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Abstract: The main difficulty in any CAS-based MR method calculations arises from the use of CAS in 

constructing many-electron wave functions as the exponential increase of the size of the model space when one 

increases the number of active orbitals and electrons. Thus CAS often generates too many configurations, and 

the size of the active space can outgrow the capacity of the present technology. To alleviate this problem, many 

approaches have been proposed. One can use the incomplete model space(IMS) scheme to attenuate the 

computational cost. 

Key Words: Intruder state problem, Incomplete model space, Complete model space, Intermediate 

normalization  

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 19-12-2017                                                                            Date of acceptance: 03-01-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
 Multi-reference (MR) many-body approach is one of the most promising avenues to describe 

electron correlation in molecular states which have varying degrees of nondynamical correlation. Most such 

traditional formulations were all based on the effective Hamiltonian framework 
1,2,3,4

 defined in a complete 

model space (CMS) [also called, a complete active space (CAS)]. Both perturbative
1
 and coupled cluster (CC) 

2,3,4
 formulations were developed and their rigorous size-extensivity were established. The model functions 

furnish the nondynamical correlation and the virtual functions bring in the dynamical correlation. In molecular 

applications, their practical use remains somewhat restricted to this date due to the notorious `intruder problem' 
5
, which stems from near-degeneracy of some virtual functions with some high-lying model functions. The 

problem of intruders can be avoided using incomplete model space (IMS) instead of CMS, where the offending 

model functions mixing strongly with the virtual functions are deliberately kept out of the model space. 

Generally, the reference functions that dominate the wave functions corresponding to the low-lying excited 

states span an incomplete model space, because in most chemically interesting systems, these low-lying excited 

states are likely to be associated with single and double excitations from the ground state instead of attributing a 

given number of active electrons and active orbitals to all possible excitations. If one shifts the high-lying 

functions of the CMS to the virtual space (thereby making the model space incomplete in nature), this seems 

like a natural starting point from the physical point of view, where one may avoid intruders and at the same time 

target the low-lying states of interest. 

 

II.  Incomplete Model Space 
All the standard versions of MR theories with effective Hamiltonians exploit the use of CMS to 

maintain the connectedness of the effective Hamiltonian, which automatically ensures the extensivity of 

energies. Such, unfortunately, is not the case in an IMS-based theory. Even if it were possible to get a connected 

effective Hamiltonian in an IMS, the computed state energies on diagonalization would still have been 

inextensive, just as in a CI in an IMS. The theoretical constraints on the effective Hamiltonian, which would 

guarantee the size-extensivity of the energies, is obviously somewhat more intricate.  

The reason for appearance of size-inextensivity in a diagonalization of even a connected operator in an 

IMS can be traced by looking at the diagonalization problem as an infinite order perturbation theory, thereby 

monitoring all the connected and disconnected terms that are generated at each order of perturbation. If one of 

the model functions is chosen as the unperturbed function for one of the target energies, and the other model 

functions are taken care of, in an IMS, interacting via the matrix elements of a connected operator by a 

Rayleigh- Schrӧdinger (RS) perturbation, then at each order there will be two kinds of terms: (i) the so-called 

direct term, which involves a sum over states involving transitions from the starting model function to all the 

other model functions, eventually returning to the starting model function itself, and (ii) the so-called 

normalization term, which involves a product of a norm correction involving the perturbation correction of the 
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wave function and energy shifts with various orders of perturbation, with a negative sign. The normalization 

term gives rise to two distinct types of entities. In one, there are no common orbitals among the norm factor and 

the energy shift factor. They are, therefore, algebraically disconnected, and size-inextensive. By adding certain 

sets of similar such terms together and by using what is known as the Franz-Mills identity
6
 the disconnected 

terms can be written as a sum over states expression just like as in the direct term. The intermediate states 

entering the sum in this expression are generated by the same excitations from the unperturbed functions as are 

involved in each factor of the disconnected normalization term, but the intermediate states are produced by the 

action of these excitations on some other model function generated by these excitations, rather than on the 

starting unperturbed function itself. If these intermediate functions thus generated belong to the IMS, then they 

would be exactly cancelled at the same order of perturbation stemming from a direct disconnected term, which 

necessarily involves only the sum over the model functions in the IMS. If, on the other hand, an intermediate 

state generated does not belong to the IMS (this will always happen for some terms, when the model space is 

incomplete), then such disconnected normalization terms will never get canceled by the analogous disconnected 

counterterms from the direct term, simply because there is no such intermediate state in this term. This is the 

real reason behind the appearance of disconnected terms at each order of perturbation while following the 

diagonalization procedure in an IMS as an infinite order perturbation theory. It should be mentioned here that 

there is another set of normalization term where there are common orbitals in the two factors. These so-called 

EPV (exclusion principle violating) terms are thus algebraically connected and, hence are harmless as far as 

size-extensivity is concerned. Because in a CMS, excitation on any model function to another involves only 

active orbitals, they lead only to excitations involving the functions in the CMS itself, and hence, all the 

disconnected terms from the normalization term get cancelled by a corresponding direct term. In contrast, 

although the excitations from the starting model function to another model function in a perturbation still 

involves only active orbitals, the intermediate states generated come from the action of these excitations on 

model functions other than the starting one, and these may belong to the complementary active space which, 

together with the starting IMS, span the CMS. Because the intermediate states appearing in the direct term never 

involve the functions of the complementary active space, these disconnected normalization terms never get 

cancelled by any of the direct terms. This analysis holds as much for a diagonalization on a connected effective 

Hamiltonian in an IMS as for a CI in an IMS. Thus,  if one could ensure that excitation from the starting model 

function could be confined to only those whose action on other model functions restrict the excitation also only 

within the IMS, then there would not have been any disconnected term in the perturbation involving 

intermediates lying outside the IMS, and the problem of inextensivity would go away for the perturbative 

diagonalization of the matrix of the connected operator in an IMS. Because one can start with any model 

function as the starting unperturbed function, it follows that it is necessary that the effective operator should be 

such that any excitation involving this operator should not lead to excitations outside the IMS by its action on 

any model function.  

Following the earlier works of Mukherjee 
7,8

 excitations connecting the model functions are called as 

`closed”. In contrast, types of excitations where their action on some functions in the IMS generates functions in 

the IMS, but their action on some other model function takes them to the complementary active space, are called 

``quasi-open".  

The effective Hamiltonian should be both connected and ``closed" for ensuring extensivity of the target 

energies on diagonalization in an IMS. It was shown by Mukherjee 
7,8

 that this can be ensured by including in 

cluster operators in the wave-operator, Ω not only excitations leading to virtual functions (via excitations which 

we will call `open') but also all the quasi-open excitations. The latter involves excitations with only active 

orbitals but, in contrast to the closed operators, may or may not lead to excitations to the complementary active 

space. The cluster amplitudes for the quasi-open operators should be determined from the `decoupling 

conditions” that the matrix elements of all the quasi-open components of the transformed operator  L = Ω
-1

H Ω 

should vanish. This can be accomplished in a straightforward manner via the use of Bloch equation in an IMS. 

Mukherjee showed that, if one includes in Ω only open and quasi-open operators (which is the minimal 

decoupling conditions), then it can generally so happen that the customary intermediate normalization for Ω 

would have to be abandoned. Actually Mukherjee  et al.
7,8

 have stressed that intermediate normalization has to 

be abandoned for general incomplete model spaces in order to satisfy generalized extensivity, while keeping the 

JM parameterization of the wave function. This comes about because the quasi-open operators can lead to 

excitations within the IMS and also because products of quasi-open cluster operators can be closed as well. By 

including only open and quasi-open operators in Ω, extensive MRCC formalisms have been developed. Such 

formulations were developed in the Fock-space MR coupled cluster (MRCC) theory by Mukherjee 
9,10

 and 

elaborated further later 
7,8,11,12

. Applications of the formalisms 
13

 could, however, bypass the intruder problem 

only at certain specific nuclear geometries. They were more suitable for computing spectroscopic energy 

differences. The size-extensive and size-consistent Hilbert space MRCC (SU-MRCC) theory based on IMS has 

been proposed by Mukherjee and co-workers 
14

 and independently by Meissner, Kucharski and Bartlett 
15

, and 
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both following work by Mukherjee et al.
7,8,11,12

 for the Fock space approach in an incomplete model space. 

State-specific MRCC theory has been developed using the same idea. 

The decoupling conditions implicit in the Bloch equation for an IMS impose vanishing amplitudes for 

all the open and quasi-open operators of the transformed Hamiltonian L. Clearly, this still leaves open the 

possibility of choosing the closed component of Ω, viz Ωcl. The normalization that comes closest to the 

intermediate normalization for Ω would be to choose Ωcl = 1cl. The more desirable choice PΩP= P would be 

incompatible with the decoupling conditions Lq-op= 0, because these conditions, rather than certain arbitrary 

conditions imposed on Ωq-op, determine Ωq-op. 

Of course, it is desirable to look for a size-extensive method for IMS using IN for Ω, because, for one, 

this would generate a simpler expression for Heff just as in a corresponding theory using CMS and, for other IN, 

allows a straightforward generation of the cluster amplitudes from a knowledge of the CI coefficients for an 

exact function. However, the situation is rather tricky. One may imagine that, once a size-extensive formalism is 

developed with a cluster ansatz for Ω containing open and quasi-open operators, it is possible to introduce at the 

final stage of the formalism to impose the IN on the wave operator via the transformation: 

 

Ω  =Ω 𝑃Ω𝑃 −1 

which generates a new effective Hamiltonian H eff , given by: 

 

H eff = PΩPHeff Ω[PΩP]−1 

 Being a similarity-transformed operator of the original Heff, H eff   produces the same roots. Such an 

approach was indeed suggested long ago by Chaudhuri  et al. 
16

 who also pointed out the attendant difficulties. 

Though this stratagem does produce size-extensive energies, despite the use of IN for the wave operator, it is a 

post facto restoration of IN after having generated a connected Heff without the IN. A straightforward generation 

of the modified wave operator Ω  without the intermediary of the Ω is not theoretically possible. 

 

2.1 Comparison Between VU-MRCC and SU-MRCC based IMS Theories 

Mukherjee and co-workers
17

 have developed a valence-universal multireference coupled cluster (VU-

MRCC) theory that can handle completely general incomplete model spaces, remaining close to the intermediate 

normalization, IN, condition for Ω as much as possible without violating extensivity and without the use of a 

post facto correction. In this formalism, the connectedness of the cluster operators as well as effective 

Hamiltonian and hence the extensivity of the corresponding roots is achieved by invoking appropriate 

decoupling conditions on the special type of wave operator Ω = {exp(S + Xcl)} satisfying the Bloch equations in 

the Fock-space S in an excitation operator and X is a closed operator (denoted by cl). 

Mukherjee and co-workers have demonstrated in their paper
18

 that though the effective hamiltonian is 

disconnected, it is nevertheless equivalent via a similarity transformation to a connected closed effective 

hamiltonian, implying size-extensivity of the computed energies. In this paper, they have taken a fresh look into 

the aspects of size extensivity using the VU-MRCC using IMS. They introduced a novel cluster operator 

representation Ansatz for a new wave-operator Ω  = exp(S ) where Ω  excludes all intermediate powers of S  in any 

monomial generated by expansion of S, which are closed, even as a factor of an otherwise external operator. 

They then prove that the hierarchical decoupling as is valid for the VU-MRCC for CMS, the size-consistency of 

the associated H eff  via its equivalence to a connected Heff as well as the simplicity of the algebraic expression of 

H eff  can be simultaneously satisfied. There is no need for the use of Xcl type of operator at all, in their 

formulation. It has not escaped their notice that a very similar idea can be invoked to generate rather simple 

working equations for the SUMRCC and the SS-MRCC as well. 

Li and Paldus 
19

 have  presented a new version of the state-universal multireference coupled-cluster 

(SU-MRCC) theory that is capable of handling completely general, incomplete model spaces. This is achieved 

by exploiting the concept of `locality' for the active molecular spin orbitals and by introducing the constraining 

conditions (C conditions) on cluster amplitudes that are associated with the internal excitations transforming one 

reference configuration into another one. These C conditions make it possible to represent the exact (i.e., full 

configuration interaction) wave function via the SU-MRCC cluster ansatz based on an arbitrary model space. 

The C conditions are then taken into account together with the standard SU-MRCC equations for the external 

amplitudes, thus enabling one to reach the exact result in the limit, while preserving the connectivity property 

and thus the size-extensivity. In their approach, the definition of the cluster operator is extended such that the 

wave operator satisfies intermediate normalization. This means that there may be elements in the cluster 

operator that excite between model space determinants and their coefficients exactly negate the product of 

disconnected excitation operators, each of which typically excite out of the model space. A simple example 

would be provided by the two dimensional model space |𝑎𝑎 > and |𝑏𝑏 >. The single excitations with 

coefficients 𝑡𝑎
𝑏  and 𝑡𝑎 

𝑏  excite out of the model space when acting on |𝑎𝑎 >, but their product leads precisely to 

the second model space determinant. To impose intermediate normalization, Li and Paldus include the 
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additional cluster operator that excites between the model space determinants with coefficient 𝑡𝑎𝑎 
𝑏𝑏 = −𝑡𝑎

𝑏𝑡𝑎 
𝑏 . In 

this way they maintain intermediate normalization, but the cluster operator contains manifestly disconnected 

parts. Li and Paldus refer to this definition of the cluster amplitudes that can excite within the model space as 

satisfying the C condition’. For large model spaces this prescription may require extending the cluster operator 

with potentially high rank excitation operators in order to satisfy this C condition, or, equivalently, intermediate 

normalization, which can make the implementation of the general scheme rather cumbersome. 

There is another scheme on the theme of general model space SU-MRCC. In this approch, the cluster 

operators do not contain any excitations within the model space. This generally implies that for the incomplete 

model space intermediate normalization does not hold 
17

. Irrespective of the additive separability or even 

connectivity of the effective Hamiltonian and cluster operators in the Li Paldus theory, the effective 

Hamiltonian may contain extensivity-violating components that are not explicitly equated to zero, and we 

anticipate that the energies obtained by diagonalizing the effective Hamiltonian will not satisfy generalized 

extensivity. The property of generalized extensivity is more amenable to diagrammatic analysis and requires 

operators to be connected 
20

. 

The Hilbert space method is more appealing as to computing potential energy surface (PES) of several 

strongly interacting states over a wide range of geometries,  For PES, there are usually different intruders in the 

different regions of the surfaces, and this precludes the use of a specific IMS which is free of intruders at all the 

interesting regions of nuclear geometry. This aspect promoted us to develop intruder free IMS-based MR 

method. The method of intermediate Hamiltonians (IH) 
21

 tries to bypass intruders by abandoning the 

requirement that the roots strongly affected by intruders in the diagonalization of an effective operator are 

eigenvalues of H. A problem with IH method lies in having rigorously size-extensive formulations, though there 

have been two such attempts in the Fock-space context 
22,23

. 
 

2.2 SS-MRCC Based IMS Theory 

An attractive alternative is to develop state-specific (SS) MR many-body formalisms. So long as the 

state-energy remains energetically well-separated from the virtual functions, the intruder problem would be 

tackled in a much better manner.  This method does not suffer from intruder states and size-extensive due to 

absence of unlinked terms. The SS-MRCC (or Mk-MRCC)
24

 formalism is not just a trivial application of the 

SU-MRCC
4
 multi-root formalism to one root of interest. It is altogether a new formalism, with the working 

equations quite different from that of the SU-MRCC theory. 

Mukherjee and coworkers have developed a SS-MRCC  based  IMS formalism. The new formulation 

of the IMS based SS-MRCC theory is rigorous in the above-defined sense. The standard version of this theory 

requires a CMS if the connected character and thus size-extensivity is to be warranted. This is certainly a highly 

demanding and impractical requirement. In most instances of chemical interest, the low lying excited states are 

likely to be associated with single and double excitations from the ground state rather than with all possible 

excitations associated with a given number of electrons and active orbitals. Indeed, the configurations that 

dominate the wave functions of a few low-lying excited states form in general an IMS. Despite the success of 

the SS-MRCC
24

, or its perturbative
25

 and CEPA-like
26

 variants, they are rather computation-intensive, since they 

work with a CMS. The choice of a CMS in a state-specific formalism is mainly dictated by the desire to achieve 

size-extensivity. An attractive alternative to a CMS-based formulation is to use some IMS which lead to proper 

fragmentation for some limited fragmentation channels. One such IMS is the quasi-complete model space 

(QCMS), used in many-body formalisms 
7,8,9,11,12,27

 based on the effective hamiltonians. Perturbative 

formulations using QCMS in the state-specific perturbative context was first developed by Nakano, Hirao and 

other co-workers 
28,29

. 

Starting from an arbitrary IMS, a rigorous state-specific many-body method theory must preserve the 

size extensivity and at the same time be exact in the limit in which all clusters are taken into account in this 

chapter. If one simply applies the CMS formalism to an IMS, disconnected terms appear, since in this case a 

product of ``external" excitations can produce an ``internal" one. When such disconnected terms are simply 

neglected, the resulting method cannot be exact [i.e., cannot recover the full CI (FCI) result] even when all the 

clusters are accounted for.  The IMS SS-MRCC method, of course, requires for its actual implementation in 

studying fragmentation processes a rather appropriate IMS, and the most suitable such IMS is the QCMS. 

Perturbative and CEPA-like schemes can be derived from the formalism in a straightforward manner. 

 The development of  SSMR based IMS theory may also have useful potential to avoid or at least to 

attenuate the instability of the theory when the virtual determinants do not remain reasonably well-separated in 

energy from the state energy. The size-extensivity of the formalism will automatically imply the size-

consistency of the computed energies, if the IMS is product- separable into the IMS for the various fragments. 

The theoretical constraints required for effective Hamiltonian (of SSMR formalism) to ensure size-extensivity of 

the energies in an IMS is more subtle and requires a careful analysis of the essential reasons behind the lack of 

size-extensivity of eigenvalues of even a connected operator in a matrix space which is IMS. The size-extensive 

formulation in the IMS warrants abandoning the intermediate normalization convention for the wave operator. 
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III.  Conclusion 
The major difference between the CMS and IMS (general model space, GMS)-based theories stems 

from the fact that in the latter case the products of lower-order external excitations can produce higher-order 

internal excitations, which in turn lead to disconnected terms in both the effective Hamiltonian and the coupling 

coefficients. If these disconnected terms are dropped, the consistency of the SS-MRCC equations is violated and 

the resulting theory cannot produce the exact result in the limit when all clusters are accounted for. Following 

the earlier analysis of Mukherjee that, in general, the use of the intermediate normalization for wave operator is 

incompatible with the size-extensivity of the target state energy computed via SS-MRCC theory. In the context 

of the SS-MRCC IMS  the concept of the quasi-open and closed operators have been used, tracing the origin of 

the size-inextensivity of the computed energies to the appearance of the quasi-open matrix elements of H in a CI 

with IMS. It has been emphasized that the size-extensivity of the energies is predicated by the use of a 

connected effective Hamiltonian which is closed. 

The intermediate normalization convention of the wave operator has to be abandoned in favour of some 

appropriate size-extensive normalization. Suitable operators, defined in Fock space described as closed, open 

and quasi-open have to be introduced to ensure that the effective operator furnishing the target energy on 

diagonalization is a closed operator. 
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