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ABSTRACT : Understanding how to reproduce robust and reli-able decision making behavior in 

neuromorphic systems can be useful for developing information processing architectures in subthreshold analog 

circuits as well as future emerging nano-technologies, that comprise inhomogeneous and unreliable 

components. To this end, we explore the computational properties of a recurrent neural network, implemented 

in a custom mixed signal analog/digital neuromorphic chip, for realizing perceptual decision-making, bi-stable 

perception, and working memory. The chip comprises conductance-based integrate-and-fire neurons and 

configurable synapses with realistic dynamics. These circuits are configured to implement a recurrent neural 

network, composed of excitatory and inhibitory pools of silicon neurons coupled with local excitation and 

global inhibition. We show how the interplay between excitation and inhibition produces competitive winner-

take-all dynamics, which is a feature of decision-making and persistent activity models, and demonstrate that 

the system generates reliable dynamics capable of reproducing both neuro-physiological data and psycho-

physical performances in coding and collective distributed computation. 
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I. Introduction 

Much effort is currently being invested in the quest for developing new computing paradigms for 

information and communication technologies (ICT): fundamental notions are being revised and fundamental 

characteristics of new mate-rials are being explored to develop new types of computing systems that can go 

beyond the Complementary Metal–Oxide– Semiconductor (CMOS) era. In this work we address this challenge 

by taking inspiration from the efficiency and robust-ness of neuro-biological systems: we study an 

implementation of a brain-inspired model of basic computational primitives which uses low-power mixed signal 

subthreshold analog and asynchronous digital circuits to implement a network of spiking neurons and synapses. 

Despite the variability and heterogeneity observed in the analog circuits, we demonstrate a reliable 

neuromorphic implementation of neural processes involved in the foundations of bistable perception, decision 

making, and working memory. 

The ability of embodying information in the dynamics of a recurrent neural network, which can 

persist also in the absence of external stimulation and transition between meta-stable states, represents a 

fundamental processing capability of neural systems. We use the framework of recurrent neural networks and 

meta-stable attractor states to emulate processes that are at the basis of bistable perception, decision making, and 

working memory. The study of the collective dynamics of multiple neural populations with attractor states has 

been the subject of a good deal of investigation. This class of network is considered a basic building block for 

expressing different forms of computation in many different neural systems. In particular, reverberating states of 

cortical activity are thought to underlie important cognitive processes and functions: it has been shown for 

example that attractor networks in cerebral cortex are important for long-term memory [1], [2], short-term 

memory [3]–[5], contextual mental states [6], attention [7], bistable perception [8], [9], and perceptual decision 

mak-ing [10]–[12]. In biological inspired neural network models, it has often been assumed that an attractor in 

phase space represents an internal or an external source of information [13], [14]. From a biological perspective, 

recurrent spiking neural network models have expressed the dynamics of bistability in their firing rates. In this 

work we configured a neuromorphic VLSI chip comprising spiking neurons and dynamic synapses to 

implement recurrent neural networks with excitatory and inhibitory connections (implementing positive and 

negative feedback loops respectively). We configured the circuits to implement cortical neural network models 

and analyzed their dynamics by measuring the neuron’s spikes and calculating their mean firing rates. 

The paper is organized as follow: in the methods section, we describe the cortical network architecture 

and its imple-mentation in neuromorphic hardware. In the results section we show how the VLSI network 

architecture gives rise to bistable dynamics and demonstrate that these network dynamics can reproduce 

measured psychometric functions in a two choice discrimination task [15]–[17]. In Section IV we discuss the 

results and present the concluding remarks. 
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II. Materials And Methods 
Neuromorphic Very Large Scale Integration (VLSI) System: We use an analog/digital mixed signal 

VLSI neuromorphic device that contains implementations of silicon neurons and synapses using subthreshold 

analog circuits, and asynchronous memory and communication blocks [18] (see Fig. 1a). Every neuron has 32 

programmable synaptic inputs, with synaptic weights stored in 4 bit digital programmable Static Random 

Access Memory (SRAM) cells. We use the neuromorphic chip interfaced to a standard workstation, via an 

FPGA board that acts as a mapper [19] to send, receive and route spikes to and from the chip. Additionally the 

mapper stores the synaptic weight matrix that is used to program the chip’s SRAM cells. The neuromorphic chip 

is also connected to a daughter which is used to configure the analog parameters of the synapses and neurons in 

the chip. Figure 1a shows the arcturecture of the neuromorphic processor: asynchronous digital events coming 

from the mapper board are decoded at the input decoder; based on the decoded address the spikes are delivered 

to one of the excitatory or inhibitory SRAM synapses, or to one of the plastic synapses. The synapses then 

produce currents with biologically plausible dynamics that are integrated by the neuron. If these integrated 

inputs are sufficiently large, then the neuron generates a spike that is sent outside via the Address Event 

Representation (AER) output interface. 

The architecture of the network is illustrated in Fig. 1b: it is organized in three populations of neurons, 

A, B, and background (bg). The number of neurons in population A and B is Na = Nb = 22 while the background 

population counts Nbg = 12 neurons. Each population is recurrently connected, with sparse connectivity. 

Populations A and B inhibit each other via direct inhibitory connections. The connectivity factor c in Fig. 1b 

refers to the mean number of connections that a neuron makes with other neurons randomly chosen in the target 

population. The background population provides exci-tation to populations A and B. We calibrated the 

architecture parameters such that the two pools of neurons A and B exhibit meta-stable states of activity. The 

calibration method is based on mean field analysis as described in [20]. 

 
Fig 1(a): The Neuromorphic VLSI chip, it contains an array of 58 analog integrate-and-fire neurons and 

programmable synapses implemented with a 4 bit SRAM. 

 

 
Fig 1(b): The network consists of three populations of neurons (A, B, bg) recurrently connected. The 

connectivity in the network is random and sparse. Connectivity levels are as indicated in the diagram.      
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III. Results 
A) Discrimination of distinct stimuli and basins of attraction: 

Long-lasting spiking activity in the cortex, that lasts much longer than the typical time scales of 

synapses and membrane potentials, is the neural correlate of working memory and per-ceptual decision making. 

In theoretical neuroscience models this activity is assumed to encode sensory inputs which relate to different 

alternative possible decisions or percepts [16]. This activity is accumulated in different pools of neurons that, 

due to their recurrent excitatory connections, are capable of sustaining persistent activity, even after the input 

stimulus that triggered it is removed. Previous theoretical work has demonstrated that neural circuits of the type 

shown in Fig. 1b can account for salient characteristics of the neural correlates of perceptual decision making 

such as psychometric functions and reaction times [16], [17]. 

We emulated a two choice discrimination task using the two pools of silicon neurons described in 

Section II-A. In partic-ular, we reproduced the results of a classical neuroscience experiment denoted as the two 

alternative random moving dots task. In this experiment, monkeys or human subjects have to report the net 

direction of perceived motion (left or right) of a patch of moving dots on a screen, as a function of the amount of 

coherently moving dots in one direction, versus the amount of dots moving in random directions. While 

performing the task, subjects accumulate evidences for a decision and report the perceived direction of motion 

as quickly as possible. The decision process is triggered when the accumulation of evidence reaches a threshold. 

The speed of execution of the task depends on the motion coherence (percentage of coherently moving dots in a 

given direction). In our experiment we bypassed the visual processing stages and stimulated the populations of 

neurons representing the perception of moving dots directly with computer generated spike trains. In particular, 

during the stimulation phase, we stimulated both populations A and B with inhomogeneous Poisson spike trains 

that represent the activity of the middle temporal (MT) visual area during a random moving dots task. In 

addition, we stimulated all neurons chip with a Poisson spike train of 10 Hz to represent background activity. 

The mean rates of the input stimuli are expressed as: 

 
where n0 is the base stimulation frequency, a represents a ramping coefficient, ncoh

i
 represents the 

percentage of motion coherence, and i indicates the experiment trial. The coherence factor ncoh
i
 is limited in the 

range: 0 < ncoh
i
 < 100. Therefore, if ncoh is large, the two populations will receive largely different inputs: na will 

be large and nb will be small. The competition between the two neural populations will eventually collapse in 

one of the two attractor states. The persistent activity that remains after the input stimulus removal, will be 

sustained by the recurrent network dynamics. This mnemonic delay period is the neural correlate of working 

memory. The choice of the network is probed by means of a threshold on the mean firing rates (nthr = 50 Hz): 

when one of the two population exceed this threshold than we assume that the network dynamics has committed 

to a decision. The time required for the two pools of neurons to finish the competition represents the reaction 

time of the trial. For trials in which the coherence is equal to zero, the two input stimuli have the same mean 

frequencies, which indicate a non informative input. While for coherence levels close to 100%, the mean input 

frequencies are about na = 100 Hz and nb = 0 Hz indicating a complete coherent stimulus. 

The decision space can be well represented by a 2D plot in the frequency space na, nb. Such a figure 

describes the time spent by the two populations of neurons at different firing rate frequencies. In Fig. 3 we show 

three different cases in which the input stimulus was at different coherence levels. On the x-axis we plot the 

mean firing rate frequency for population A, and on the y-axis we plot the firing rate for population B. Every 

plot in Fig. 3a, 3c, 3e is the average over 300 trials. At the beginning of the trial, the network dynamics is slowly 

moved from the spontaneous activity state (na nb 5 Hz) to a point in which both populations are firing at higher 

rate. In this phase, the rate of the two populations strictly depends on the input stimuli and the network is 

integrating evidences for the subsequent decision. After 200 ms from the presentation of the stimulus, the input 

is removed from the network and the network dynamics collapses in one of the two attractor states A or B. The 

collapse in one of the two attractor state is the neural correlates of a decision. When the mean firing rate activity 

is higher for population A (or B) then the network choice is A (or B). In Fig. 3a is shown the decision space for 

trials in which the coherence level was 0. This means that the network had equal information about the inputs 

and the choice was made at chance level ( 50%). In Fig. 3b ten trials are shown in a mean rates plot. As you can 

see, after the stimulus removal at 0:2s one of the two population smoothly switches off while the other increases 

its firing rate. Note that it is not possible to end with both populations firing at elevated reverberant state as the 

two pools of neurons inhibit each other. Figures 3a, 3b evidence that the choice A and B where almost 

equiprobable and the network was performing at chance level. 
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Fig 2: Neurometric functions. Every dot represents the mean of 300 trials. Error bars are the standard deviation.           

As the coherence level increases the performances increase. Moreover, the reaction time decrease with an 

increase coherence of the input stimuli which represents an easier discrimination trial. 

 

When the coherence of the input stimulus increases the network performs better than chance level. For 

high coherence of the input, the network is always making the correct decision (see Fig. 2). Figure 2 shows the 

psychometric functions for six different levels of input coherence. Every dot in the psychometric function is the 

average over 300 trials. The reaction time indicates the difficulty of the trial. In fact the reaction time decreases 

for higher coherence of the input stimuli while for low coherence stimuli it saturates around 320 ms, visible in 

Fig. 2b. The fine tuning of the reaction time can be achieved by driving, with the external input, the system in 

the proximity of the bifurcation value [17]. This tuning has been exploited in order to achieve biological realistic 

reaction time as indicated in Fig. 2b. 

 

 
Fig 3: Decision space and mean rate plots. a, b: ncoh

1
 = 1 %,c, d: ncoh

2
20 %, and e, f: ncoh

3
 = 100 %. Plots a, c, e 

represent the average of 300 trials and they show the averaged network activity, i.e. the mean rate frequency of 

populations A and B. Figures. b, d, f show the mean firing rates for ten trials for different coherence levels. The 

square wave at the top of Fig. d indicates that the stimulation phase lasts 200ms and that at 1:4s an inhibitory 

stimulus is used to suppress reverberant network activity. After the stimulus removal t = 0:2, network activity 

collapses in one of the two attractor states. The density for the A choice decrease as the coherence level for the 

opposite stimulus increase. This is evident from the smaller blue central blob that gradually decrease in size, 

from 3a, 3c, to 3e. 
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B) Dynamics of perceptual bistability: 

When the recurrent connections among neurons that are part of the same population (A, B in Fig. 1b) 

are strong enough, the network operates in a winner-take-all regime. In this regime, only one excitatory 

population can be in the attractor state at any point in time. Point-attractor neural networks have two types of 

stable fixed points of the network dynamics. They exhibit a spontaneous state with a low firing rate (down 

state), and one or more persistent states with high firing rates in which the activity of the network tends to be 

stable (attractor or up state). The system will react to external stimulation, i.e. to a destabilizing stimulus, with 

different patterns of activations but it will always relax toward one of the stable attractor state [21]. In a winner-

take-all regime, since the two populations inhibit each other, only one population of neurons can be found in the 

up state of the network dynamics. The observed behaviour of our neuromorphic attractor network, when all 

neurons are stimulated by a constant injection of current, is an alternation of perceptual dominance among the 

two different activity states with very long time constants, orders of seconds. Fig-ure 4 shows five seconds of 

recordings of such behaviour. The central panel of Fig. 4b, shows the mean firing rate activity over time of 

neurons grouped in populations. Continuous green line depicts neurons in population A, and the dashed blue 

line represents neurons in population B. An irregular alternation of high activity is evident, and only one of the 

two populations of neurons can be found in the up state ( 80 Hz) of activity: this is a confirmation that the 

network is operating in a winner-take-all regime. 
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Fig. 4: Bistable dynamics. Populations mean firing rate over time. The input to the network is a constant 

injection of current in the soma of all neurons. 

 

IV. Conclusions 
We demonstrated an implementation in neuromorphic hard-ware of basic computational primitives 

used to produce neural plausible dynamics. In particular, our results well correlate not only with the behavioural 

responses (the reaction time and the accuracy) of subjects, but also to the neural responses in their cortical areas 

during a two-choice perceptual discrimination task. Choice formation and successive behaviour coincide with 

the transition from a spontaneous activity state to the elevated persistent state of activity in a clustered pool of 

neurons. An important aspect of this work is that reliable computation emerges from simple mismatched analog 

neurons; mismatch effects are evident in the mean rate plots, of Fig. 4, 1, where the frequency of the up states 

differ of about 10%. 
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