On —Homeomorphism in Intuitionistic Topological Spaces

T.A.Albinaa^{1,*} and Gnanambal Ilango²

¹ResearchScholar, Department of Mathematics, Government Arts College, Coimbatore, TamilNadu,India ²Assistant Professor,Department of Mathematics, Government Arts College, Coimbatore, Tamil Nadu,India * Corresponding author, e-mail:albinaathilahar894@gmail.com

Abstract: The aim of this paper is to explore α -open and α -closed maps in intuitionistic topological spaces. Also intuitionistic α -homeomorphism is introduced and several properties are studied.

Keywords: Ia-homeomorphism, IT_{α} space, Ia^* -homeomorphism, strongly intuitionistic α -open.

Date of Submission: 23-09-2017	Date of acceptance: 06-10-2017

I. INTRODUCTION

After the introduction of the concept of fuzzy set by Zadeh, Coker[3] introduced intuitionistic sets and intuitionistic points in 1996 and intuitionistic fuzzy topological spaces[4] in 1997. In 2000, Coker[5] developed the concept of intuitionistic topological spaces with intuitionistic sets and investigated basic properties of continuous functions and compactness. Further several researchers [6,9] studied some weak forms of intuitionistic topological spaces. Since homeomorphism plays a vital role in topology, we introduce I α homeomorphism in intuitionistic topological spaces. Also the relation between I α -open maps, I α -closed maps and I α -homeomorphism are discussed.

II. PRELIMINARIES

Throughout this paper, X denote a non-empty set and (X,τ) represents the intuitionistic topological space. In this section, we shall present the fundamental definitions and propositions which are useful for the sequel.

Definition 2.1. [3]

An intuitionistic set A is an object having the form $\langle X, A_1, A_2 \rangle$ where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of members of A, while A_2 is called the set of nonmembers of A. Furthermore, let $\{A_i : i \in I\}$ be an arbitrary family of intuitionistic sets in X, where $A_i = \langle X, A_i^{\perp}, A_i^{\perp} \rangle$ then

- (i) $\phi = < X, \phi, X >, X = < X, X, \phi >$
- (ii) $A \subseteq B$ if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$
- (iii) $A = \langle X, A_2, A_1 \rangle$
- (iv) $A-B = A \cap B$

Definition 2.2 . [5]

An intuitionistic topological space (ITS) on a nonempty set X is a family τ of intuitionistic sets in X satisfying the following axioms:

- (i) ϕ , $X \in \tau$
- (ii) $G_1 \cap G_2 \in \tau \text{ for } G_1, G_2 \in \tau$
- (iii) $\bigcup G_i \in \tau$ for any arbitrary family $\{G_i : i \in J\} \subseteq \tau$.

In this case, the pair (X, τ) is called intuitionistic topological space and any intuitionistic set in τ is known as an intuitionistic open set in X, and the complement of intuitionistic open set in X is known as intuitionistic closed set in X.

Definition 2.3. [3]

Let (X,τ) be an intuitionistic topological space and $\langle X,A_1,A_2 \rangle$ be an intuitionistic set in X. Then the intuitionistic interior and intuitionistic closure of A are defined by

 $Iint(A) = \bigcup \{G/G \text{ is an intuitionistic open set in } X \text{ and } G \subseteq A\}$

 $Icl(A) = \bigcap \{K/K \text{ is an intuitionistic closed set in } X \text{ and } A \subseteq K \}$

Definition 2.4. [3]

Let X be a nonempty set and $p \in X$ a fixed element in X. Then the intuitionistic set p defined by

 $p = \langle X, \{p\}, \{p^c\} \rangle$ is called an intuitionistic point (IP) in X.

Definition 2.5. [10]

Let (X,τ) be an ITS. An intuitionistic set A of X is said to be

- 1. Intuitionistic semi-open if $A \subseteq Icl(Iint(A))$
- 2. Intuitionistic preopen if $A \subseteq Iint(Icl(A))$
- 3. Intuitionistic α -open if $A \subseteq Iint(Icl(Iint(A)))$
- 4. Intuitionistic β -open if $A \subseteq Icl(Iint(Icl(A)))$

The family of all intuitionistic semi-open, pre-open, α -open and β -open sets of (X, τ) are denoted by ISOS(X),IPOS(X),I α OS(X) and I β OS(X) respectively.

Definition 2.6. [5]

A map $f: (X, \tau) \to (Y, \sigma)$ is said to be intuitionistic continuous if the preimage $f^{-1}(A)$ is intuitionistic open in X for every intuitionistic open set A in Y.

Definition 2.7. [9]

A map $f:(X,\tau) \to (Y,\sigma)$ is said to be

- 1. Intuitionistic precontinuous if the preimage $f^{-1}(A)$ is intuitionistic preopen in X for every intuitionistic open set A in Y.
- 2. Intuitionistic semicontinuous if the preimage $f^{-1}(A)$ is intuitionistic semiopen in X for every intuitionistic open set A in Y.
- 3. Intuitionistic α -continuous if the preimage $f^{-1}(A)$ is intuitionistic preopen in X for every intuitionistic open set A in Y.

Definition 2.8. [7]

A map $f: (X, \tau) \to (Y, \sigma)$ is intuitionistic open if the image f(A) is intuitionistic open in Y for every intuitionistic open set A in X.

Definition 2.9. [7]

A bijection $f:(X,\tau) \to (Y,\sigma)$ is called intuitionistic homeomorphism if f is both intuitionistic continuous and intuitionistic open.

3.I D-OPEN AND I D-CLOSED MAPS

Definition 3.1:

A map $f: (X, \tau) \to (Y, \sigma)$ is intuitionistic α -open (I α -open) if the image f(A) is intuitionistic α -open in Y for every intuitionistic open set A in X.

Definition 3.2:

A map $f: (X, \tau) \to (Y, \sigma)$ is intuitionistic α -closed (I α -closed) if the image f(A) is intuitionistic α -closed in Y for every intuitionistic closed set A in X.

Example 3.3:

Let $X = \{a, b, c\}, \tau = \{\phi, X, < X, \phi, \{a\} > \}, \sigma = \{\phi, Y, < Y, \phi, \{a\} >, < Y, \{a\}, \phi >\}.$ Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a. Then the map f is I α -open

Theorem 3.4:

A map $f : (X, \tau) \to (Y, \sigma)$ is intuitionistic α -open iff $f(\text{Iint}(A)) \subset \text{Iaint}(f(A))$ for every intuitionistic set A in X.

Proof:

Let $A \subset X$ and $f : (X, \tau) \to (Y, \sigma)$ be intuitionistic α -open. Then f(Iint(A)) is intuitionistic α -open in Y, which implies $f(\text{Iint}(A))=\text{Iaint}(f(\text{Iint}(A))) \subset \text{Iaint}(f(A))$. On the other hand, let A be intuitionistic open in X. Then by hypothesis, $f(A) = f(\text{Iint}(A)) \subset \text{Iaint}(f(A))$. Therefore f is intuitionistic α -open.

Theorem 3.5:

A map $f : (X, \tau) \to (Y, \sigma)$ is intuitionistic α -closed iff $I\alpha cl(f(A)) \subset f(Icl(A))$ for each intuitionistic set A in X.

Proof:

Let $A \subset X$ and $f : (X, \tau) \to (Y, \sigma)$ be intuitionistic α -closed. Then f(Icl(A)) is intuitionistic α -closed in Y which implies Iacl(f(Icl(A)))=f(Icl(A)). Since $f(A) \subset f(Icl(A))$, $Iacl(f(A)) \subset Iacl(f(Icl(A)))$

 \subset f(Icl(A)) for every intuitionistic set A of X. Conversely, let A be any intuitionistic closed set in X. Then A = Icl(A) and so f(A) = f(Icl(A)) \supseteq Iacl(f(A)), by hypothesis f(A) \subset Iacl(f(A)),

f(A) = Iacl(f(A)). So f(A) is intuitionistic α -closed and hence f is intuitionistic α -closed.

Theorem 3.6:

Let $f: (X, \tau) \to (Y, \sigma)$ be intuitionistic α -open mapping. If B is an intuitionistic set in Y and A is intuitionistic closed set in X containing $f^{-1}(B)$ then there exists intuitionistic α -closed set C in Y such that $B \subset C$ and $f^{-1}(C) \subset A$.

Proof:

Let $C = (f(A^c))^c$, where $(f(A^c))^c$ is intuitionistic α -closed in Y. Since $f^{-1}(B) \subset A$, $f(A^c) \subset B^c$. By hypothesis f is intuitionistic α -open then C is an intuitionistic α -closed set if $f^{-1}(C) \subset (f^{-1}(f(A^c))^c) \subset (A^c)^c = A$ and hence $B \subset C$ and $f^{-1}(C) \subset A$.

Theorem 3.7:

A map $f:(X,\tau) \to (Y,\sigma)$ is intuitionistic α -closed iff for each intuitionistic subset A of (Y,σ)

and for each intuitionistic open set B containing $f^{-1}(A)$ there is an intuitionistic α -open set W of

 (\mathbf{Y}, σ) such that $\mathbf{A} \subset \mathbf{W}$ and $\mathbf{f}^{-1}(\mathbf{A}) \subset \mathbf{B}$.

Proof:

Let f be intuitionistic α -closed map and A be an intuitionistic set of Y. By hypothesis for each intuitionistic open subset B of (X, τ) , $f^{-1}(A) \subset B$. Then $V = (f(B^c))^c$ is an intuitionistic α -open set containing A such that $f^{-1}(A) \subset B$.

Conversely, let A be intuitionistic closed in (X, τ) . Then $f^{-1}(f(A^c)) \subset A^c$ and A^c is intuitionistic open. By assumption there exists an intuitionistic α -open set W of (Y, σ) such that $f(A^c) \subset W$, $f^{-1}(W) \subset A^c$ and so $A \subset (f^{-1}(W))^c$. Hence $W^c \subset f(A) \subset f(f^{-1}(W^c)) \subset W^c \Rightarrow f(A) = W^c$. Since W^c is intuitionistic α -closed in (Y, σ) and f(A) is intuitionistic α -closed in (Y, σ) , f is intuitionistic α -closed.

Definition 3.8:

A map $f:(X,\tau) \to (Y,\sigma)$ is strongly intuitionistic α -open if f(U) is intuitionistic α -open in Y for each intuitionistic α -open U in X.

Example 3.9:

Let X={a,b}=Y, $\tau = \{\phi, X, \langle X, \phi, \{b\}\rangle\}, \sigma = \{\phi, Y, \langle Y, \phi, \{a\}\rangle\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a)=b and f(b)=a. Then f is strongly intuitionistic α -open.

Theorem 3.10:

A map $f:(X,\tau) \to (Y,\sigma)$ is intuitionistic open and intuitionistic continuous then f is strongly intuitionistic α -open.

Proof:

Let A be intuitionistic α -open then A \subset Iint(Icl(Iint(A))) which implies $f(A) \subset f(Iint(Icl(Iint(A)))) \subset Iint(f(Icl(Iint(A))))$.By the continuity of f, f(IclIint(A)) \subset Icl(f(Iint(A))).Again, by openness of f, f(Iint(A) \subset Iint(f(A).Therefore, f(A) \subset Iint(Icl(Iintf(A))).Consequently, f(A) \in I α OS(Y).

Definition 3.11:

A mapping $f:(X,\tau) \to (Y,\sigma)$ is said to be intuitionistic α -irresolute if the inverse image of every intuitionistic α -open set of Y is intuitionistic α -open in X.

Theorem 3.12:

If $f:(X,\tau) \to (Y,\sigma)$ is intuitionistic open and intuitionistic continuous, then f is intuitionistic α -irresolute

Proof:

Let $B \in I\alpha OS(Y)$ then $B \subset Iint(Icl(Iint(B)))$. Therefore $f^{-1}(B) \subset f^{-1}(Iint(Icl(Iint(B))))$. Since f is intuitionistic continuous, $f^{-1}(Iint(Icl(Iint(B)))) \subset Iintf^{-1}(Icl(Iint(B))) \subset Iint(Icl(f^{-1}(Iint(B))))$. By continuity of f we have, $f^{-1}(Iint(B)) \subset Iint f^{-1}(B)$. Hence $f^{-1}(B) \subset Iint(Icl(Iint(f^{-1}(B))))$. Then $f^{-1}(B) \in I\alpha OS(X)$.

Definition 3.13:

A mapping $f:(X,\tau) \to (Y,\sigma)$ is said to be intuitionistic α -continuous if the preimage f(A) is intuitionistic α -open in X for every intuitionistic open set in Y.

Theorem 3.14:

If $f:(X,\tau) \to (Y,\sigma)$ is intuitionistic precontinuous and intuitionistic semicontinuous then *f* is intuitionistic α -continuous.

Proof:

Let B be intuitionistic open set in Y.Then $f^{-1}(B)$ is intuitionistic preopen as well as intuitionistic semiopen in X.So, $f^{-1}(B) \subset \text{Iint}(\text{Icl}(f^{-1}(B)))$ and $f^{-1}(B) \subset \text{IclIint}(f^{-1}(B))$.This implies $f^{-1}(B) \subset \text{Iint}(\text{Icl}(\text{IclIint}(f^{-1}(B)))) \subset \text{Iint}(\text{Icl}(\text{Iint}(f^{-1}(B))))$. Hence f is intuitionistic α -continuous.

Theorem 3.15:

If $f:(X,\tau) \to (Y,\sigma)$ is intuitionistic closed map and $g:(Y,\sigma) \to (Z,\eta)$ is intuitionistic α -closed then the composition $g \circ f:(X,\tau) \to (Z,\eta)$ is intuitionistic α -closed map.

Proof:

Let B be an intuitionistic closed set in X. Since f is an intuitionistic closed map, f(B) is intuitionistic closed in Y. Also since g is an intuitionistic α -closed map, g(f(B)) is intuitionistic α -closed in Z which implies $g \circ f(B) = g(f(B))$ is intuitionistic α -closed and hence $g \circ f$ is an intuitionistic α -closed map.

Definition 3.16:

An intuitionistic topological space (X, τ) is said to be IT_{α} space if every intuitionistic α -closed set is intuitionistic closed in X.

Theorem 3.17:

Let $(X, \tau), (Z, \eta)$ be two intuitionistic topological spaces and (Y, σ) be IT $_{\alpha}$ space. If the maps $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ are intuitionistic α -closed then the composition $g \circ f: (X, \tau) \to (Z, \eta)$ is intuitionistic α -closed.

Proof:

Let B be an intuitionistic closed set in X. Since f is intuitionistic α -closed, f(B) is intuitionistic α -closed in Y. From hypothesis, f(B) is intuitionistic closed in Y. Since g is intuitionistic α -closed, g(f(B)) is intuitionistic α -closed in Z and g(f(B))=g \circ f(B). Therefore, g \circ f is intuitionistic α -closed.

Theorem 3.18:

Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\eta)$ be two intuitionistic maps. Then

(i) If $g \circ f$ is intuitionistic α -open and f is intuitionistic continuous then g is intuitionistic α -open.

(ii) If $g \circ f$ is intuitionistic open and g is intuitionistic α -continuous then f is intuitionistic α -open.

Proof:

(i)Let A be an intuitionistic open set in Y. Then $f^{-1}(A)$ is an intuitionistic open set in X. Since $g \circ f$ is intuitionistic α -open map, $(g \circ f)(f^{-1}(A)) = g(f(f^{-1}(A))) = g(A)$ is an intuitionistic α -open set in Z. Therefore g is intuitionistic α -open.

(ii)Let A be an intuitionistic open set in X. Then g(f(A)) is an intuitionistic open set in Z. Therefore g^{-1} (g(f(A))) = f(A) is an intuitionistic α -open set in Y. Hence f is intuitionistic α -open map.

4.I D-HOMEOMORPHISM IN INTUITIONISTIC TOPOLOGICAL SPACES Definition 4.1:

A bijection $f : (X, \tau) \rightarrow (Y, \sigma)$ is called intuitionistic α -homeomorphism(I α -homeomorphism) if f is both intuitionistic α -continuous and intuitionistic α -open.

The intuitionistic topological space (X, τ) and (Y, σ) are intuitionistic α -homeomorphic if there exist an intuitionistic α -homeomorphism from (X, τ) to (Y, σ) . The family of all intuitionistic α -homeomorphisms from (X, τ) onto itself is denoted by $I\alpha h(X, \tau)$.

Example 4.2:

Let X={a,b}=Y, $\tau = \{ \phi, X, \langle X, \{a\}, \phi \rangle \}, \sigma = \{ \phi, Y, \langle Y, \phi, \{a\} \rangle \}$.Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by

f(a)=a and f(b)=b. Then the map f is bijective, intuitionistic α -continuous and intuitionistic α -open. So, f is intuitionistic α -homeomorphism.

Theorem 4.3:

Every intuitionistic homeomorphism is intuitionistic α -homeomorphism.

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be an intuitionistic homeomorphism, then f is bijective, intuitionistic continuous

and intuitionistic open. Let B be an intuitionistic open set in Y. As f is intuitionistic continuous, $f^{-1}(B)$ is intuitionistic open in X. Since every intuitionistic open set is intuitionistic α -open, $f^{-1}(B)$ is intuitionistic α -open in X which implies f is intuitionistic α -continuous. Assume A to be intuitionistic open in X.As f is intuitionistic open, f(A) is intuitionistic open in Y. Since, every intuitionistic open set is intuitionistic α -open, f(A) is intuitionistic α -open in Y which implies f is intuitionistic α -open. Hence f is an intuitionistic α -homeomorphism.

Remark 4.4:

Every intuitionistic α -homeomorphism need not be intuitionistic homeomorphism and the example is given below.

Example 4.5:

Let X={a,b}=Y , $\tau = \{\phi , X, \langle X, \{a\}, \phi\rangle\}$, $\sigma = \{\phi, Y, \langle Y, \phi, \{a\}\rangle\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by

f(a)=a and f(b)=b. Since the image of $\langle X, \{a\}, \phi \rangle$ is not intuitionistic open in (Y, σ) under f, it is not intuitionistic homeomorphism but intuitionistic α -homeomorphism.

Theorem 4.6:

Every intuitionistic α -homeomorphism from an IT $_{\alpha}$ space into another IT $_{\alpha}$ space is an intuitionistic homeomorphism

Proof:

Let $f : (X, \tau) \to (Y, \sigma)$ be an intuitionistic α -homeomorphism and A be intuitionistic open in X. Since f is intuitionistic α -open and Y is an IT $_{\alpha}$ space, f(A) is intuitionistic open in Y.So, f is an intuitionistic open map.

Since f is intuitionistic α -continuous and X is an IT_{α} space, f⁻¹(A) is intuitionistic closed in X. Therefore f is intuitionistic continuous. Hence f is intuitionistic homeomorphism.

Proposition 4.7:

For a bijective map $f: (X, \tau) \to (Y, \sigma)$ the following are equivalent.

- (i) f is intuitionistic α -open
- (ii) f is intuitionistic α -closed

(iii) $f^{-1}: (Y, \sigma) \to (X, \tau)$ is intuitionistic α -continuous

Proof:

$(i) \Rightarrow (ii)$

Let $A = \langle X, A_1, A_2 \rangle$ be intuitionistic closed in X. Then X-A = $\langle X, A_1, A_2 \rangle$ is intuitionistic open in X. Since f is intuitionistic α -open, f(X-A) is intuitionistic α -open in Y. So, f($\langle X, A_2, A_1 \rangle$)

 $= \langle Y, f(A_2), f_{(A_1)} \rangle = \langle Y, f(A_2), Y - f(X - A_1) \rangle$ is intuitionistic α -open in Y and hence $\langle Y, Y - f(X - A_1), f(A_2) \rangle$ is intuitionistic α -closed in Y.Since $Y - f(X - A_1) = f(A_1) \langle Y, Y - f(X - A_1), f(A_2) \rangle = \langle Y, f(A_1), f(A_2) \rangle$ is intuitionistic α -closed in Y. Hence f is intuitionistic α -closed

 $(ii) \! \Rightarrow (iii)$

Let A be intuitionistic closed in X. Since f is intuitionistic α -closed, f(A) is intuitionistic α -closed in Y.And since f is bijective f(A) = (f⁻¹)⁻¹ (A), f⁻¹ is intuitionistic α -continuous (iii) \Rightarrow (i)

Let A be intuitionistic open in X. By hypothesis, $(f^{-1})^{-1}(A)$ is intuitionistic α -open in Y i.e., f(A) is intuitionistic α -open in Y.

Theorem 4.8:

Let $f:(X,\tau) \to (Y,\sigma)$ be bijective and I α -continuous, then the following statements are equivalent

(i) f is intuitionistic α -open

(ii) f is intuitionistic α -homeomorphism

(iii) f is intuitionistic α -closed

Proof:

 $(i) \Rightarrow (ii)$

Since f is intuitionistic bijective, intuitionistic α -continuous and intuitionistic α -open, by definition,

f is an intuitionistic α -homeomorphism.

 $(\mathrm{ii})\! \Rightarrow (\mathrm{iii})$

Let B be intuitionistic closed in X. Then B^c is intuitionistic open in X. By hypothesis, $f(B^c)=(f(B))^c$ is intuitionistic α -open in Y.i.e., f(B) is intuitionistic α -closed in Y.Therefore f is intuitionistic α -closed.

 $(iii) \Rightarrow (i)$

Let B be intuitionistic open in X. Then B^c is intuitionistic closed in X. By hypothesis, $f(B^c)=(f(B))^c$ is intuitionistic α -closed in Y.i.e., f(V) is intuitionistic α -open in Y. Therefore, f is intuitionistic α -open.

Definition 4.9:

A bijection $f:(X,\tau) \to (Y,\sigma)$ is said to be $I\alpha^*$ -homeomorphism if f and f^{-1} are intuitionistic α -irresolute.

Example 4.10:

Let X={a,b}=Y, τ ={ ϕ , X, $\langle X, \{a\}, \phi \rangle$, \rangle }, σ = { ϕ , Y, $\langle Y, \phi, \{a\} \rangle$ }.Define $f : (X, \tau) \to (Y, \sigma)$ by

f(b)=b and f(a)=a. Then f is $I\alpha^*$ -homeomorphism.

Proposition 4.11:

Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ are $I\alpha^*$ -homeomorphism then $gof : (X, \tau) \to (Z, \eta)$ is an $I\alpha^*$ -homeomorphism.

Proof:

Let B be an intuitionistic α -open set in Z. Since g is intuitionistic α -irresolute, $g^{-1}(B)$ is intuitionistic α -open in X. Therefore (gof) is intuitionistic α -irresolute, $f^{-1}(g^{-1}(B)) = (gof)^{-1}(B)$ is intuitionistic α -open in X. Therefore (gof) is intuitionistic α -irresolute.Let G be intuitionistic α -open in X, (gof)(G) = g(f(G)) = g(W) where W=f(G). By hypothesis, f(G) is intuitionistic α -open set in Y and g(f(G)) is intuitionistic α -open set in Z. Therefore $(gof)^{-1}$ is I α -irresolute. Also (gof) is a bijection. Hence (gof) is I α^* -homeomorphism.

Theorem 4.12:

Every intuitionistic α -homeomorphism from an IT_{α} -space into another IT_{α} -space is an intuitionistic α^* -homeomorphism

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be an Ia-homeomorphism. Then f is bijective, Ia-continuous and Ia-open. Let A be

I α -closed in Y then A is intuitionistic closed in Y. Since f is I α -continuous, f⁻¹ (A) is intuitionistic α -closed in X. Hence f is an intuitionistic α -irresolute map. Let B be intuitionistic

 α -open in X then B is intuitionistic open in X. Since f is intuitionistic α -open, f(A) is intuitionistic α -open in Y. Hence f⁻¹ is an intuitionistic α -irresolute map. Therefore, f is I α^* -homeomorphism.

Theorem 4.13:

Every intuitionistic α^* -homeomorphism is intuitionistic α -homeomorphism **Proof:** If follows directly from the definition 4.1 and 4.9.

Proposition 4.14:

Every intuitionistic α^* -homeomorphism is strongly intuitionistic α -open. **Proof:** Follows directly from definition 4.9.

Example 4.15:

 $\text{Let } X=\{a,b\}=Y, \ \tau=\{ \ \phi \ , X \ , \langle X \ , \phi \ , \{b\}\rangle \ \}, \ \sigma=\{ \ \phi \ , Y \ , \ \langle Y \ , \phi \ , \{a\}\rangle \ \}. \\ \text{Define } f \ : (X \ , \tau \) \ \rightarrow \ (Y \ , \sigma \) \ \text{by } f(a)=b \ A = b \ A$

and f(b)=a. Then f is strongly intuitionistic α -open but not intuitionistic α^* -homeomorphism.

References

- [1]. And rijevic D, Some properties of the topology of α -Sets, Mat. Vesnik 36(1984),1-10.
- [2]. Coker D, A note on intuitionistic sets and intuitionistic points, Turkish J.Math.(1996), 343-351.
- [3]. Coker D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, (1997),81-89.
- [4]. Coker D, An introduction to intuitionistic topological spaces, Busefal 81,(2000),51-56.
- [5]. Gnanambal Ilango, S. Selvanayaki, Generalized preregular closed sets in intuitionistic topological spaces, Internat. J. Math. Archive. 5(4) (2014), 1-7.
- [6]. Gnanambal Ilango, S. Selvanayaki, Homeomorphism on intuitionistic topological spaces,
- [7]. Annals of Fuzzy Mathematics and Informatics, Volume 11, No. 6, (June 2016), 957-966.
- [8]. Gnanambal Ilango, S.Girija. Some more results on intuitionistic semi open sets, International Journal of Engineering Research and Applications, Vol 4, 11, (2014), 70-74.
- [9]. Olav Njastad, On some classes of nearly open sets, Pacific Journal of Mathematics 15,(1965), 961 -970.
- [10]. Younis, J.Yaseen, Asmaa G. Raouf, On generalization closed set and generalized continuity on Intuitionistic topological spaces, J. of Al-Anbar University for Pure Science, 3(1), (2009).

T.A.Albinaa "On α-Homeomorphism in Intuitionistic Topological Spaces" International Journal of Engineering Science Invention(IJESI), vol. 6, no. 9, 2017, pp. 07-13.