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Abstract: Defect prediction models are used to pinpoint risky software modules and understand past pitfalls 

that lead to defective modules. The predictions and insights that are derived from defect prediction models may 

not be accurate and reliable if researchers do not consider the impact of experimental components (e.g., 

datasets, metrics, and classifiers) of defect prediction modeling. Therefore, a lack of awareness and practical 

guidelines from previous research can lead to invalid predictions and unreliable insights. Through case studies 

of systems that span both proprietary and open-source domains, find that (1) noise in defect datasets; (2) 

parameter settings of classification techniques; and (3) model validation techniques have a large impact on the 

predictions and insights of defect prediction models, suggesting that researchers should carefully select 

experimental components in order to produce more accurate and reliable defect prediction models. 

Keywords: Software Quality Assurance, experimental components, performance estimates, Support Vector 

Machines 

 

I. Introduction 
Defect models, which identify defect-prone software modules using a variety of software metrics, serve two 

main purposes. First, defect models can be used to predict modules that are likely to be defect-prone. Software 

Quality Assurance (SQA) teams can use defect models in a prediction setting to effectively allocate their limited 

resources to the modules that are most likely to be defective. Second, defect models can be used to understand 

the impact that various software metrics have on the defect-proneness of a module. 

The insights derived from defect models can help software teams to avoid past pitfalls that lead to defective 

modules The predictions and insights that are derived from defect prediction models may not be accurate and 

reliable if researchers do not consider the impact those experimental components (e.g., datasets, metrics, and 

classifiers) of defect prediction modeling. Indeed, there exists a plethora of research that raise concerns about 

the impact of experimental components on defect prediction modeling. For example, Sheppard et al.  Found that 

the reported performance of a defect prediction model shares a strong relationship with the group of researchers 

who construct the models. Their observations suggest that many published defect prediction studies are biased, 

and calls their validity into question. To assess the impact of experimental components on defect prediction 

modeling, the association between the reported performance of a defect model and the used experimental 

components (i.e., datasets, metrics, and classifiers) are considered. Experimental components (i.e., metrics) are 

used to construct defect prediction models share a stronger relationship with the reported performance than 

research group does, suggesting that experimental components of defect prediction modeling may impact the 

conclusions of defect prediction studies. 

This paper, investigate the impact of (1) noise in defect datasets and (2) parameter settings of classification 

techniques have on the predictions and insights of defect prediction models. In addition, defect prediction 

models may produce an unrealistic estimation of model performance when inaccurate and unreliable model 

validation techniques are applied, which could lead to incorrect model selection in practice and unstable 

conclusions of defect prediction studies. Thus, the impact of (3) model validation techniques have on the 

accuracy and reliability of performance estimates that are produced by defect prediction models. . 
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II. Typical Software Defect Prediction Model 

 
Fig.1.Overview of Software Defect Prediction model 

 

The main goal of most software defect prediction studies is (1) to predict where defects might appear in the 

future and (2) to quantify the relative importance of various factors (i.e., independent variables) used to build a 

model. Ideally, these predictions will correctly classify software artifacts (e.g., subsystems and files) as being 

defect-prone or not and in some cases may also predict the number of defects, defect density (the number of 

defects / SLOC) and/or the likelihood of a software artifact including a defect. Figure 1 shows an overview of 

the software defect prediction process. First, data is collected from software repositories, which archive 

historical data related to the development of the software project, such as source code and defect repositories. 

Then, various metrics that are used as independent variables (e.g., SLOC) and a dependent variable (e.g., the 

number of defects)are extracted to build a model. The relationship between the independent variables and 

dependent variable is modeled using statistical techniques and machine learning techniques.  

Finally, the performance of the built model is measured using several criteria such as precision, recall and AUC 

(Area Under the Curve) of ROC (the Receiver Operating Characteristic).Each of the four aforementioned steps 

are explained next. 

 

A. Data 

In order to build software defect prediction models, a number of metrics that make up the independent and 

dependent variables are needed. Large software projects often store their development history and other 

information, such as communication, in software repositories. Although the main reason for using these 

repositories is to keep track of and record development history, researchers and practitioners realize that this 

repository data can be used to extract software metrics. For example, prior work used the data stored in the 

source control repository to count the number of changes made to a file  and the complexity of changes, and 

used this data to predict files that are likely to have future defects. Software defect prediction work generally 

leverages various types of data from different repositories, such as (1) source code repositories, which store and 

record the source code and development history of a project, (2) defect repositories, which track the bug/defect 

reports or feature requests filed for a project and their resolution progress and (3) mailing list repositories, which 

track the communication and discussions between development teams. Other repositories can also be leveraged 

for defect prediction. 

 

B. Metrics 

When used in software defect prediction research, metrics are considered to be independent variables, which 

mean that they are used to perform the prediction (i.e., the predictors). Also, metrics can represent the dependent 

variables, which means they are the metrics being predicted (i.e., these can be pre- or post-release defects). 

Previous defect prediction studies used a wide variety of independent variables (e.g., process, organizational or 

code metrics to perform their predictions. Moreover, several different metrics were used to represent the 

dependent variable as well. For example, previous work predicted different types of defects (e.g., pre-release, 

post release], or both). 
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C. Model Building 

Various techniques, such as linear discriminant analysis , decision trees , Naive Bayes , Support Vector 

Machines and random forest, are used to build defect prediction models. Each of the aforementioned techniques 

have their own benefits (e.g., they provide models that are robust to noisy data and/or provide more explainable 

models).Generally speaking, most defect prediction studies divide the data into two sets: a training set and a test 

set. The training set is used to train the prediction model, whereas the testing set is used to evaluate the 

performance of the prediction model. 

 

D. Performance Evaluation 

Once a prediction model is built, its performance needs to be evaluated. Performance is generally measured in 

two ways: predictive power and explanative power. 

Predictive Power: Predictive power measures the accuracy of the model in predicting the software artifacts that 

have defects. Measures such as precision, recall, f-measure and AUCROC, which plots the false positive rate on 

the x-axis and true positive rate on the y-axis over all possible classification thresholds, are commonly-used in 

defect prediction studies. 

Explanative Power: In addition to measuring the predictive power, explanatory power is also used in defect 

prediction studies. Explanative power measures how well the variability in the data is explained by the model. 

Often the R
2
 or deviance explained measures are used to quantify the explanative power. Explanative power is 

particularly useful since it enables us to measure the variability explained by each independent variable in the 

model, providing us with a ranking as to which independent variable is most “useful”. 

 

III. Three Major Experimental Components In Defect Prediction Modeling: 
This paper addresses three major experimental components in defect prediction modeling: 

1. Overlooking noise generated by issue report mislabeling and investigates the impact that realistic noise 

generated by issue report mislabeling has on the predictions and insights of defect prediction models. 

2. Overlooking the optimal parameter settings of classification techniques and investigate the impact that 

parameter settings of classification techniques have on the accuracy and reliability of the performance of 

defect prediction models when automated parameter optimization is applied. 

3. Overlooking the most accurate and reliable model validation techniques and investigate the impact that 

model validation techniques have on the accuracy and reliability of the performance of defect prediction 

models. 

 

1) Overlooking noise generated by issue report mislabeling 

Motivation  

The accuracy and reliability of a prediction model depends on the quality of the data from which it was trained. 

Therefore, defect prediction models may be inaccurate and unreliable if they are trained using noisy data. 

Recent research shows that noise that is generated by issue report mislabeling, i.e., issue reports that describe 

defects but were not classified as such (or vice versa), may impact the performance of defect models . Yet, while 

issue report mislabeling is likely influenced by characteristics of the issue itself e.g., novice developers may be 

more likely to mislabel an issue than an experienced developer - the prior work randomly generates mislabeled 

issues. 

 

Approach.  

Investigate whether mislabeled issue reports can be accurately explained using characteristics of the issue 

reports themselves, and what is the impact that a realistic amount of noise has on the predictions and insights 

derived from defect models. Using the manually curated dataset of mislabeled issue reports provided by Herzig 

et al.   generate three types of defect datasets: (1) realistic noisy datasets that contain mislabeled issue reports as 

classified manually by Herzig et al., (2) random noisy datasets that contain the same proportion of mislabeled 

issue reports as contained in the realistic noisy dataset, however the mislabeled issue reports are selected at 

random, and (3) clean datasets that contain no mislabeled issues. 

 

Results 

The results find that (1) issue report mislabeling is not random; (2) precision is rarely impacted by mislabeled 

issue reports; (3) however, models trained on noisy data typically achieve 56%-68% of the recall of models 

trained on clean data; and (4) only the metrics in top influence rank of  defect models are robust to the noise 

introduced by mislabeling.  
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2) Overlooking the parameters of classification Techniques 

Motivation. 

 Defect prediction models are classifiers that are trained to identify defect-prone software modules. Such 

classifiers have configurable parameters that control their characteristics (e.g., the number of trees in a random 

forest classifier). Recent studies show that these classifiers may underperform due to the use of suboptimal 

default parameter settings  However, it is impractical to assess all of the possible settings in the parameter 

spaces. 

 

Approach  

Literature analysis reveals that 26 of the 30 most commonly-used classification techniques (87%) require at least 

one parameter setting. Since such parameter settings may impact the performance of defect prediction models, 

the settings should be carefully selected. then investigate the improvement and the reliability of the performance 

of defect prediction models when Caret an off the-shelf automated parameter optimization technique  is applied. 

Caret evaluates candidate parameter settings and suggests the optimized setting that achieves the highest 

performance. 

 

Results 

The results find that (1) Caret improves the AUC performance of defect prediction models by up to 40 

percentage points; and (2) Caret-optimized classifiers are at least as reliable as classifiers that are trained using 

the default settings. Our results lead us to conclude that parameter settings can indeed have a large impact on the 

performance of defect prediction models, suggesting that researchers should experiment with the parameters of 

the classification techniques. 

 

3) Overlooking the most accurate and reliable model validation techniques 

Motivation:  Prediction models may provide an unrealistically optimistic estimation of model performance 

when (re)applied to the same sample with which that they were trained. To address this problem, Model 

Validation Techniques (MVTs) (e.g., k-fold cross-validation) are used to estimate how well a model will 

perform on unseen data. Recent research has raised concerns about the accuracy (i.e.,how much do the 

performance estimates differ from the ground truth?) and reliability (i.e., how much do performance estimates 

vary when the experiment is repeated?) of  model validation techniques when applied to defect prediction 

models [9]. An optimal MVT would not overestimate or underestimate the ground truth performance. Moreover, 

the performance estimates should not vary broadly when the experiment is repeated. However, little is known 

about how accurate and reliable the performance estimates of MVTs tend to be. 

 

Approach  

Investigate the accuracy and the reliability of performance estimates when 10 MVTs (i.e., hold-out validation, k-

fold validation and bootstrap validation) are applied. We measure in terms of 5 threshold-dependent and -

independent performance measures (e.g., precision, recall, AUC) and evaluate using different types of 

classification techniques. 

 

Results 

Find that (1) the advanced bootstrap validation is the most accurate and the most reliable model validation 

technique; and (2) the holdout family is the least accurate and most reliable model validation technique in terms 

of both threshold-dependent and threshold-independent performance measures. 

 

IV. Conclusion 
In this paper, the impact of experimental components has on the predictions and insights of defect prediction 

models. Through case studies of systems that span both proprietary and open-source domains, demonstrate that 

the experimental components (e.g., metric family) that are used to construct defect prediction models share a 

stronger relationship with the reported performance than research group does. Noise generated by issue report 

mislabeling has an impact on the predictions and insights of defect prediction models. Parameter settings of 

classification techniques have an impact on the accuracy and reliability of the performance of defect prediction 

models. Model validation techniques have an impact on the accuracy and reliability of the performance 

estimates that are produced by defect prediction models. 

 

V. Future Work 
The results indicates that (1) noise in defect datasets;(2) parameter settings of classification techniques; and 

(3)model validation techniques have a large impact on the predictions and insights of defect prediction models. 

The researchers should   
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1. Experiment with a broader selection of datasets and metrics in order to maximize external validity. 

2. Carefully mitigate co linearity issues prior to analysis in order to maximize internal and construct validity. 

3. Examine the choice of metrics when building defect prediction models in order not to produce under-

performing models. 

4. Clean mislabeled issue reports in order to improve the ability to identify defective modules. 

5. Interpret or make decisions based on the top influence metrics of defect prediction models when they are 

trained on noisy data. 

6. Apply automated parameter optimization in order to improve the performance and reliability of defect 

prediction models. 

7. Avoid using the holdout validation and instead opt to use the advanced bootstrap model validation 

technique in order to produce more accurate and reliable performance estimates. 
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