
International Journal of Engineering Science Invention

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org ||Volume 6 Issue 2|| February 2017 || PP. 15-20

www.ijesi.org 15 | Page

The Evaluation of Generic Architecture for Information

Availability (GAIA) and Multi agent System

Engineering (MaSE)

Ugwa Chioma; Chizoba Ezeme, & Obinnaya. C. Omankwu;

Abstract: Along with the growing interest in agent applications, there has been an increasing number of agent-

oriented software engineering methodologies proposed in recent years. These methodologies were developed

and specially tailored to the characteristics of agents. The roles of these methodologies can provide methods,

models, techniques, and tools so that the development of agent based system can be carried out in a former and

systematic way. The goal of this paper is to understand the relationship between two key agent-oriented

methodologies: Gaia, and MaSE. More specially, we evaluate and compare these three methodologies by

performing a feature analysis, on them, which is carried out by evaluating the strengths and weaknesses of each

participating methodology using an attribute-based evaluation framework. This evaluation framework

addresses some areas of an agent-oriented methodology: concepts, modeling language, process and pragmatics.

I. Introduction
The role of software engineering is to provide methodologies which is a set of methods, models and

techniques that make it easier to handle the complexity of the software development process increasing the

quality of the resulting systems. Thus, the role of agent-oriented methodologies is to assist an agent-based

application in all of its life cycle phases [Ghezzi etal,1991].

Agent Oriented (AO) methodology aims to prescribe all the elements necessary for the development of

a software system, especially in the context of commercial applications. Most AO methodologies are in an early

stage and still in the first context of mostly “academic” methodologies for agent-oriented systems development,

although many of these methodologies have been tested in small, industrial applications (Martin etal,1995).

II. Agent Background Study
An Agent is an entity that is not only designed to run routine tasks commanded by its users, but also to

achieve a proposed setting or goal within the context of a specific environment. The difference between an

Agent and a traditional software entity is that the latter just follows its designed functions, procedures or macros

to run deterministic codes. The former incorporates the ability to practice intelligence by making

autonomous/semiautonomous Decisions based on dynamic runtime situations [Jennings etal, 1998].

III. Agent-Oriented Software Engineering (AOSE)
Software engineering is the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software; that is, the application of engineering to software

[Jennings etal, 1998]. By definition, AOSE is the application of agents to software engineering in terms of

providing a means of analyzing, designing, and building software systems [Nicholas,1999].

IV. Agent-Oriented (AO) Methodologies
Methodologies are the means provided by software engineering to facilitate the process of developing

software and, as a result, to increase the quality of Software products. By definition, a software engineering

methodology is a structured set of concepts, Guidelines or activities to assist people in undertaking software

development [Wood etal,2000]. Object-oriented methodologies generally do not provide techniques and model

to the intelligent behavior of agents [Jennings etal, 1998]. Therefore, there need to be software engineering

methodologies, which are specially tailored to the development of agent-based systems. In answering that

demand, there have been an increasing number of agent-oriented methodologies proposed in recent years.

We tend to focus on several prominent agent-oriented methodologies to examine them in depth in order

to identify their strengths, weaknesses, domains of applicability as well as commonalities and differences

between them. The selection of AO methodologies were based on several factors such as the methodology's

significance and relevance with respect to the field of agents, and its available resource such as documentation,

tool support, etc.

The two methodologies which were chosen in this research are: Gaia, and MaSE.

The Evaluation of Generic Architecture for Information Availability(GAIA) and Multi agent System ..

www.ijesi.org 16 | Page

V. Gaia (Generic Architecture for Information Availability)
Gaia is one of the first methodologies which is specially tailored to the analysis and design of agent-

based systems. Its main purpose is to provide the designers with a modeling framework and several associated

techniques to design agent-oriented systems [Wooldridge etal,2000]. Gaia, proposed originally by M.

Wooldridge et al. (2012), where the foundation of analysis is based on an Object Oriented design method called

Fusion, from which it borrows terminology and notations.

Gaia is rooted in conceptual organizational modeling (Zambonelli, Jennings, & Wooldridge, 2010) and

suggests that developers think about building Agent-based systems as a process of organizational design.

The Agent computational organization is viewed similarly to human organization consisting of

interacting roles and functions.Gaia is one of the rst methodologies which is specifically tailored to the analysis

and design of agent-based systems [Wooldridge et al. 2012]. Its main purpose is to provide the designers with a

modelling framework and several associated techniques to design agent-oriented systems. Gaia separates the

process of designing software into two di erent stages: analysis and design. Analysis involves building the

conceptual models of the target system, whereas the design stage transforms those abstract constructs to

concrete entities which have direct mapping to implementation code. Figure 2.1 depicts the main artifacts of

each stage: Role Model and Interaction Model (Analysis), and Agent Model, Services Model, and

Acquaintance Model (Design). A detailed description of the process steps which the developers need to follow

to build these models is described below.

Figure 2.1: Relationship between Gaia's models, source from Wooldridge & Jennings

VI. Analysis
It is noted that, Gaia assumes the availability of a requirements specification. It means that before

beginning the Gaia's development process, the analysts need to have a reasonable under-standing of what the

system should do. These requirements form the overall objectives of the system which influence the analysis

and design phase.

Gaia encourages the developers to view an agent-based system as an organisation. The software system

organisation is similar to a real world organisation. It has a certain number of entities playing different roles. For

instance, a university organisation has several key roles such as administration, teaching, research, students, etc.

These roles are played by different people in the university such as managers, lecturers, students, etc. Inspired

by that analogy, Gaia guides the designers to the direction of building agent-based system as a process of

organisational design.

At the first step of the analysis phase, Gaia requires the analysts to de ne key roles in the system. At

this step, these roles only need to be listed and described in an informal manner. The main purpose of this step

understands what roles exist in the system and roughly what they do. Gaia calls the artifact of this step a

prototypical roles model. Different roles in an organisation interact with each other to achieve their own goals

and also to contribute toward the overall goals of the organisation. These interactions need to be defined in the

next step of the Gaia analysis phase. The product of this step is the interaction model. This model consists of a

set of protocol definitions for each role. Each protocol definition defines the purpose, the initiator, the

responder, the inputs, the outputs and the processing during the course of the interaction. The valid sequence of

messages involved in a conversation, however, is not required at this stage. Instead, Gaia focuses on the basic

nature and purpose of the interaction and abstracts from exact instantiation details.

The Evaluation of Generic Architecture for Information Availability(GAIA) and Multi agent System ..

www.ijesi.org 17 | Page

The final step of Gaia analysis phase involves elaborating the key roles identified in the first step. This

process includes the identification of permissions of roles, their responsibilities as well as the protocols and

activities in which they participate. This detailed description of a role is depicted by a Role Schemata. A set of

Role Schemata forms the Role Model, which is considered as the key artifact of this analysis phase.

Responsibility defines the functionality of a role and is divided into two types: liveness properties

(something good happens") and safety properties [Arazy, 2012]. Permissions define which resources the agents

playing that role can and cannot use when performing a particular action. Activities are private" actions which

do not involve interactions with other roles.

Protocols are actions that involve interactions with other roles and are derived from the protocol model

built in the previous step. It is noted that the Gaia analysis process is not purely linear as described. In contrast,

the analysts are encouraged to go back to add a new role, new protocols or move forward to add new

permissions, activities, etc.

VII. Design
Having finished the analysis phase, the analysts basically complete building the conceptual model of

the system with abstract entities. These entities do not necessarily have any direct realization within the system.

They can now move to the second phase (i.e. the Design phase) where those abstract entities are transformed

into concrete entities which typically have direct counter-parts in the run-time system.

The design stage requires the developers to build three models. First, an agent model which includes

various agent types is constructed. Agent types are the counterparts of objects in object-oriented approaches.

They are basic design units of an agent-based system and their realizations at run-time are agent instances.

Agent types in the system under development are defined on the basis of the roles that they play. Therefore, the

important feature of this step is to map roles identified in the analysis phase to agent types. A role can be

mapped to one or more agent types and vice versa. Some general guidelines are proposed to help this process.

For instance, a close relationship between several different roles indicates that they can be grouped together in a

single agent type.

The second artifact developed in Gaia's design phase is a service model which depicts the services that

each role provides. A service is a coherent, single block of activity in which an agent will engage". Each service

should be represented by its properties: inputs, outputs, pre-conditions and post-conditions. Inputs and outputs

are derived from the protocol model. Pre-conditions and post-conditions which define the constraints on

services are derived from the safety properties of a role.

The final model which the designers need to complete is the acquaintance model. It depicts the

communication links existing between agent types. It is in fact a directed graph in which nodes represent agent

types and arcs show communication pathways. Gaia does not address implementation and there is no tool

support that we, or Michael Wooldridge, one of the authors of Gaia, are aware of.

Critique of Gaia Methodology:

1. Goals implicitly coincide with subdivisions of the system, which potentially increase the modeling

complexity. There is also no clear guideline on how to derive roles from the organizational model.

2. It is difficult to model Agents entering and exiting sub-organizations; or, adapting to the evolution of

organizational structure. There is a lack of dynamic reasoning (Juan, Pearce, & Sterling, 2002)

3. Organizational metaphor is a strongly embedded abstraction coded in the Gaia methodology.

Multiagent Systems Engineering (MaSE)

Multiagent Systems Engineering (MaSE) [DeLoach,2001] is an agent-oriented software engineering

methodology which is an extension of the object-oriented approach.

As a software engineering methodology, the main goal of MaSE is to provide a complete-lifecycle

methodology to assist system developers to design and develop a multi-agent system. Similar to Gaia, it also

assumes the availability of an initial requirements prior specification to the start of software development under

the methodology process [Caire etal,2001]. The MaSE methodology is a specialization of more traditional

software engineering methodologies. The general operation of MaSE follows the phases and steps shown below

and uses the associated models.

Phases Models

1. Analysis Phase

a. Capturing Goals Goal Hierarchy

b. Applying Use Cases Use Cases, Sequence Diagrams

c. Refining Roles Concurrent Tasks, Role Model

The Evaluation of Generic Architecture for Information Availability(GAIA) and Multi agent System ..

www.ijesi.org 18 | Page

2. Design Phase

a. Creating Agent Classes Agent Class Diagrams

b. Constructing Conversations Conversation Diagrams

c. Assembling Agent Classes Agent Architecture Diagrams

d. System Design Deployment Diagrams

Similar to Gaia, it also assumes the availability of an initial requirements prior specification to the start of

software development under the methodology process. The process consists of seven steps, divided into two

phases. The Analysis phase consists of three steps: Capturing Goals, Applying Use Cases, and Refining

Roles.

The remaining four process steps, Creating Agent Classes, Constructing Conversations, Assembling Agent

Classes, and System Design, form the Design phase (Figure 2.4).

 Analysis Phase

Once the concurrent tasks of each role are defined, the Analysis phase is complete. The MaSE Analysis phase is

summarized as follows:

1. Identify goals and structure them into a Goal Hierarchy Diagram.

2. Identify Use Cases and create Sequence Diagrams to help identify roles and communications paths.

3. Transform goals into a set of roles.

(a) Create a Role Model to capture roles and their tasks.

(b) Define role behavior using Concurrent Task Models for each task.

Design Phase

There are four steps to the designing a system with MaSE. The first step is Creating Agent Classes, in

which the designer assigns roles to specific agent types. In the second step, Constructing Conversations, the

conversations between agent classes are defined while in the third step, Assembling Agents Classes, the internal

architecture and reasoning processes of the agent classes are designed.

Finally, in the last step, System Design, the designer defines the number and location of agents in the deployed

system.

Once the Deployment Diagrams are finished, the Design phase is complete.

The MaSE Design Phase can be summarized as follows:

1. Assign roles to agent classes and identify conversations.

2. Construct conversations, adding messages/states for robustness.

3. Define internal agent architectures.

4. Define the final system structure using Deployment Diagrams.

Agent Tool

The agentTool system (DeLoach and Wood, 2001) has been developed to support and enforce MaSE. Currently

agentTool implements all seven steps of MaSE as well as automated design support.

Applications

MaSE has been successfully applied in many graduate-level projects as well as several research

projects. The Multiagent Distributed Goal Satisfaction project used MaSE to design the collaborative agent

framework to integrate different constraint satisfaction and planning systems. The Agent-Based Mixed-

Initiative Collaboration project also used MaSE to design MAS focused on distributed human and machine

planning. MaSE has been used successfully to design an agent-based heterogeneous database system as well as a

multiagent approach to a biologically based computer virus immune system. More recently, we applied MaSE to

a team of autonomous, heterogeneous search and rescue robots (DeLoach et al., 2003). The MaSE approach and

models worked very well. The concurrent tasks mapped nicely to the typical behaviors in robot architectures.

MaSE also provided the high-level, top-down approach missing in many cooperative robot applications.

Critique of MaSE Methodology:

1. Goal analysis, conducted at the beginning of a MaSE process, reinforces goal preservation through analysis

and design phases. It facilitates role and Agent class modeling to focus on clear goal delegation, where

every role is responsible for a particular goal to be accomplished. There are tasks that belong to the

dedicated goals of roles.

2. In a role refinement step, it is crucial to match goals with roles. Every goal has to be associated with a role.

With these roles defined, the design of communication between roles and their corresponding tasks become

fixed, lacking dynamic adaptability of goals (and hence roles).

The Evaluation of Generic Architecture for Information Availability(GAIA) and Multi agent System ..

www.ijesi.org 19 | Page

Figure 2.2 MaSE's process steps and artifacts (Source from DeLoach, 2012)

Software Engineering Methodology Evaluation

Several approaches have been applied to review and classify a large range of agent-oriented

methodologies evaluation or to perform comparisons on a small number of methodologies [Chia-En

Linetal.1996]. Unfortunately, such evaluations or comparisons are mostly subjective and are solely based on

inputs from a single assessor (or group of assessors).

This research compares and evaluates two AO methodologies (GAIA, MaSE). This section briefly

discusses various key methods, techniques and frameworks of the evaluated methodologies. Since object-

oriented methodologies are considered as the "predecessor" of agent-oriented methodologies, we also look back

at work on evaluating and comparing a number of object-oriented methodologies.

Methods for Evaluating Methodologies

We classify the major approaches to methodology valuation into four main groups: Feature-based evaluation,

Quantitative evaluation, NIMSAD (Normative Information Model-based System Analysis and Design)

framework and other evaluation approaches.

Feature-based evaluation

Feature-based evaluation (also often called Feature Analysis) is the most prominent and popular

comparison approach (it has been chosen in this work). It is regarded as a qualitative method [Law, 2005]. It

involves building an evaluation framework that can be represented in terms of a set of properties, qualities,

attributes or characteristics [Law, 2005].

The Evaluation of Generic Architecture for Information Availability(GAIA) and Multi agent System ..

www.ijesi.org 20 | Page

Quantitative evaluation approaches

Quantitative evaluations assess a methodology according to some measurable results produced by its use. These

can be the software applications produced or the changes in the development process [Kruchten, 2000].

The NIMSAD (Normative Information Model-based System Analysis and Design) framework).

Being an evaluation framework, NIMSAD is not in fact a method for practically and efficiently comparing

methodologies. It provides an alternative way of understanding and evaluating methodologies on the basis of

the models and epistemology of systems thinking perspective [Jayaratna, 2000].

Comparisons of Object-Oriented Methodologies

Significant work in the area of OO methodology comparisons can be classified into three styles: comparison

against a framework (feature analysis), comparison by meta-modeling and comparison by outcome

(quantitative evaluation) [DeLoach,2001].

Evaluation Methods

Before proceeding with assessment, one needs to decide what evaluation methods should be used.

The Purpose of Evaluation

1. Getting a better understanding of the nature of AOSE methodologies, including their philosophies,

objectives, features, etc.

2. Identify the strengths and weaknesses of the methodologies as well as their commonalities and differences

in order to perform classifications and to improve future agent-oriented software system development.

Furthermore, it is emphasized that we are not trying to search for, in an isolation, for a best

methodology. We believe that it is not always the case that all the AOSE methodologies are mutually exclusive.

In fact, different methodologies may be appropriate to different situations, thus a methodology should be

selected on the basis of considering different issues. These influencing factors can be the context of the problem

being addressed, the domain, and the organization and its culture. However, we also expect that the evaluation

would help in practical choices such as identifying the domains of applicability of each evaluated methodology.

The Evaluation Type and Procedure

There are several factors that may affect the decision of choosing an appropriate type of evaluation and

procedure to carry out the evaluation. These are the available time, the level of confidence we need to obtain in

the results of the evaluation, and the cost of the evaluation.

The Evaluation Framework

In this section, we describe a methodology evaluation framework within which the feature-based

comparison is conducted. The framework consists of a set of criteria which addresses not only classical software

engineering attributes but also properties which are uniquely found in AOSE.

In order to avoid using an inappropriate comparison framework, the properties in our framework were

derived from a survey of work on comparing AOSE methodologies and on comparing OOSE methodologies.

The evaluation framework covers four major aspects of each AOSE methodology: Concepts, Modeling

language, Process, and Pragmatics. This framework is adapted from various frameworks [17] for comparing

Object-Oriented methodologies.

