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Abstract: In many body theories a good state-specific (SS) method, starting with a multi-reference function, 

takes care of the non-dynamical correlation due to near-degeneracy, and targets a specific state of interest via a 

state-specific wave operator bringing in the dynamical correlation by a cluster expansion inducing excitation to 

the virtual functions. All such methods are generically called as state-specific multi-reference (SSMR) methods. 

The SSMR methods address the solution of specific states of interest one at a time and are thus free from the 

intruder state problem as long as the target state is well separated from the virtual one.  
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I. Introduction 
The traditional multireference (MR) coupled-cluster (CC) methods based on the effective hamiltonian 

are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) 

involving real or avoided curve crossing.  

I discuss below as to how the problem of intruder states creeps in many body formulation by  considering a 

system with a fixed number of electrons, described by the function ψa, the electronic Hamiltonian H and the 

eigenvalue Ea satisfying the Schrӧdinger equation 

𝐻𝜓𝑎 = 𝐸𝑎𝜓𝑎  

Let us define a subspace which contains the dominant part of ψa as the model space. Then a reference function  

𝜓𝑎
𝜊  can be defined in this subspace which is related to 𝜓𝑎  through a suitable mapping operator Ω (commonly 

referred to as the wave operator) such that 

Ω𝜓𝑎
𝜊 = 𝜓𝑎  

If all the possible combinations of the model space functions, that is, all 

𝜓𝑎
𝜊  ∀𝑎 = 1,2,3, … , 𝑁, and a single wave operator Ω is used to get the corresponding excited states, the above 

equation is valid for all N. If Q is the virtual space projector, the wave operator then obeys the Bloch equation, 

with some partitioning of H. 

𝑄 Ω, H0 P = Q VΩ − ΩPVΩ P 

The underlying Rayleigh- Schrӧdinger form of the first order wave operator satisfies: 

𝑄 Ω 1 , 𝐻0  𝑃 = 𝑄𝑉𝑃 

and the expression for the matrix element of Ω 1  connecting one model determinant 𝜙𝑎  to a virtual 𝜒𝑙  is 

Ω𝑙𝑎
(1)

=
𝑉𝑙𝑎

(< 𝜙𝑎 𝐻0 𝜙𝑎 > −< 𝜒𝑙  𝐻0 𝜒𝑙 >
 

As long as the virtual functions 𝜒𝑙  remain energetically well-separated from the model functions 𝜙𝑎 , the 

solution for the amplitudes of Ω remains well-behaved. 

 

The SSMR methods considers the solution of a definite state of interest, one at a time, and are therefore devoid 

of the intruder states, as long as the targeted state is energetically well separated from the virtual functions. The 

formulation of a state-specific MR (SSMR) approach, thus, seems to be the only way to reach the goals set for a 

successful many-body theory.  

 

II. The Goal: State Specific Multi-Reference Methods 
 The first proposal of a cluster expansion Ansatz in this context was due to Silverstone and Sinanoglu 
1
 using a combination of multi-determinant functions. This was the first attempt to develop a state-specific (SS) 

theory with the combining coefficients of the reference determinants being not updated iteratively along with the 

cluster amplitudes. This strategy results in the  contracted or  unrelaxed version of the theory. Several choices of 
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such reference functions are possible, depending on the degree of sophistication demanded at the zeroth order 

description. The most common choices are (a) a CAS configuration interaction (CAS-CI) or the more elaborate 

CAS based multi-configuration self-consistent field, CAS-SCF, function, (b) a CI or an MC-SCF function based 

on a quasi-complete active space (QACS), (c) a strongly orthogonal generalized valence-bond (SO-GVB) 

function. Nevertheless there have been instances of using SR starting point descriptions with selective higher 

rank cluster operators to a SS approach 
2,3,4,5

. There are SS methods that start with a truly MR function, that 

accounts for the non-dynamical correlation stemming out the quasi-degeneracy, and targets a specific state of 

interest via a suitable state-specific wave-operator that incorporates dynamical correlation through cluster 

expansion inducing excitation to the virtual functions 
6,7,8,9,10,11

. 

 Among the many variants of SSMR methods proposed in the literature, the methods of Malrieu and 

co-workers
12,13

, Mukherjee and co-workers
6,10,11

 and Hubac  and co-workers 
14,15 

are based on the Jeziorski-

Monkhorst Ansatz (JM) have been systematically studied both theoretically and in several applications. The 

development of Mukherjee and co-workers and Hubac  and co-workers  and further developed by Pittner et al 
16

 

are both based on the full JM Ansatz 
17

, while Malrieu and co-workers use the low order quasi-linearized 

truncation schemes of the JM wave operator.  

 

2.1 Comparison Between Different Variants of SSMR Methods 

Using the theory of state-specific self-consistent intermediate Hamiltonians, Malrieu and co-workers 

prescribe a new dressing of a multireference (MR) singles and doubles configuration interaction (CI) 

Hamiltonian matrix which ensures size consistency. The method is based on a coupled cluster (CC) type 

factorization of the coefficients of the triples and quadruples and can be considered as leading to a dressed CI 

formulation of a state-specific MRCC method. 

The multireference Brillouin-Wigner CC (MR BWCC) method proposed by Hubac   and co-workers  

does not suffer from intruder states and has only a linear scaling with the number of references and very simple 

amplitude equations, however, due to presence of unlinked terms, it is no longer size extensive. The MR BWCC 

method with an approximate size-extensivity correction has been successfully applied to a variety of diatomics 

and also to larger, chemically interesting systems
18

. However, the a posteriori correction
19

 is only approximate 

and this leaves a question about the reliability of the method. Moreover, the corrected amplitudes do not 

correspond to any converged amplitude equation, which precludes the application of the usual gradient 

techniques. The new MRCC approach proposed by Hanrath
20

 does not seem to be computationally competitive 

yet. 

The state-specific MRCC method proposed by Mukherjee  et al. 
6,10,11

  has been developed into a 

powerful method for chemical research in several recent studies
21,22,23

. Evangelista  et al.
21

 has renamed SS-

MRCC as Mk-MRCC (Mukherjee's MRCC theory). The first production-level program (PSIMRCC) for Mk-

MRCCSD has been coded into the freely available PSI3 package. Moreover, a hierarchy of Mk-MRCCSDT-n (n 

= 1a, 1b, 2, 3) methods for the iterative inclusion of connected triple excitations has been formulated and 

implemented for the first time. It has been investigated by Evangelista et al.
21

 who developed explicit formulas 

for the coupling terms present in this approach
22

. Recently, this method has been implemented by Evangelista et 

al.
23

 at the singles, doubles, and iterative triples level and other iterative approximations thereof and an 

alternative formulation of its amplitude equations with simpler coupling terms has been developed by Pittner 

and co-workers et al. 
24

. Comparing with experimental data Evangelista et al.
22,23

 shows that the Mukherjee's 

SS-MRCC method (referred as MkMRCC) is generally superior to the Brillouin-Wigner (MRBWCC) theory in 

predicting energies, structures, and vibrational frequencies for various chemically interesting systems. In their 

papers, they have commented ``MkCCSDT theory-a multireference coupled cluster method that is size 

extensive, intruder free, and that can potentially achieve chemical accuracy-is a prominent target for future 

development". Moreover, when Evangelista et al.  analyzed the effect of the truncation of the excitation level, 

we found that MkCC shows a faster convergence to the FCI limit than BWCC. We thus concluded that even at 

the singles and doubles level, MkCC may provide accurate potential energy curves and that the inclusion of full 

triples promises to deliver energetics accurate to better than 1 kcal.mol
-1

. 

Mk-MRCC method is manifestly size-extensive, orbital invariant and size-consistent. This formalism is 

not just a trivial application of the state-universal MRCC (SU-MRCC) 
17

 multi-root formalism to one root of 

interest. It is altogether a new formalism, with the working equations quite different from that of the SU-MRCC 

theory. Since the SS-MRPT theory uses the same Ansatz as in SU-MRCC, it has more degrees of freedom than 

is needed to generate one root. This flexibility, in fact, is an advantage and is exploited to achieve the twin 

desirable goals: (i) avoiding intruders, and (ii) generating an explicitly size-extensive formalism. 

 Recently Das et al.
25

 propose an externally corrected size-extensive single-root multi-reference CC 

(ecsr-MRCC) formalism, which is intruder-free and simpler in structure as compared to the parent SS-MRCC 

theory.  
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In all these SSMR many-body methods, the diagonalization of the effective operator in the model space 

generates the energies associated with altered coefficients for the model space functions, and hence the methods 

generate relaxed coefficients for the model space functions. The real advantage of relaxed SSMR theories over 

the unrelaxed ones may be more clearly understood in consideration of the mixed states, e.g. those electronic 

states of different types as valence and Rydberg, or covalent and ionic, which contribute strongly to the wave 

function. The relative importance of different types of states tend to vary strongly with the variation in 

molecular geometry. In considerations of such states the difference in coefficients of reference wave function 

and that of the actual correlated function is appreciably large. Hence a computational model warranting 

relaxation of the model space coefficients in the correlated treatment provides a conceptually correct description 

of this mixing. 

Adamowicz and co-workers 
26

 suggested a state-specific formulation where a special role is played by 

one reference determinant which is more dominant than the rest. The entire cluster expansion is performed with 

respect to this determinant. The specific choice of the exponential Ansatz by Adamowicz and co-workers  lead 

to no redundancy problem of cluster amplitudes. Their fully exponential Ansatz avoids redundancy problem 

because it generates all the needed excitations from the single formal reference determinant, thus making a clear 

separation between the occupied and unoccupied, and between active and inactive orbitals. The non-dynamical 

correlation is brought into the formulation by including in the cluster operator three- and four-body terms with at 

least one active orbital different from those present in the dominant determinant. There is a closely related 

formulation by Stolarczyk 
27

. Since all the cluster operators are defined with respect to a pivotal determinant, 

these formulations are not really based on an MRCC approach. Moreover, the presence of three- and four-body 

operators makes the organization of the equations rather complex. Very recently Ivanov and Adamowicz 
28

 

proposed a new state-specific multi-reference CC method termed as CASCCSD where the CASSCF wave 

function is used as the reference. The spirit of the approach lies in the partitioning of the entire set of CAS 

orbitals into the active and nonactive ones followed by the construction of coupled cluster wave functions which 

involve the excitation into the orbitals of the different sets. The present SS-MRCC formulation on which we 

base our work does not warrant the presence of a dominant determinant in the reference function. In this sense, 

it is more general and involves fewer sets of terms/diagrams to achieve similar accuracy. The most elaborate 

scheme uses conditions where each cluster amplitude is scaled accordingly to the values of the corresponding 

Hamiltonian matrix elements. Truncations up to the single and doubles seems like an intuitively interesting 

choice, although a rigorous formulation for all ranks of cluster operators is rather difficult. 

 In the other state-specific development of Mahapatra et al. 
9
, different types of sufficiency conditions 

have been imposed, which follow from the assumption that the total energy E is a sum of dynamical Ed and non-

dynamical End correlation energies. There is pivotal function with respect to which the dynamical correlation is 

defined. The dynamical correlation energy stems from the virtual functions which are reached by cluster 

operators acting on the pivotal function. The cluster operators acting on the other reference determinants 

generate contributions to the non-dynamical correlation energies. Thus the sufficiency conditions in Ref. [9] are 

different from the recent SSMR formulations 
10,11,29,30

 which are evidently more straightforward compared to 

this SSMR theory
9
. 

The SS-MRCC theory of Mukherjee and co-workers shows a number of appealing features: (i) It is a 

genuine MRCC method that treats all references in the model space on an equal footing. (2) It is rigorously size 

extensive and leads to size-consistent energies when localized orbitals are used. (3) The theory is free from 

intruder states. (4) The resulting equations can be written in terms of the usual similarity-transformed 

Hamiltonian matrix elements plus off-diagonal coupling terms. The coupling terms refer to the ``same vacuum" 

and thus are not difficult to implement. (5) The SS-MRCC method works in both CMS and IMS. (6) The 

method is an explicitly spin-free in nature. (7) Finally, applications to atoms, small molecules, and medium-size 

molecules using SS-MRCC truncated to singles and doubles as well as triples have validated the accuracy of the 

theory vis-à-vis experiment and other theoretical methods. 

As a practical tool of being applicable to bigger molecules, a full-blown SS-MRCC (Mk-MRCC) 

developed by Mukherjee and co-workers would be rather demanding computationally. It is needless to say that 

the success of SS-MRCC (or Mk-MRCC) in dealing with intruders and maintaining manifest size-extensivity, 

and hence serving as a tool of immense potential to generate complete PES of molecular species with arbitrary 

complexity and generality has paved the path towards the development of physically motivated simplified 

versions of the full-blown method to deal with systems of real chemical interest in a computationally tractable 

manner. It thus seems that an effort should be spent at further development of physically motivated 

approximation schemes which capture a substantial portion of the correlation of the full-blown theory starting 

from the SS-MRCC and it various variant (such as perturbation and CEPA-like approximants which are 

computationally economical) method proposed by Mukherjee and co-workers. The SS-MRCC method of 

Mukherjee and co-workers allows transparent simplification via truncation of the working equations, leading to 

various perturbative methods (called by us as SS-MRPT
29.30,31

 ) and CEPA-like aproximants of practical utility 
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which are designed to capture the essential strength of the parent SS-MRCC method without significant 

sacrificing its accuracy.  

Another approach for treating the quasi-degeneracy in an intruder free manner is adopted by the 

various MR-based CEPA methods, which have appeared parallely along with the SS-based MRCC and MRPT 

methods. The earlier developed state-specific MRCEPA methods
32,33,34,35,36,37,38

 avoided the redundancy problem 

using non-redundant cluster operators to compute the dynamical correlation on the zeroth order MR wave 

function. 

Mukherjee and co-workers have recently suggested a suite of CEPA-like approximants
39,40

 to their 

earlier formulated SS-MRCC
6,10

 formalism based on a CAS, which show promise in their numerical 

performance vis-a-vis the parent theory. These theories, generically called SS-MRCEPA 
39,40 

,were much 

simpler than the SS-MRCC, yet they captured most of the essential physics; in particular they bypassed 

intruders naturally as in the case of the parent theory also had this property. They were all rigorously size-

extensive.  

 

III. Conclusion 
 Despite the success and elegance of CAS-based SSMR- based CC, PT (such as CASPT, MRMPPT, 

MCQDPT, SS-MRPT etc) and CEPA-like formalisms one objection is the exponential increase of the size of the 

model space when one increases the number of active orbitals. Among the CAS determinants, only a small 

percentage has a significant weight in the wave function, and a formalism based on a multireference non- CAS 

wave function seems highly desirable from a computational point of view. Although recently much more 

attention is being focused on the various developments and subsequent implementations of SSMR type methods, 

but the main criticism of the theories based on the wave operator of Jeziorski-Monkhorst type is its prohibitively 

increasing number of amplitudes, since the cluster operator is defined with respect to each reference 

determinant. In Jeziorski-Monkhorst (JM) Ansatz-based SSMR method, more parameters are needed to be 

optimized for treating a single state only and as a result of this, numerical implementation is not computationally 

cost effective. The criticism regarding the proliferation of cluster amplitudes in a theory using JM Ansatz is 

quite relevant. But this proliferation is shared by all such formalisms currently in use and not just confined to the 

Mk-MR (such SS-MRCC, SS-MRPT and SS-MRCEPA) formalism only. Thus it is worthwhile to develop a 

MR theory which efficiently avoids the problem of intruders and is simultaneously computationally economical. 

The number of cluster amplitudes of the method considered can be reduced using a contracted description of the 

Ansatz of the starting wave function as that of the contracted MRCI (Multireference Configuration Interaction) 

method such as positing the sensible approximation of equal amplitudes for all the one- and two-body inactive 

to virtual excitations. Since inactive excitations are numerous, such an assumption will lead to drastic reduction 

of the number of cluster amplitudes. This would amount to an `Anonymous Parentage for the Inactive 

excitations' (API). Very recently, Mukherjee and co-workers provided a version of SS-MRPT, termed as 

Anonymous Parentage for the Inactive excitations SS-MRPT (API-SSMRPT), which is very effective in 

drastically reducing the number of amplitudes without undue sacrifice in accuracy
41,42,

. The API-SSMRPT 

approach will open a possibility towards an accurate treatment for the states of arbitrary quasidegeneracy of 

small to large molecular systems since there is a drastic reduction of the number of cluster amplitudes in this 

approximation. 
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