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Abstract: Segmentation of specific objects in an image is a key task in computer vision, for which various 

algorithms have been proposed. However, most of these algorithms are software-oriented and have high 

computational complexity that makes them difficult to implement in hardware for real-time applications. The 

semi-supervised graph-based random walker (RW) algorithm, which seeks the solution for a large sparse 

matrix, shows optimal image segmentation performance in software. In this paper, we configured our existing 

spiking neuromorphic processor to implement an adaptation of the RW algorithm that performs segmentation 

using an iterative method while preserving accuracy. Our hardware platform can be adapted to achieve an 

extremely fast segmentation speed of up to 1000 images per second by computing all neurons in parallel. We 

believe our approach will facilitate the implementation of graph-based computer vision algorithms on 

neuromorphic hardware for low power, real-time applications. Our approach will be immensely valuable in 

applications that require high-performance computing to run in real time, such as biomedical image 

segmentation for image-guided surgery. 
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I. Introduction 
Image segmentation is the process of partitioning an image into clusters of similar pixels corresponding 

to salient image regions, such as individual surfaces or objects, for easier processing and analysis. Several image 

segmentation techniques are popular, including those based on threshold, edge, region, cluster, watershed, 

partial-differential equations (PDEs), and artificial neural networks [1]. These methods can be categorised into 

manual, semi-automatic, and fully automatic. Semi-automatic or seeded image segmentation requires minimal 

user guidance or attention input from other processes to define the desired content to be extracted [2]–[4]. The 

random walker (RW) is one such multi-label interactive algorithm that models the image as a graph where 

pixels correspond to nodes and are connected to neighbouring pixels via weighted edges. The RW achieves 

segmentation by solving a discrete Dirichlet problem, but this is computationally expensive for real-time 

applications [5]. 

Image segmentation algorithms are primarily software-oriented with minimal concern for hardware 

implementation, thus restricting their use in several real-time applications such as image-guided surgery and 

defence surveillance [6], [7]. Several researchers have implemented image segmentation on generic hardware 

such as the field-programmable gate array (FPGA) [8]–[10]. However, these systems are based on the 

conventional von Neumann architecture and use fixed-point arithmetic, which requires a large amount of 

computational resources. The large silicon area requirements and power constraints of these implementations 

thus restrict their applications to handheld devices. The analogue very large-scale integrated (VLSI) 

implementation of image segmentation algorithms have also been reported [11], [12]. However, these systems 

are not easily scalable or configurable. 

Neuromorphic engineering offers an attractive alternative for designing systems suited for low power, 

real-time applications. This is an interdisciplinary approach inspired by the function, structural organisation, and 

physical foundations of biological nervous systems [13]–[18]. Neuromorphic systems are more robust and 

orders of magnitude more energy efficient than conventional approaches using user-programmed 

intelligence.Here, we utilise an end-to-end stochastic-, event-based neuromorphic system for performing image 

segmentation. Our image segmentation framework is based on the RW algorithm In our implementation, images 

are segmented by solving a discrete PDE using an iterative method as described in [19]. Typically, a scene is 

partitioned into different objects based on common properties such as depth, motion, or image intensity. Our 

work uses image intensity as the basis for segmentation, but the framework can be easily modified to 

incorporate other properties, such as texture or color, for segmentation. 

In a neuromorphic approach, neurons communicate via spikes (events) and information is encoded in 

terms of either spike rate or timing. In this work, we encode the information in terms of the spike rate. The 

spike-based computation that we use requires simple computational elements and can be scaled to larger 

systems. Moreover, our graph-based framework can be easily configured to perform other graph-based 

computer vision tasks. Our system could, thus, be a prototype for building smaller and power-efficient hardware 

systems to perform image segmentation in real time. 
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II. Algorithm 
We use a graph-based semi-automatic image segmentation method, where a user or pre-processing 

algorithm assigns the labels (either foreground or background) for a few image pixels (seed points). The 

segmentation algorithm is formulated on a weighted graph, where each node represents a pixel. These nodes are 

connected by graph edges and each edge has its own weight. The weight may be considered as a penalty (or cost 

function) for traveling from one node to another along the edge. Thus, the weights should be such that the 

desirable region in the image corresponds to larger weights among the nodes in the graph and vice versa. An 

image is represented as a graph 𝐺=(𝑉,𝐸), with vertices or nodes (pixels) 𝑣∈𝑉 and edges 𝑒∈𝐸⊆𝑉×𝑉. An edge, 𝑒, 

spanning two nodes 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑒𝑖𝑗 and a weight of the edge is denoted as 𝑤𝑖𝑗. The graph here is 

assumed undirected (𝑤𝑖𝑗=𝑤𝑗𝑖) with positive weights � 𝑤𝑖𝑗≥0� . The weights in the graph are a function of some 

combination of image features, where an image „feature‟ is any useful information that can be acquired from the 

image. Usually, the features are computed in a neighbourhood around each graph edge, transformed to give low 

edge costs to more desirable feature values. Here, we use the Gaussian weighting function, expressed as: 

                 (1) 

where, 𝑔𝑖 denotes the image intensity at pixel 𝑖 and 𝛽 is the free parameter. For a colour image, 𝑔𝑖 will 
represent a vector that handles different colour channels. Equation (1) can be modified to apply other image 
features such as texture information.  

In our semi-automatic segmentation algorithm, there are a set of user-defined nodes (pixels) denoted as 

𝑉𝑀, which are few in number, and a set of unmarked pixels 𝑉𝑈, such that 𝑉𝑀∪𝑉𝑈=𝑉 and 𝑉𝑀∩𝑉𝑈=𝜙. Each 

predefined node 𝑣𝑖⊂𝑉𝑀 is labelled from the set 𝐶={0,1,2,…𝑘}. In case of binary-labelled segmentation, 

𝐶={0,1}, where 0 and 1 denote the background and foreground, respectively. Segmentation is complete when all 

the unlabelled nodes 𝑉𝑈 are assigned labels. This segmentation problem can be formulated as a diffusion 

process defined using the equation below:  

                                    (2) 

where, 𝐼 is an image in 2D space and 𝐼𝑥,𝑦 denotes pixel intensity at position (𝑥,𝑦). The discrete formulation of 

(2) for isotropic diffusion (all edges have same weights) can be written as: 

                   (3) 
For a weighted graph (Fig. 1A), (3) will be modified as: 

                   (4) 
As the graph is undirected, 𝑑𝑥,𝑦=Σ𝑤𝑥,𝑦𝐸, the summation of the weights of all edges connecting the pixel 𝐼𝑥,𝑦 

to the neighbouring pixels (∈𝐸). This algorithm can be summarised as below: 

 Generate weights for all edges in the graph using (1).  

 Obtain a set of labelled pixels 𝑉𝑀 defined interactively or automatically. For binary segmentation, 

foreground-labelled pixels are assigned the value „1‟ and background pixels are assigned „0‟. This can be 

generalised for multi-label segmentation by considering each label at a time.  

  Iteratively solve (4) in parallel for all pixels, while keeping the value of the seeded pixels constant, and run 

till the pixel intensity converges.  

  After a few initial iterations, if pixels cross a threshold value, they are assigned the maximum value. This 

trick accelerates the diffusion across the neighbouring pixels.  

  Obtain final segmentation by thresholding pixel values. Pixels with intensities higher than the threshold are 

labelled as foreground, else treated as background. For multi-labelled pixels, individual pixels are assigned 

a label that maximises their value.  

 

III. Circuit Analogy And Proposed Implementation 
The relation between a diffusion process and electrical circuits has been known for a long time [20], 

[21]. The diffusion equation in a weighted graph can be described as the spread of electrical charge in a resistor–

capacitor (RC) circuit. The iterative solution of (4) can be interpreted as a simulation of the circuit shown in Fig. 

1B. However, it is difficult to implement this circuit using resistors that have different resistance values for 
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different edges, as the diffusion distance would be difficult to control electrically and the resistors would occupy 

large silicon area in the VLSI process. A signal injected into a linear resistor network decays exponentially with 

distance from the source. The diffusion distance is higher if the resistance between the nodes is small and vice 

versa. Thus, we propose a circuit implementation where transistors replace resistors and the gate voltage of the 

transistors controls the conductance between two nodes (Fig. 1C). In this weighted-graph circuit, labelled 

(seeded) node voltages propagate to neighbouring nodes based on their connectivity weights. Each node is built 

using the circuit shown in Fig. 1C. For a seeded node, 𝑉𝑠𝑒𝑒𝑑=1 (i.e. 𝑉𝑠𝑒𝑒𝑑� � � � � � � =0), and this switches on 

transistor 𝑇𝑖𝑛 and allows current 𝐼𝑖𝑛 to be injected into the neighbouring nodes via transistors 𝑇𝑁,𝑇𝑆,𝑇𝑊,𝑇𝐸 

and into transistor 𝑇𝑚 as sink current. Our circuit operates in the weak-inversion region (though it can also 

operate in the above-threshold region) of the transistor, with an exponential relationship between the gate 

voltage (𝑉𝑔𝑠) and current (𝐼𝑑𝑠) between the drain and source terminals that is expressed as: 

                           (5) 
where, 𝐼𝑑0 is the residual saturation drain current or channel leakage current, 𝑛 is the slope factor 

(generally between 1 and 1.5), and 𝑈𝑇 is the thermal voltage. The weights in the graph can be set by𝑉𝑔𝑠, which 

effectively controls the transconductance between neighbouring nodes. In the weighted graph, the weights are 

calculated based on neighbouring pixel intensities, as defined in (2). For circuit implementation, we use (5) to 

define the weights, where 𝑉𝑔𝑠 would be high if the neighbouring pixels are of similar intensities, else it would 

be small. Transistor 𝑇𝑚 is the current-limiting device. The remaining current goes to the neighbouring nodes 

based on the 𝑉𝑔𝑠 of the connecting transistors. In the unseeded node, current higher than 𝐼𝑚will charge the 

capacitor to ensure that the node belongs to the image foreground, as labelled by the seeded node. In contrast, if 

the current in the unseeded node is less than 𝐼𝑚, then 𝑉𝑠𝑒𝑔will be pulled high and will be a part of the image 

background. This anisotropic arrangement of the circuit favours voltage propagation in the more conducting 

direction, set by voltages 𝑉𝑁,𝑉𝑆,𝑉𝑊,𝑉𝐸, and allows segmentation as per the seeded nodes. Transistors 𝑇𝑐 and 

𝑇𝑑 are shared by all the nodes and set the threshold voltage of the detector at 𝑉𝑡ℎ. 

 

 
Fig. 1. Circuit analogy of an image represented as a graph. (A) The image is represented as a graph, with red 

points representing the seeded nodes. (B) The weighted graph modelled as an equivalent RC (resistor–capacitor) 

circuit. (C) Proposed transistor-level circuit implementation where the weights of a network can be controlled 

electronically. 



Image Segementation using Neural VLSI Systems 

www.ijesi.org                                                              42 | Page 

IV. Implementation Of Fpga-Ifat 
The IFAT, in its original design, is an array of neurons implemented in the VLSI CMOS technology 

[22]. Here, the capacitors are analogous to neurons and the voltage across the capacitors represents the 

membrane potential of the neurons. When a neuron receives an event (or spike), the potential across the 

capacitor increases owing to charge accumulation. When this potential exceeds a globally set threshold, the 

neuron outputs an event. A dynamically reconfigurable look-up table (LUT) determines the connectivity 

(synapses) between neurons and the strength of the connections. Here, we implemented the IFAT system using 

an FPGA framework. Our implementation includes a digital Poisson neuron, where an accumulator represents 

the neuronal membrane potential, and output spikes are generated based on the membrane potential. Fig. 2 

shows the block diagram of the complete FPGA implementation. The stochastic output events generated based 

on the pixel intensity of the input image serve as input for the FPGA–IFAT. The neurons in the IFAT are 

configured as a grid (Fig. 1A), where the membrane potential of a neuron represents the node voltage in a graph. 

The connectivity of the neurons and weights of the graph edges are stored in the LUT. This LUT is implemented 

as a block RAM on the FPGA. The target neuron receives the spike trains from its neighbouring pixels with a 

mean spike rate proportional to the pixel value multiplied (using AND gate) by the corresponding synaptic 

weight. These weights are in the range [0,1], so we employ stochastic computation to convert them into a bit 

stream of a Poisson process. This allows the multiplication of neuron spike trains and weight bit streams using a 

simple AND gate, thus increasing the area efficiency of the design. After a few iterations, the membrane 

potential of each neuron converges and does not change with time thereafter.  

 

V. Result 
Fig. 3 shows the segmentation results for medical and natural images. We considered only grayscale 

images in our implementation, but the method can be generalised by modifying (1) to incorporate other features 

such as colour and texture. The images and seeds were chosen to demonstrate the general applicability of the 

interactive segmentation approach on objects of varying uniformity, size, shape, and contrast. The free 

parameter 𝛽 in (1) was chosen as 20. We found that 200 iterations were sufficient to achieve convergence, as the 

diffusion rate was much faster initially owing to pixels above a threshold being assigned the maximum value. 

 
 

 
Fig. 2. Block diagram of the complete FPGA–IFAT system operating on stochastic event streams 
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Fig. 3A shows an example of multi-label segmentation, where we segmented 2 different objects (girl 

and sea lion) from the image. Fig. 3A1 and 3B1 show a natural and medical image, respectively, with seeds 

shown in red. After 200 iterations, we achieved the segmented images (Fig. 3A2, 3B2), which were further 

thresholded to obtain the binary segmented images (Fig. 3A3, 3B3). The results are very promising as we 

achieved the desired segmented objects in real time. Our current existing FPGA–IFAT accesses each neuron 

sequentially, but our solution can run in parallel and can access all the neurons in parallel for each iteration. This 

configuration will allow us to achieve segmentation of 1000 images per second using a 100 MHz system clock 

in the FPGA.  

 

TABLE I. FPGA RESOURCES FOR SEGMENTATION OF AN IMAGE OF SIZE 150 × 150 PIXELS 

 
DSP blocks only necessary for computing address indices (other methods for indexing could be used for 

computing addresses without using DSP blocks).  
 

 
Fig. 3. Segmentation results using our adapted graph-based algorithm. (A1) shows a natural image with seeds 

shown in red, (A2) shows the segmentation of the image A1, (A3) is achieved after thresholding segmentation 

output A2. (B1) shows a brain magnetic resonance imaging (MRI) scan with seeds shown in red, (B2) shows the 

segmentation of the image B1, (B3) is achieved after thresholding segmentation output B2. 
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VI. Conclusions 
Here, we have presented the implementation of a graph-based image segmentation algorithm as an 

FPGA emulation of our neuromorphic processor IFAT. We used an existing FPGA–IFAT emulator that 

accesses each neuron sequentially. However, the current implementation serves as proof-of-concept that the 

complete system can be parallelised for real-time applications. The main contribution of our work is that it 

establishes a framework for the hardware implementation of graph-based image segmentation methods in real 

time. Further, our solution allows parallel distributed processing, i.e. computation can be performed using all 

neurons in parallel. Our work is significant as it shows that segmentation can be achieved within a network of 

local-constraint-solving neurons that do not have explicit  access to the global segmentation goal. Additionally, 

our approach is easily scalable and can be extended for multi-label image segmentation, such as that based on 

texture and color, simply by changing the weights across the different nodes.  
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