prediction models are classifiers that are trained to identify defect-prone software modules. Such

classifiers have configurable parameters that control their characteristics (e.g., the number of trees in a random

forest classifier). Recent studies show that these classifiers may underperform due to the use of suboptimal

default parameter settings However, it is impractical to assess all of the possible settings in the parameter

spaces.

Approach

Literature analysis reveals that 26 of the 30 most commonly-used classification techniques (87%) require at least

one parameter setting. Since such parameter settings may impact the performance of defect prediction models,

the settings should be carefully selected. then investigate the improvement and the reliability of the performance

of defect prediction models when Caret an off the-shelf automated parameter optimization technique is applied.

Caret evaluates candidate parameter settings and suggests the optimized setting that achieves the highest

performance.

Results

The results find that (1) Caret improves the AUC performance of defect prediction models by up to 40

percentage points; and (2) Caret-optimized classifiers are at least as reliable as classifiers that are trained using

the default settings. Our results lead us to conclude that parameter settings can indeed have a large impact on the

performance of defect prediction models, suggesting that researchers should experiment with the parameters of

the classification techniques.

3) Overlooking the most accurate and reliable model validation techniques

Motivation: Prediction models may provide an unrealistically optimistic estimation of model performance

when (re)applied to the same sample with which that they were trained. To address this problem, Model

Validation Techniques (MVTs) (e.g., k-fold cross-validation) are used to estimate how well a model will

perform on unseen data. Recent research has raised concerns about the accuracy (i.e.,how much do the

performance estimates differ from the ground truth?) and reliability (i.e., how much do performance estimates

vary when the experiment is repeated?) of model validation techniques when applied to defect prediction

models [9]. An optimal MVT would not overestimate or underestimate the ground truth performance. Moreover,

the performance estimates should not vary broadly when the experiment is repeated. However, little is known

about how accurate and reliable the performance estimates of MVTs tend to be.

Approach

Investigate the accuracy and the reliability of performance estimates when 10 MVTs (i.e., hold-out validation, k-

fold validation and bootstrap validation) are applied. We measure in terms of 5 threshold-dependent and -

independent performance measures (e.g., precision, recall, AUC) and evaluate using different types of

classification techniques.

Results

Find that (1) the advanced bootstrap validation is the most accurate and the most reliable model validation

technique; and (2) the holdout family is the least accurate and most reliable model validation technique in terms

of both threshold-dependent and threshold-independent performance measures.

IV. Conclusion
In this paper, the impact of experimental components has on the predictions and insights of defect prediction

models. Through case studies of systems that span both proprietary and open-source domains, demonstrate that

the experimental components (e.g., metric family) that are used to construct defect prediction models share a

stronger relationship with the reported performance than research group does. Noise generated by issue report

mislabeling has an impact on the predictions and insights of defect prediction models. Parameter settings of

classification techniques have an impact on the accuracy and reliability of the performance of defect prediction

models. Model validation techniques have an impact on the accuracy and reliability of the performance

estimates that are produced by defect prediction models.

V. Future Work
The results indicates that (1) noise in defect datasets;(2) parameter settings of classification techniques; and

(3)model validation techniques have a large impact on the predictions and insights of defect prediction models.

The researchers should

Practical Guidelines To Improve Defect Prediction Model – A Review

 www.ijesi.org 61 | Page

1. Experiment with a broader selection of datasets and metrics in order to maximize external validity.

2. Carefully mitigate co linearity issues prior to analysis in order to maximize internal and construct validity.

3. Examine the choice of metrics when building defect prediction models in order not to produce under-

performing models.

4. Clean mislabeled issue reports in order to improve the ability to identify defective modules.

5. Interpret or make decisions based on the top influence metrics of defect prediction models when they are

trained on noisy data.

6. Apply automated parameter optimization in order to improve the performance and reliability of defect

prediction models.

7. Avoid using the holdout validation and instead opt to use the advanced bootstrap model validation

technique in order to produce more accurate and reliable performance estimates.

References
[1]. C. Bird, A. Bachmann, E. Aune, J. Du_y, A. Bernstein,V. Filkov, and P. Devanbu. Fair and Balanced? Bias in Bug-Fix Datasets. In

Proceedings of the joint meeting of the European Software Engineering Conference and the Symposium on the Foundations of

Software Engineering(ESEC/FSE), pages 121{130, 2009.

[2]. B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classification techniques on the performance of defect prediction
models. In Proceedings of the International Conference on Software Engineering (ICSE), pages 789{800, 2015.

[3]. T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun-sell. A Systematic Literature Review on Fault Prediction Performance in

Software Engineering. IEEE Transactions on Software Engineering, 38(6):1276{1304, Nov. 2012.
[4]. K. Herzig, S. Just, and A. Zeller. It's not a Bug, it'sa Feature: How Misclassification Impacts Bug Prediction. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 392{401, 2013.

[5]. S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In Proceedings of the International Conference on
Software Engineering (ICSE),pages 481{490, 2011.

[6]. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.Benchmarking Classi_cation Models for Software Defect Prediction: A Proposed

Framework and Novel Findings. IEEE Transactions on Software Engineering, 34(4):485{496, 2008.
[7]. T. Menzies and M. Shepperd. Special issue on repeatable results in software engineering prediction. Empir-ical Software

Engineering, 17(1-2):1{17, 2012.

[8]. I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative studies of software prediction models. IEEE
Transactions on Software Engineering, 31(5):380{391, 2005.

[9]. S. Chidamber and C. Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software Engineering, vol. 20 ,

no. 6, pp. 476–493, 1994.
[10]. W. W. Cohen, “Fast Effective Rule Induction,” in Proceedings of the International Conference on Machine Learning, 1995, pp.

115–123.

[11]. T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–

27, 1967.

[12]. M. D′Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction approaches: a benchmark and an extensive comparison,”

Empirical Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.
[13]. J. Demsar, “Statistical comparisons of classifiers over ˇ multiple data sets,” The Journal of Machine Learning Research, vol. 7, pp.

1–30, 2006.

[14]. T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting,
and randomization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[15]. L. Erlikh, “Leveraging legacy system dollars for ebusiness,” IT professional, vol. 2, no. 3, pp. 17–23, 2000.

[16]. C. Fraley and A. E. Raftery, “Bayesian regularization for normal mixture estimation and model-based clustering,” Journal of
Classification, vol. 24, no. 2, pp. 155–181, 2007.

[17]. Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in Proceedings of the International Conference on

Machine Learning, 1996, pp. 148–156.
[18]. B. R. Gaines and P. Compton, “Induction of ripple-down rules applied to modeling large databases,” Journal of Intelligent

Information Systems, vol. 5, no. 3, pp. 211– 228, 1995.
[19]. B. Goel and Y. Singh, “Empirical investigation of metrics for fault prediction on object-oriented software,” in Computer and

Information Science. Springer, 2008, pp. 255–265.

[20]. T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on open source software for fault prediction,”
IEEE Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910, 2005.

[21]. T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic literature review on fault prediction performance in

software engineering,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304, 2012.
[22]. G. Hamerly and C. Elkan, “Learning the k in k-means,” in Advances in Neural Information Processing Systems, 2004, pp. 281–288.

[23]. K. Hammouda and F. Karray, “A comparative study of data clustering techniques,” Fakhreddine Karray University of Waterloo,

Ontario, Canada, 2000.
[24]. A. E. Hassan, “Predicting faults using the complexity of code changes,” in Proceedings of the 31st International Conference on

Software Engineering. IEEE Computer Society, 2009, pp. 78–88.

[25]. T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[26]. E. Jelihovschi, J. C. Faria, and I. B. Allaman, “Scottknott: A package for performing the scott- knott clustering algorithm in r,”

Trends in Applied and Computational Mathematics, vol. 15, no. 1, pp. 003–017, 2014.
[27]. T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Proceedings of the 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2013. IEEE, 2013, pp. 279–289.

[28]. K. Kaur, K. Minhas, N. Mehan, and N. Kakkar, “Static and dynamic complexity analysis of software metrics,” World Academy of
Science, Engineering and Technology, vol. 56, p. 2009, 2009.

[29]. H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the devices to test your app on: a case study of android game

apps,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014,
pp. 610–620.

