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Abstract: This study is a review to the special issue on artificial intelligence (AI) methods for groundwater 

level (GWL) modeling and forecasting, and presents a brief overview of the most popular AI techniques, along 

with the bibliographic reviews of the experiences of the authors over past years, and the reviewing and 

comparison of the obtained results. Accordingly, 67 journal papers published from 2001 to 2018 were reviewed 

in the terms of the features and abilities of the modeling approaches, input data consideration, prediction time 

steps, data division, etc. From the reviewed papers it can be concluded that despite some weaknesses, if the AI 

methods properly be developed, they can successfully be used to simulate and forecast the GWL time series in 

diff erent aquifers. Since some of the stages of the AI modeling are based on the experience or trial-and-error 

procedures, it is useful to review them in the special application on GWL modeling. Many partial and general 

results were achieved from the reviewed papers, which can provide applicable guidelines for researchers who 

want to perform similar works in this field. Several new ideas in the related area of research are also presented 

in this study for developing innovativemethodsandforimprovingthequalityofthemodeling. 

 

I. Introduction 
Measurement and analysis of the groundwater level (GWL) in aquifers is an important and useful task 

in the management of the groundwater resources, and the knowledge about the GWL variations can be used for 

quantifying the groundwater availability. The GWL variations in wells provide a direct measure of the impact of 

groundwaterdevelopment,andimportantinformationaboutaquiferdynamicsisoftenembeddedinthecontinuouslyreco

rdedGWLtimeseries(Butleret al., 2013). Therefore, the modeling and predicting of GWL is neces- sary for water 

managers and engineers to qualify and quantify groundwater resources and to maintain a balance between 

supply and demands. 

For GWL modeling, conceptual or physical based models are tradi- tionally the main tool; however 

they have some practical limitations,including the need for large amount of data and input parameters. In many 

cases, data is limited on one hand, and obtaining accurate pre- dictions is more important than 

understandingunderlyingmechanisms, on the other hand, and therefore, the black-box artificial intelligence (AI) 

models can be a suitable alternative. Although there are diff erent methods for modeling and predicting GW 

Linaquiferssuchas conceptual, physical, numerical, statistical, etc. methods, however in recent years, AI methods 

have been used for their simplicity and ac- ceptable results, and many researches have investigated the perfor- 

mance of AI models for GWL modeling in diff erent parts of the world. This study is a review of those papers 

that have used AI methods for modeling and forecasting GWL. Of course, these methods have some 

weaknesses, such as overtraining, low generalizability, risk of using unrelated data, incorrect modeling with 

inappropriate methods, and so on. However, their simplicity of use, high speed run and acceptable 

accuracywithouttheneedtoknowtheproblemsphysicshaveledmany researchers to apply them. It should be noted 

that it is the nature or perhaps the defect of the AI models that if they were developed for the prediction of a 

specified time series, the accurate results could not ne- cessarily be derived in the similar ones; but the major 

advantage of AI modelsisthenonlinearandcomplicatedphenomenamodelingwithout the need for full 

understanding underlying mechanisms (Rajaee andBoroumand, 2015). Therefore, the use of AI approaches in 

GWL mod- eling has steadily increased and attracted interest of many researchers in theworld. 

In order to develop new and better AI approaches for GWL mod- eling, it is important to investigate 

what has been done with AI models and current researches, and there is a need for researchers to know 

whatotherscholarshavedoneinthisregard.Manyreviewpapershave been recently published that have explored 

using AI models in hy- drology (e.g., Solomatine (2005)), or in diff erent hydrological and  water resources fields 

(e.g., Maier et al. (2010)in the field ofriver variables modeling, and Wu et al. (2014) in the field of water quality 

modeling), while, no review paper is find that has centered on the specific use of AI models for GWL modeling 

and forecasting. Each hy- drological phenomenon has its own characteristics, and it is reasonable 

thattheuseofAImodelsinGWLmodelingtobereviewedindividually. Nourani et al. (2014) have cited and reviewed 
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some wavelet-AI studies in GWL modeling (5 papers); however, in the best knowledge of the 

authors,thereisnotyetanindividualandcomprehensivereviewpaper evaluating the application of AI methods in 

GWL modeling and for- casting. 

The current review study presents and compares the details of the journal papers dealing with the AI 

methods for GWL modeling and forecasting, in the terms of the features and abilities of the modeling 

approaches, the input data consideration, the quantity and quality of used data, the study areas and aquifers, the 

prediction time steps, the data division, etc. 67 papers are reviewed in this study. These papers 

havebeenpublishedintheinternationaljournalsbelongstothefamous publications such as Elsevier, Springer, IWA, 

Wiley, ASCE, etc. during the period from 2001 to 2018. The papers were found from searching the web using 

the relevant key words, and were chosen because they were published in well-known international journals in 

the fields of hydrology, water resources and AI sciences. Based on the search, Journal of Hydrology (Elsevier) 

with 12 papers and Water Resources Management (Springer) with 11 papers are the journals that have been 

published the most papers in this regard. Also, Hydrological Processes (Wiley), Journal of Hydroinformatics 

(IWA), Hydrogeology Journal (Springer)andComputers&Geosciences(Elsevier),eachonehavebeen published 

three papers in this regard. The rest of the journals (a totalof 29 journals) that had papers in this regard have 

been published one or two papers so far (Table1). 

Fig. 1shows number of published papers regarding AI in GWL modeling (reviewed in this study) with 

respect to year of publication. As can be seen, such publications have increased in recent years. Therefore, due 

to the interest of researchers in this field and given the difficulty of conceptual/numerical GWL modeling, this 

review was provided to help new researches in this field. 

Details of the selected papers are given in Table 1, where thepapers on the subject of GWL modeling 

with AI methods are comparing re- garding to the authors and year of publication, journals and impact factor 

(IF), region of study, type of utilized AI methods, hydrological input variables, time steps and range of total 

data. The abbreviations used in the Table 1 have been explained in the end of thetable. 

In the following, some very commonly used AI methods for mod- eling GWL are addressed. The methods 

include artificial neural net- works (ANN), adaptive neuro-fuzzy inference system (ANFIS),genetic 

programming (GP), support vector machine (SVM) and some hybrid models such as wavelet-AI models. Firstly, 

a brief description of each method is presented and thereafter the related conducted studies are cited and 

reviewed. This is followed by general results and discussion, conclusionsand recommendations for future 

avenues of research. 

 

II. Artificial intelligence methods for GWL modeling 
Introductory 

ANNs are computational models inspired by biological neural net- works. They can be used to 

approximate functions that are generally unknown,ortopredictfuturevaluesofpossiblynoisytimeseriesbased on 

past histories. ANNs are composed of simple elements operating in parallel. As in nature, the connections 

between elements largely determine the network function (Beale et al., 2010). A common ANN comprised of 

multiple elements, called neurons (processing elements), and connection pathways that link them. The neurons 

having similar properties are grouped in one single layer. Typically, three separate layers exist in an ANN, 

namely input, hidden and output layers. The input layer takes input variables, which in the case of GWL 

forecasting are usually the precipitation, temperature, GWL, etc. time series. In the hidden and output layers, 

each neuron passes its weighted and biased input through a desired transfer (activation) function to produce a re- 

sult. ANNs are trained with a sample data, so that a particular input leads to a specific target output. Training 

means tuning the adjustable network parameters (called weights and biases) to optimize the net- work 

performance. The training process can be done with various training (learning) algorithms. The Levenberg-

Marquardt (LM) algo- rithm, the back-propagation (BP) algorithm, the Bayesian regulariza- tion (BR) algorithm 

and the gradient descent with momentum and adaptivelearningrateback-propagation (GDX) algorithm 

areexamples of most used training algorithms inthe literature. 

Diff erent ANN types have been widely described in the literature; however several types of them are 

briefly presented here. The feed- forward neural networks (FNNs) propagate input signal through the network in 

a forward direction, layer by layer. The multilayer percep- tron (MLP) network as a historical FNN consists of 

an input layer, one or more hidden layers, and one output layer. The recurrent neural networks (RNN) feed the 

outputs of the hidden layer back to itself. In the RNNs, an additional layer is interconnected with the hidden 

layer that plays the role of the network history. The radial basis function (RBF) networks are also feed-forward, 

but have only one hidden layer that uses Gaussian transfer function and a standard Euclidean distance to 
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measure how far an input vector is from a specific center vector. The amount of Euclidean distance is transferred 

by the Gaussian function that determines the output of the layer. RBF networks tend to learn much faster than a 

FNN. 

Theself-organizingmap(SOM)networkasakindofANNsconsists of one input layer and one output layer 

called „Kohonen‟ layer. The input layer is fully connected to the output layer. The SOM is trained using an 

unsupervised competitive training algorithm. The n-dimen- sional input vector is sent through the network, and 

the Euclidean distance between the weight vector and the input vector is computed. The training process will be 

continued to select best neurons that re- duce the distance between the weights and inputs. An advantage ofthe 

SOM is to map high-dimensional input space into low dimensional space. 

Regardless of the type of utilized ANN, they have some common modelingstages. Fig.2 shows the 

typicalstagesofusingANNsforGWL simulation andforecasting. 

 

BIBLIOGRAPHICreview 

RecentexperimentsinGWLmodelinghavereportedthatANNsmay off er a promising alternative for 

conceptual methods. In one of the first studies, Coulibaly et al. (2001)compared three types of ANN models 

using GWL, precipitation and temperature time series as the inputs of models to simulate average monthly GWL 

in the Gondo aquifer, Bur- kina Faso. Simulation results showed that the RNN is most efficient compared to the 

static structure input delay ANN and RBF-ANN. Lallahem et al. (2005) evaluated ANN for estimating the 

monthly GWL in an unconfined chalky aquifer in northern France. The input datawas the GWL of 13 

piezometers, rainfall, mean temperature, precipitation and potential evapotranspiration, and the main objective 

was to si- mulate the GWL in a selected piezometer. The simulations revealed the merit of using MLP models. 

Daliakopoulos et al. (2005)tested seven diff erent ANN models with various architectures and training algo- 

rithms for monthly GWL forecasting in the island of Crete, Greece. The input variables were the past GWL, 

temperature,precipitationandriver discharge.TheFNNtrainedwiththeLMalgorithmhadthebestresults. Nayaketal. 

(2006) investigatedthepotentialofMLPtrainedwithBP 

 

 

 



Journal on Ground Water Studies with the Application of Ai  

www.ijesi.org                                                       82 | Page 

 
Table 1 Details of the reviewed papers, where the AI methods were used to model the GWL. 

(continuedonnextPAGE) 

 

Table 1 (continued) 

 
 

Abbreviations: P, precipitation; T, temperature; R, rainfall; H, humidity; E, evaporation; ET, evapotranspiration; 

Q, river flow/discharge/runoff ; SWL, surface water level; GS, geostatistics 
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Fig. 1. Number of published papers regarding AI methods in GWL modeling (used in this study) with respect to 

year of publication. 

 

algorithm in forecasting the monthly GWL in an unconfined coastal aquifer in India. The inputvariables 

were selected as precipitation, canal releases and GWL of the observation well and two neighboring wells. The 

performance was good for 1 and 2-month ahead forecasting, but was deteriorated after 2-month. 

Krishna et al. (2008)applied several ANN training algorithms to predict monthly GWL in an urban 

coastal aquifer in Andhra Pradesh state, India. It was found that the FNN trained with LM algorithm is a good 

choice, compared to BR and RBF algorithms. In their study, GWL were also predicted in neighboring wells 

using model parameters from the best network of a well. Mohammadi (2008) tested MODFLOW and 

twotypesofANN,i.e.,MLPandRNNtosimulatethemonthlyGWLofa karstic aquifer, located in Iran. He used data 

sets generated by MOD- FLOWfortrainingoftheANNs.TheresultsindicatedthatANNmodels needed less input 

data and took less time to run, compared to MOD- FLOW. Nourani et al. (2008) compared six diff erent types 

ofANNs for 

 
Fig. 2. The stages of using ANNs for GWL forecasting. 
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spatiotemporal GWL forecasting in Tabriz aquifer, Iran. The monthly GWL in central well, 

precipitation, mean temperature and average discharge were selected as the inputs. The optimal ANN was a FNN 

trainedwithLMalgorithm,whichwasthenappliedtoforecastGWLsof selected wells, as the spatialmodel. 

Feng et al. (2008) applied FNN to investigate the eff ects of 7 factors i.e.: initial GWL, precipitation, 

evaporation, water reservoir inflow, population, synthesis irrigation ratio, and irrigation area, on monthly 

GWLinshiyangriverbasin,China.Sensitivityanalysiswiththemodels demonstrated that groundwater extraction for 

irrigation is the pre- dominant factor responsible for declining GWL. Tsanis et al. (2014)developed a FNN, 

trained with the LM algorithm with five input vari- ables,i.e., precipitation, temperature, 

runoff ,GWLandspecificyieldfor forecasting the monthly GWL in Messara Valley, Crete, Greece. They used a 

deterministic component, which linked precipitation with the seasonal recharge of the aquifer and projected the 

seasonal average precipitations. Results showed that the specific yield marginally im- proved the forecasting but 

the linearly projected precipitation compo- nent drastically increased theforecasting. 

Banerjeeetal.(2009)usedFNNmodeltrainedwithLMalgorithmto predict the monthly GWL of four diversified 

wells in Kurmapally wa- tershed, Hyderabad, India. They have not mentioned the used input variables but 

forecasted the GWL considering varying recharge and pumping conditions. Yang et al. (2009)applied the BP-

ANN and the integratedtimeseries(ITS)modelstoforecastmonthlyaverageGWLin the western Jilin province of 

China. The input variables were only the past GWLs at diff erent intervals of time. The simulation results in- 

dicatedthatbothANNandITSmodelswereaccurateinreproducingtheGWLs,butinthetestphase,theANNwassuperiort

otheITS. 

Mohanty et al. (2010) developed three diff erent training algorithms, viz., LM, BR and GDX algorithms 

for weekly GWL forecasting in a tropicalhumidregion,easternIndia.Theinputstothemodelsconsisted of 

precipitation, pan evaporation, river stage, water level in the drain, pumping rate and GWL in the previous week. 

The BR algorithm was found slightly superior to the two other algorithms. Chen et al. (2010)combined the 

theory of SOM and RBF. The proposed model could de- cide the number of RBF-ANN hidden units with using 

the two-dimen- sional feature map which is constructed by SOM. The inputs were the monthly average GWLs 

of six wells in southern Taiwan, while the outputwasthemonthlyaverageGWLofanindividualwell.Theresults 

showedthatthefour-siteinputmodelwasmorecompetentcomparedto the single-site model and six-site model. One 

year later, Chen et al.(2011)combined of the SOM and BP-ANN for the same study area. Here, the model inputs 

were the monthly average GWLs of ten wells, while the output was the GWL of an individual well. It was found 

that themulti-siteSOM-BP-ANNmodelprovidedthemostaccuratepredic- tions in comparison to the autoregressive 

integrated moving average (ARIMA) and single ANNmodels. 

Trichakis et al. (2011)simulated daily GWL by MLP at a well lo- cated in the karstic artesian Edward‟s 

aquifer in Texas, USA. The input variables were the day number, precipitation, pumping and GWL. The testing 

data were used to check the ability of the MLP to interpolate or extrapolate in other wells in the region. The 

results showed that there was a need for exact knowledge of pumping from each well in karstic aquifers as it was 

difficult to simulate the sudden drops and rises. Sreekanth et al. (2011) compared the FNN trained with LM 

algorithm andANFISforestimationoftheGWLoftheMaheshwaramwatershed, India. The inputs included the 

monthly GWL in 22 wells along with rainfall, temperature, evaporation and relative humidity. The results 

showed that the FNN provided better accuracy compared toANFIS. 

Rakhshandehroo et al. (2012) used FNN, RBF, RNN and a general- ized regression neural network for 

monthly GWL prediction in Shiraz plain, Iran. The precipitation, GWL, temperature, evaporation and 

runoffwereutilizedastheinputdata.BestperformanceswereachievedbyFNNandRNNnetworks,respectively.Taormi

naetal.(2012)appliedFNNforlongperiodsimulationsofhourlyGWLsinacoastalunconfinedaquifersitedintheLagoon

ofVenice,Italy.TheFNNwasfirsttrainedto perform one-hour-ahead predictions using past GWL, rainfall and eva- 

potranspiration data. After the training, simulations were produced by feeding back the computed outputs in 

place of past observed data. The FNN reconstructed accurate GWL for long periods, at least six months, relying 

only on the rainfall and evapotranspiration data. Sahoo and Jha(2013) compared MLP trained with LM 

algorithm and multi linear re- gression (MLR) approach in monthly GWL forecasting considering rainfall, 

temperature, river stage, GWL and 11 seasonal dummy vari- ables as inputs. The study area was Konan basin, 

located in Kochi, Japan. They concluded that MLP models have better results; however, considering the 

practical advantages of the MLR, it was recommended as a cost-eff ective GWL modelingtool. 

Ying et al. (2014) compared the RBF-ANN, ARIMA and ITS models forGWL forecasting of two 

wellsinJilin,China.MonthlyGWLwasthe only variable used to develop the models. They concluded that for 

forecasting the dynamics of the GWL, the RBF-ANN is preferable, but for analyzing GWL variation, the ITS 

and ARIMA may be more appro- priate. 
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Juanetal.(2015)developedtwoFNNmodels,onewiththreeinputs (previous GWL, temperature and precipitation) 

and another with two inputs (temperature and precipitation only) to forecast the daily var- iations of the supra-

permafrost GWL in the Qinghai-Tibet plateau, China. The FNNs were trained with LM algorithm, and the 

results in- dicated that the three inputs model produced better accuracy perfor- mance. However, if there are no 

field observations of the GWL, the models developed using only two inputs also have good accuracy. Gholami 

et al. (2015) used a MLP trained with LM algorithm to simu- lateannual GWL 

fluctuationsoftwowellslocatedinanalluvialaquifer of the Caspian Sea southern coasts, Iran, for the period from 

1912 to 2013. The tree-ring diameter and the precipitation during the growing season weret 

heinputparametersfortheMLP,andtheGWLduringthegrowingseasonwastheoutput.Theresultsshowedthattheinteg 

rationofdendrochronologyandANNrendersahighdegreeofaccuracyinthe simulation of annual GWL. Mohanty et 

al. (2015)applied FNN for si- multaneous forecasting of the weekly GWL in 18 wells located over a river basin 

in India. The inputs were selected as rainfall, pan evapora- tion, river stage, water level in the surface drain, 

pumping rates of 18 sites and GWLs of 18 sites in the previous week, which led to 40 input 

nodesand18outputnodes.ComparisonbetweentheLM,BRandGDX training algorithms showed that the GDX was 

the most suitable algo- rithm for the studyarea. 

Sun et al. (2016)applied an MLP trained with LM algorithm to forecast the daily GWL in a freshwater 

swamp forest of Singapore. The inputs to the model were the surrounding reservoir levels and rainfall. 

TheresultsrevealedthatMLPproducedbetterpredictionwithaleading time of 1 day compared toMLR. 

Wunsch et al. (2018)used the nonlinear autoregressive with exo- genous inputs neural network (NARX) for 

GWL forecasting of several wells in southwest Germany. Precipitation and temperature were chosen as input 

variables. All input and target time series were de- composed using the seasonal trend based on loess algorithm 

to detect significant time lags and determine input and feedback delays needed for NARX application. The 

results showed that NARX is suited to per- formGWLpredictionsforuninfluencedobservationwells,eventhough 

the number of input variables is limited. Ghose et al. (2018) developed theRNN model to forecast 

monthlyGWLofawellinOdisha,Indiaasa function of rainfall, temperature, humidity, runoff  and evapo- 

transpiration. From the results, evapotranspiration and runoff  were the influencing parameters which aff ect the 

GWL, and inclusion of them improved the modelefficiency. 

Lee et al. (2018)applied the FNN to predict hourly GWL of 8 ob- servation wells located in 

Yangpyeong riverside area, South Korea. They investigate the relative impacts of the input variables, and as a 

result used the river level and pumping rates from two extraction wells as input variables, while the precipitation 

was found to be a weak influencing factor, and therefore it was not used as an input variable. Kouziokas et al. 

(2018)used multiple FNN with various network structures and training algorithms to forecast the daily GWL of 

a well located in Montgomery County, Pennsylvania, USA. Using the hu- midity, precipitation, and temperature 

as input variables the FNN with the LM training algorithm was the best model. 

 

Results 

AnassessmentofthevariousstudiesonANNmodelingoftheGWL revealed the followingissues: 

1) The ANN models can be extended easily from univariate to multi- variate cases compared to the conceptual 

models, and the model complexity can be varied simply by altering the transfer function, training algorithm or 

network architecture.Similartotheregression models,theinputvariablescanbeconsideredbasedonanempirical proof 

or a correlation analysis. The results of the reviewed papers alsoindicatedthatANNscapturethecomplexnon-

linearbehaviorof the GWL time series relatively better than the regular regression models such as ARIMA 

andMLR. 

2) The reviews reveal that the LM algorithm is the most popular training algorithm used to train ANNs for 

GWL modeling. The LM algorithmisamodificationoftheclassicNewtonalgorithmusedfor finding an optimum 

solution to a minimization problem. The LM algorithm is often characterized as more stable and efficient, and 

some researchers point out that it is faster and less easily trapped in local minima than other training algorithms 

(Daliakopoulos et al.,2005). Zounemat-kermani et al. (2013) in a study of comparison the performanceof RBF 

and LMfeed-forwardANNsforpredictingdaily watershed runoff , concluded that LM algorithm is superior to the 

RBFinpredictionofonedayaheadbaseandhighflows,buttheRBF algorithm out performed the 

LMinpredictingfloodevents.TheGWL time series do not possess a characteristic such as flood in runoff  time 

series, therefore it seems that the superiority of LM in GWL modeling correspond to the results of the study of 

Zounemat-ker- mani et al.(2013). 

3) The three layers FNN with the sigmoid transfer function in the hidden layer and linear transfer function in 

output layer is the most commonstructureofANNforGWLmodeling.Thesigmoidfunction is diff erentiable, 
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continuous, and monotonically increasing in its domainanditisthemostfrequentlyemployedfunctioninmodeling 

(Ravansalar and Rajaee, 2015). It should be mentioned that in the majority of reviewed papers the structure of 

ANN and number of hidden neurons were achieved by a trial-and-errorprocedure. 

 

ADAPTIVE neuro-fuzzy inference system (ANFIS) for GWLmodeling 

Introductory 

The adaptive neuro-fuzzy inference system is a combination of an adaptive neural network (AN) and a 

fuzzy inference system (FIS), thus it has potential to capture the benefits of two methods in a single fra- 

mework. Jang (1993) introduced architecture and a learning procedure for the ANFIS that uses a neural network 

learning algorithm for con- structing a set of fuzzy if-then rules with appropriate membership functions (MFs) 

from the specified input-output pairs. The FIS corre- sponds to a set of fuzzy if-then rules that have learning 

capability to approximate nonlinear functions. There are two approaches for FIS, namely Mamdani and Sugeno. 

The diff erences between these two ap- proaches arise from the consequent part. Mamdani‟s approach uses 

fuzzyMFs,whereasSugeno‟sapproachuseslinearorconstantMFs.The 

ANFISisanAImethodwithflexiblemathematicalconstructionwhichis capable of identifying complex nonlinearity 

and uncertainties due to randomness and imprecision between variables, without attempting to reach an 

understanding as to the nature of the phenomena. This ap- proach is capable of approximating any real 

continuous function on a compact set to any degree of accuracy. Thus, in parameterestimation/forecasting, 

where the given data are such that the system associates measurable system variables with an internal system 

parameter, a functional mapping may be constructed by ANFIS that approximates the process of estimation of 

the internal system parameter. More in- formation on ANFIS can be found in Jang (1993). 

 

BIBLIOGRAPHICreview 

In the area of GWL modeling with ANFIS, Kholghi and hosseini(2009) applied the ordinary kriging 

and ANFIS for spatialinterpolation of GWL in an unconfined aquifer in Qazvin, Iran. They use the GWL data of 

95 wells for training and testing the models. The Gaussian MF wasused in the ANFIS models. The results 

showed that the contourplot of isopieze lines estimated by ANFIS was more efficient than those by kriging. 

Jalalkamali et al. (2011)investigated the abilities of ANFIS and ANN with various combinations of monthly 

temperature, rainfall and GWLs in two neighboring wells as the inputs to predict the GWL of another well, 

located in Kerman plain, Iran. The results showed that applying the GWLs of the current and one month before 

ofthewelland the neighboring wells was the best input combination to predict GWL, 

andtheANFISmodelsusingGaussianMFhadbetterresultscompared to theANNs. 

Shirmohammadi et al. (2013)applied system identification, time series, and ANFIS models to predict 

monthly GWL in Mashhad plain, Iran.Theonlyinputvariableofthemodelswastheprecipitation.Inthe ANFIS 

models, they tested several MFssuchasTriangular,Gaussianand Bell-shaped functions. The results showed that 

the Bell-shaped MF had the best performance, and the ANFIS model outperformed both time series and system 

identificationmodels. 

Emamgholizadeh et al. (2014)compared ANN and ANFIS in fore- casting of monthly GWL in Bastam 

plain, Iran. They considered the rainfall recharge, irrigation returned flow and pumping rates from 

waterwellsasinputdataandfoundthatANFISoutperformedtheANN. The results showed that applying ANFIS with 

diff erent structures had the most accuracy when it used withtrapezoidal MF. 

Mirzavand et al. (2015) investigated the abilities of ANFIS and SVR in estimating monthly GWL 

fluctuation in the Kashan plain, Iran, by using the inputs of stream flow, evaporation, spring discharge, aquifer 

dischargeandrainfall.TheresultsindicatedthattheANFISmodelusing Bell-shaped MF performed better than the 

SVR. Khaki et al. (2015)applied ANN and ANFIS to simulate monthly average GWL in the Langat Basin, 

Malaysia. The GWL, rainfall, humidity, evaporation, minimum temperature and maximum temperature were 

applied as the inputvariablesofthemodels.TheobtainedresultsoftheANFISmodels were superior to those of 

ANNs, and in the ANFIS models the Bell- shapedMFoutperformedtheGaussianMF.Gongetal.(2015)testedthe 

validityofANN,SVMandANFISinthepredictionofthemonthlyGWL for two wells near Lake Okeechobee in 

Florida, United States. The precipitation,temperature,pastGWLsandlakelevelwereusedasinput data. The results 

showed that the GWL predictions from ANFIS and SVMweremoreaccuratethanthatfromANN. 

 

Results 

ThereviewofcitedstudiesonANFISmodelingoftheGWLshowed that: 

1) In the cited papers, applying ANFIS as an alternative approach to predict the GWL leads to more accurate 
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results in comparison with the ANN. Since ANFIS integrates both neural networks and fuzzy logic principles, it 

is more likely to deal with non-stationary time series moreeff ectively. 

2) In three studies (i.e., Shirmohammadi et al., 2013; Mirzavand et al.,2015; Khaki et al., 2015) the Bell-

shaped MF was the best in com- parison with other MFs, while in two studies (i.e., Kholghi andhosseini, 2009; 

Jalalkamali et al., 2011) the Gaussian MF yielded higheraccuracy,andinthestudyofEmamgholizadehetal.(2014) 

the Trapezoidal MF was the best in comparison of others. In the meanwhile, Gong et al. (2015) have not 

mentioned anything about the used MF. Generally, there was not any exact method for choosing the MFs in the 

reviewed papers, and instead, a trial-and- error procedure was used for finding an appropriate MF. So, use of 

thoseMFswhichdonotcauseoverfittingandgiveleasterrorcanbe recommended. 

 

Genetic PROGRAMMING (GP) for GWLmodeling 

Introductory 

The GP as a generalization of genetic algorithm (GA) is an evolu- tionary algorithm based on 

biological evolution inspired by Darwinian theoriesofnaturalselectionandsurvivalofthefittest.TheGPconsiders an 

initial population of randomly generated equations, which are achieved from the random variables, numbers and 

functions. The function involves arithmetic operators (+, –, ×, ÷) and other math- ematical functions (e.g., sin, 

cos, etc.) or user-defined expressions, which should be chosen based on some understanding of the process. The 

initial population is then applied to an evolutionary process to evaluate the fitness of the evolved programs by 

defining a fitness function. In forecasting problems the root mean squared error (RMSE) between forecasted and 

observed data is often used as the fitness function. The programs that best fit the data are then selected to pro- 

duce better program through two genetic operators: crossover and mutation. The evolution process is repeated 

and driven towards tofind expressions which describe the data and give the best performance of themodel. 

 

BIBLIOGRAPHICreview 

Shirietal.(2013)investigatedtheabilitiesofGP,ANFIS,ANN,SVM and ARIMA techniques for daily GWL 

forecasting in Korea. The GWL, rainfall and evapotranspiration data were used as the inputs of the 

models.ForGPmodels,therootrelativesquarederrorwasemployedas the fitness function. The results showed that 

GP models were superior compared to other models. Fallah-Mehdipour et al. (2013)compared the capability of 

the GP and ANFIS to predict and simulate monthly GWLs in three wells in the Karaj plain of Iran. The 

precipitation, eva- poration and GWLs were used as the inputs of the models. They have noted that the fitness 

function of GP was considered an error criterion, but they have not mentioned the type of it. Results showed that 

in the GPmodelstheaverageerrorswerelesscomparedtotheANFISmodels. 

 

Results 

Originally developed for optimization problems, the GP was ex- tended to solve forecasting problems 

such as GWL forecasting. In this case, the minimum error (e.g. RMSE) between forecasted and observed GWLs 

has been applied as the fitness function of the GP. Although, amongother AImethods, 

theGPmaynotbethebestwaytoforecastthe GWL, in the two aforementioned studies, this model outperformed 

other models. Similar to the ANN and ANFIS, in the reviewed GP pa- pers, the input parameters were chosen 

based on a combination of empirical and trial-and-error analysis. The low number of papers on 

GWLmodelingviaGPdemonstratestheneedtoinvestigatemoreabout application of GP and in GWLmodeling. 

 

Support vector MACHINE (SVM)for GWL modeling 

Introductory 

The SVM is a statistical machine learning theory. It has not a priori determined structure, but the input 

vectors supporting the model structure are selected through a model training process (Vapnik, 1998). This 

machine learning method is based on the extension of the idea of identifying a hyper-plane that separates two 

classes in classification. A SVM constructs hyper-planes in an infinite dimensional space, which can be used for 

classification, regression, or other tasks. The mappings used by SVM schemes are designed to ensure that dot 

products maybe computed easily in terms of the variables in the original space, by de- fining them in terms of a 

kernel function selected to suit the problem. The SVM can also be used as a regression method. The support 

vector regression (SVR) method uses the same principles as the SVM for classification, with only a few minor 

diff erences. The SVRgeneral- izationperformancedependsonagoodsettingofsomeparameters and the kernel 

function. The SVR parameters represent some constants like regularization constant and kernel function 

constant, and control the prediction (regression) model complexity. The kernel function changes the 
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dimensionality of the input space to perform the regression task with more confidence. A full mathematical 

overview of SVM is pre- sented by Vapnik (1998). Originally developed for classification, it was 

extendedtosolvepredictionproblems,andinthiscapacitywasusedin hydrology relatedtasks. 

 

BIBLIOGRAPHICreview 

Yoon et al. (2011) developed ANN and SVM models for predicting GWL fluctuations of two wells at a 

coastal aquifer in South Korea, consideringasix-hourlytimestep.ThepastGWL,precipitationandtide level were 

selected as the inputs of the models. It was found that the past GWL was the most eff ective input variable for 

the study site, and tidelevelwasmoreeff ectivethanprecipitation.Theresultsshowedthat the performance of the 

SVM was better than the ANN. Yoon et al.(2016)utilized a weighted error function approach to improve the 

performance of ANN and SVM models for the prediction of dailyGWL in response to rainfall. The input 

variables were GWL and rainfall data in South Korea. The comparison of the models showed that the re- cursive 

prediction performance of the SVM was superior theANN. 

Huang et al. (2017) used the chaos theory to select the best input lagsof GWL timeseries, 

anddevelopedtheSVMandBP-ANNmodels. Usingtheparticleswarmoptimizationmethodtoobtaintheparameters of 

SVM, the models were applied to predict the daily, weekly and monthly GWL in China. The chaotic SVM 

model had higher accuracy than the linear SVM and chaotic BP-ANN models. Nie et al. (2017)employed 

precipitation, evaporation, and temperature as the inputs of SVM and RBF-ANN models to forecast monthly 

GWL in Jilinprovince, China. The SVM model was more accurate and had feweruncertainties 

causedbyerrorsinthemeasurementsoftheinputsandoutputs. 

Mukherjee and Ramachandran (2018) applied the GRACE satellite terrestrial water storage (TWS) data 

along with meteorological vari- ables precipitation, min and max temperature, humidity and wind to predict 

GWL with the SVR, ANN and linear regression models. The results showed that TWS is a highly significant 

variable to modelGWL, and the SVR was the best model. Guzman et al. (2018) compared SVR andNARX-

ANNmodelsforGWLpredictionofanirrigationwelllocated in the southeastern USA. They evaluated the best 

combination from three input variables, i.e., daily GWL, precipitation and evapo- transpiration data for each 

model. The GWL + precipitation scenario provides the optimal combination for model inputs, and the SVR was 

superior to the ANN. Tang et al. (2018) concluded that the least square SVM perform better than classical SVM 

and some other AI models in GWL forecasting. The only input variable was the hourly GWL of four observation 

wells located in northernUK. 

 

Results 

The SVMs/SVRs are powerful machine learning methods that have been developed and applied for 

many classification/prediction pro- blems over past years. Although the number of published papers con- 

sideringGWLmodelingviaSVMislow,howeveritshouldbenotedthat SVM has been used for predicting of many 

time series for a myriad of practical applications in theworld. 

In the SVM modeling, the appropriate selection of the kernel func- tion and parameter values is critical. In the 

five of seven aforemen- tionedpapers,theRBFkernelfunctionwasselected,whereasinthetwo otherones 

(i.e.,Yoonetal. (2011) andMukherjeeandRamachandran (2018)) the utilized kernel function was not mentioned. 

Over period of years, the RBF function has become the choice of many researchers as the kernel function for 

SVR because of its accuracy and reliable per- formance (Suryanarayana et al., 2014). 

For selecting the optimum parameters of SVM model, most of the papers have employed a procedure 

like trial-and-error, except Huanget al. (2017)that have been used the particle swarm optimization method to 

obtain the optimum parameters of SVM. 

 

Hybrid AI techniques for GWLmodeling 

Introductory 

Since it has been revealed that the AI models have some limitations withthenonlinearandnon-

stationaryprocesses,somehybridmodeling approaches which include certain data-preprocessing and/or combine 

diff erent AI techniques have been also developed in the recent years to increase the capabilities of the AI 

methods. Combining diff erent AI methods in diff erent stages of the modeling, and applying efficient methods 

for input data pre-processing make the developing of these models more eff ective. For example, the GP 

technique can be used to optimize the AI input variables and/or AI regulation parameters. In another example, 

the geostatistical techniques such as Kriging can be combined with the AI methods for spatiotemporal GWL 

modeling. According to the capability of geostatistics tools in spatial estimation, hybrid AI-geostatistic models 
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have been applied in some papers to use their potential for spatiotemporal simulation ofGWL. 

The wavelet analysis is an example for the data pre-processing, which has been widely used in GWL 

modeling. Wavelet analysis is applied for de-noising, compression and decomposition of input data 

timeseries.Waveletisatime-dependentspectralanalysisthatunravels time series in the time-frequency space to 

provide a time-scale de- scription of the processes and their relationships (Daubechies, 1990). The Wavelet 

analysis can be performed continuously or discretely. The continuous wavelet transform (CWT) can operate at 

every scale; but it requires a lot of computational time, and generates a large amount of data. In many studies the 

discrete wavelet transform (DWT) was used, where only a subset of scales and positions are chosen to make the 

calculations. In the wavelet-AI models cited in scientific papers, the decomposed sub-time series were used as 

the inputs of AI models, in- steadofthemaintimeseries.Theschematicstructureofsomeofhybrid 

AImodelsforGWLmodelingisshowninFig.3. 

 

BIBLIOGRAPHICreview 

AfterwardstheAImethodsweredevelopedforpredictionproblems, the researchers tried to combine 

diff erent type of them to overcome the shortcomings and increase their accuracy. Almost since 2011, there has 

been an interest in application of the wavelet analysis in combination with diff erent AI methods. Adamowski 

and Chan (2011)used a Wa- velet-ANN model for GWL forecasting at two sites in Quebec, Canada. 

Themonthlytotalprecipitation,averagetemperatureandaverageGWL were decomposed at two levels by wavelets 

and imposed to the ANN. The model was found to provide more accurate GWL forecasts com- pared to the 

ANN and ARIMA models. Nourani et al. (2011) presented an ANN-geostatistics methodology for 

spatiotemporal prediction of GWL in Shabestar plain, which adjoins to Urmieh Lake as a coastal aquifer in Iran. 

Monthly GWLs data from 11 piezometers, rainfall, and lakewaterlevelsweretheinputs ofANN. 

TheANNwastrainedforeach piezometer to predict the GWL of the next month. Then Kriging was applied to the 

outputs from ANN models in order to estimate GWL at any desired point in theplain. 

Kisi and Shiri (2012)investigated the ability of a Wavelet-ANFIS model to perform one-, two- and 

three-day-ahead GWL forecasting oftwowellslocatedinIllinoisState,USA,usingonlypastdailyGWLdata. They 

found that excluding the detail coefficients from the inputs and using only approximation components 

significantly increase the accu- racy of ANFIS models. The hybrid model outperformedANFIS,particularly for 

two- and three-day-ahead forecasts. 

Moosavi et al. (2013a) applied a number of diff erent structures for ANN, ANFIS, Wavelet-ANN and 

Wavelet-ANFIS models to evaluate their performances to forecast GWL with 1, 2, 3 and 4 months ahead 

undertwocasestudiesinMashhadplain,Iran.Itwasdemonstratedthat wavelet transform can improve the accuracy of 

forecasting. It has been alsoshownthattheforecastsmadebyWavelet-ANFISmodelsaremore accurate than those by 

other models. They found that the decomposi- tion level in wavelet transform should be determined according to 

the periodicity and seasonality of data series. Moosavi et al. (2013b)also investigated the optimum structures of 

Wavelet-ANN and Wavelet- ANFISmodelsforGWLforecastinginthesamecasestudies.Theyused the optimization 

Taguchi method to assess diff erent factors aff ecting the performance of models. It was revealed that transfer 

functions ofANN,membershipfunctiontypesofANFISandthemotherwavelettype are the most important factors. 

Comparison of optimal models de- monstratedthebetterperformanceofWavelet-ANFIS.MaheswaranandKhosa 

(2013) showed that wavelet based nonlinear as wavelet-Volterra model performed better than Wavelet-ANN 

and wavelet-linear regres- sion models for GWL forecasting. The study area was northernSaanich Peninsula, 

Canada, and the inputs of the models were the level five decomposed monthly average GWL timeseries. 

Suryanarayana et al. (2014)predicted monthly GWL of three ob- servation wells in the city of Visakhapatnam, 

India, using wavelet-SVR modeling. The monthly data of precipitation, maximum temperature, mean 

temperature and GWL for the period 2001–2012 are used as the input variables. Results indicated that wavelet-

SVR model gives better accuracy compared with SVR, ANN and ARIMA models. 

Heetal.(2014)linkedwaveletandfractaltheorymethodstoANNforGWLforecasting of three sites located in 

Ganzhou region, northwest China. The fractal dimension was convenient for quantitatively describing 

theirregularity orrandomnessoftimeseriesdata.Theresultsshowedthatthismodelis suitable for sites at which the 

fractal dimension of the wavelet de- composition detail components is large. Tapoglou et al. (2014)com- 

binedANN,fuzzylogicandKriginginordertosimulatethespatialandtemporaldistributionofGWLinanareaacrosstheIs

arRiverinBavaria, Germany. The daily data including the GWLs in 64 wells, the surface water elevation at five 

observation points across the river, temperature andrain fall were used as input variables to 

the64ANNs.Diff erentANN architectures and variogram models were tested together with the use or not of a 

fuzzy logic system. The isocontour maps were presented for the hydraulic head. The best results were achieved 
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with the use of the fuzzylogicsystemandbyutilizingthepower-lawvariogram. 

Yang et al. (2015) developed a wavelet-ANN and an ITS model to predict GWL of as hallow 

coastalaquiferinFujianprovince,China. The input was only the monthly GWL time series of two representative 

wells. The wavelet-ANN models provided more accurate results com- pared to the ITS models. Khalil et al. 

(2015)compared MLR, ANN, wavelet-MLR, wavelet-ANN, and a wavelet-ensemble ANN model for the 

forecasting of GWLs as a result of recharge via tailings from an abandoned mine in Quebec, Canada. The 

wavelet- ensemble ANN consisted of a group of wavelet-ANN members, where each of these members was 

trained for the same problem, and then combined to produce the output. The daily tailing recharge, total 

precipitation and mean air temperature were used as inputs, while the output was GWL for lead times of 1-day, 

1-week and 1-month. The wavelet-ensemble ANN model performed best for each of the three lead times. 

Nouraniet al. (2015) proposed a wavelet-entropy data pre-processing approach for ANN-based GWL modeling. 

They used the SOM-based clustering technique to identify spatially homogeneous clusters of GWL data and the 

wavelet transform to extract the non-stationary GWL, runoff  and rainfall time series. The results indicated that 

the SOM method de- creased the dimensionality of the input variables and the wavelet analysis increased the 

performance of the ANN model. Jha and Sahoo(2015)developed five hybrid ANN-GA models for simulating 

spatio-  

 
Fig. 3. Schematic structure of some hybrid AI models for GWL modeling. a) Wavelet-AI model b) SOM-AI 

model c) GP-AI model d) AI-Kriging model. 

 

as rainfall, max and min temperature, river stage and GWL have been considered to simulate GWL at 

17 sites. The inputs and parameters of theANNwereoptimizedusingGAoptimizationtechnique.TheGAwas 

superior to the commonly used trial-and-error method for determining optimal ANN architecture andinputs. 

Chang et al. (2016)combined the SOM, the Nonlinear Auto- regressive with Exogenous Inputs (NARX) 

network and the kriging for predicting monthly GWL in Zhuoshui River basin, Taiwan, based onhydrologic data 

such as rainfall, stream flow and GWL. The SOM was used to classify thes 

patiotemporalpatternsofregionalGWL,theNARXwasusedtopredictthemeanofregionalGWL,andthekrigingwasuse

dtointerpolatethepredictionsintofinergridsoflocations.Consequently the prediction of a GWL map was obtained. 

Han et al. (2016) coupled SOM and a statistical method to predict spatiotemporal monthly GWL in an arid 

irrigation district in the western Hexi Corridor, northwest China. The SOM was applied to identifys 

patiallyhomogeneousclusters ofwells, and the GWLf ore castingwasperformedthroughdevelopinga stepwise 

cluster multisite inference model with various predictors in- cluding climate conditions, well extractions, surface 

runoff s, reservoir operations and GWL measurements at previous steps. Hosseini et al.(2016) combined ANN 
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and ant colony optimization (ACO) to simulate the GWL in Shabestar plain, Iran. The back-propagation ANN 

was uti- lized to reproduce GWL variations using the input variables including: rainfall, averagedis charge, 

temperature,evaporation,andsomeannual timeseries. Then,ACOwasusedtooptimizeandfindinitialconnection 

weights and biases of a BP algorithm during the training phase. They foundthatthehy brid model could 

reduceovertraining. 

Nourani and Mousavi (2016) presented a hybrid Wavelet-AI-mesh- less model for spatiotemporal 

GWL modeling in Miandoab plain, Iran. InthiswayfirstlymonthlyGWLindiff erentwellswerede-noisedusing 

threshold-basedwaveletmethodandtheimpactofde-noisedandnoisy data was compared in temporal GWL 

modeling by ANN and ANFIS. Then,bothANNandANFISmodelswerecalibratedusingGWLdataof each well, 

rainfall and runoff  to predict the GWL at one month ahead. Finally, the simulated GWLs were considered as 

interior conditions for the multi-quadric RBF based solve of governing partialdiff erential equation of 

groundwaterflowtoestimateGWLatanydesiredpointwithin the plain. The results showed that the wavelet de-

noising ap- proach can enhance the performance of the modeling. 

Ebrahimi and Rajaee (2017)investigated the eff ect of wavelet analysis on the training of the ANN, 

MLR and SVR approaches in si- mulating GWL. The only input variable was the monthly GWL data of 

twowellsintheQomplain,Iran.Theresultsshowedthatforbothwells, the Meyer wavelet produced better results 

compared to the other wa- velets,andthewavelet-MLRandwavelet-SVRwerethebestmodelsfor the wells 1 and 2 

respectively. Barzegar et al. (2017) combined wavelet with ANN and group method of data handling (GMDH) 

models for forecasting the monthly GWL in Azarbijan, Iran. The GWL time series were decomposed with 

diff erent wavelets at two levels, and the step- wise selection was used to select appropriate lag times as the 

inputs of the models. To combine the advantages of diff erent wavelets, a least squares boosting algorithm was 

applied. The boosting multi-wavelet- ANNmodelsprovidedthebestperformances.Wenetal.(2017)applied wavelet-

ANN with three diff erent input combinations, i.e., (1) GWL only, (2) climatic data, and (3) GWL and climatic 

data to forecast the monthly GWL of two wells in Zhangye basin, China. The model with only GWL as its input 

yielded the best performance for one-month forecasts. However for two- and three-monthly forecasts, the model 

withGWLandclimaticdataasinputswassuperior. 

Rakhshandehroo et al. (2018)used wavelet-ANN trained with im- proved harmony search algorithm to 

forecast the long term daily GWL of two wells in southeast USA. The only input variable was the daily 

GWL,andtheone-year-aheadpredictionwiththeproposedmodelwas acceptable. Yu et al. (2018)compared the 

wavelet-ANN and wavelet- SVR models in forecasting of monthly GWL of 3 wells in northwest 

China.Fourwaveletdecompositionlevelswereemployedtodecompose input time series discharge, 

evapotranspiration and GWL. The results showedthatthewavelet-SVRperformedbetterthanwavelet-

ANN.ZareandKoch(2018)usedwavelet-ANFISmodelwithseveralcombinations 

ofGWLandprecipitationastheinputstosimulatemonthlyGWLinthe Miandarband plain, Iran. The results indicated 

that using the Symlet mother wavelet with two decomposition levels outperformed other models. 

 

 
Fig. 4. Number of times various time steps have been used for GWL modeling. 

 

Results 

In the last years, development of hybrid modeling approaches is seen, and in particular, there has been 

an increasing interest in wave- lets-AI approaches for GWL modeling. These studies have shown that the 

hybrid/coupling models performed better than the regularmodels. As a downside, however, these models have 

also been criticized on various aspects and, in particular, the risk posed by overtraining of the model and the 
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difficulties of parameter estimation using heuristic methods (Maheswaran and Khosa, 2013). A review of the 

various stu- dies on hybrid AI modeling of the GWL revealed the followingissues: 

 

1) By using the hybrid models and in particular wavelet analysis to extract the input time series, a greater 

understanding and ability to simulateGWLcanbeachieved.Theresultsofthestudiesexploredin this section have 

revealed a higher degree of efficiency of hybrid modelscomparedwithsinglemodelsinaccuratelyforecastingGWL. 

2) In the all reviewed wavelet-AI papers, the DWT has been appliedto decompose time series rather than 

CWT. In addition to the simpli- city of using DWT, this can partly be due to the nature of GWLtime series, 

because they are recorded discretely. Furthermore, the GWL islinkedwithseveralhydrologicalphenomena; 

Thus,useofDWTat specific levels which likely refers to hourly, daily or monthly eff ects 

appearstobemoreusefulthanapplicationofCWTwhichgenerates much more redundantinformation. 

3) The more frequently mother wavelets used for GWLdecomposition are db2 and db4, which have been 

considered as the appropriate mother wavelets. According to the Nourani et al. (2014), similarity 

inshapebetweenthemotherwaveletandthetime-seriesisoftenthe best guideline in choosing a reliable mother 

wavelet. Therefore, it can be an indication of a relative similarity between the general shapeof 

GWLtimeseriesandDaubechiesfamilywavelets. 

4) AccordingtothestudyofMaheswaranandKhosa(2012)inthefield of hydrological forecasting, some mother 

wavelet forms that have a compact support showed better performance in the case of time series that have a short 

memory with transient features. In contrast, mother wavelets with a wider support yielded better forecasting 

efficiencies with regard to the time series that have long-term fea- tures. Therefore, in the case of GWL time 

series, it does not seem that compact wavelets to be suitable for decomposition, because the GWL time series 

have long-term features rather than transient fea- tures, and therefore the wavelets with a wider support are more 

compatible with the timeseries. 

5) In the aforementioned wavelet-based papers, five papers (Adamowski and Chan, 2011;  Moosavi  et  al.,  

2013a,b;  Nourani et al., 2015; Ebrahimi and Rajaee, 2017) have used the decom- position level 2, two papers 

(Suryanarayana et al., 2014; Wen et al., 2017) have used the decomposition level 4 and one paper (Maheswaran 

and Khosa, 2013) has used the decomposition level 5 as the optimum decomposition levels. In the meanwhile, in 

KisiandShiri(2012),Yangetal.(2015)andRakhshandehrooetal.(2018) 

In this section, some general results derived from the 67 reviewed papers such as the results related to 

the considering time steps, input variables, data set size, data division, study areas and type of aquifers, etc. have 

been mentioned and discussed. 

 

Time stepselection 

Inthecaseofutilizedtimesteps,themajorityofAImodelsreviewed in this study have been considered the 

monthly time steps for GWL modeling. The distribution of the utilized time steps is given in Fig. 4. As can be 

seen, the monthly time step was used in 46 of the 67 papers reviewed, followed by daily (11 papers), daily (4 

papers) and weekly(4 papers) time steps. A number of diff erent time steps (i.e., 6-hourly, multi-

monthlyandannually)wereusedinsomeofthepapersreviewed as well. The high use of the monthly time steps can 

be related to the highavailabilityofmonthlyrecordedGWLdatacomparedtoothertime steps. In the most parts of the 

world, the GWLs do not have often sig- nificanthourly,dailyorevenweeklyvariations;howeverinsomeareas like 

coastal aquifers (Yoon et al., 2011; Taormina et al., 2012) or areas near the lake of dams (Lee et al., 2018), the 

GWLs are under influence oftidal/lakeeff ects,andmayhavehourlyordailyvariations. 

Fig.5showstheinputvariablesthathavebeenemployedinAIGWLmodelingaccordingtothereviewedpapers.

FromFig.5,itcanbefound that the past steps of the GWL time series is the most frequently used input variable for 

AI models to forecast the GWL. Among 67 papers,52 papers have been employed the GWL as an input variable. 

Even 12 papers have been considered the GWL as a single auto-correlatedinput variable without any other 

exogenous input variable. As well as the GWL, the precipitation has been frequently used (48 times) as an input 

variable. Furthermore, some hydrological time series such as tem- perature, river discharge (surface runoff ), 

evapotranspiration, surface water (lake) level, pumping rates (extraction from wells) andhumidity 
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Input variables 

Fig. 5. The input variables that have been employed for AI-GWL modeling. 

 

havebeenalsousedastheinputvariablesinthereviewedpapers.Other employed input variables such as 

irrigation patterns, population, day number, seasonal dummy variables, tree-rings, etc. have been used toa lesser 

extent in the reviewed papers, and it seems that some of them cannot be easily accommodated at the stage of 

input consideration. Although in the stage of input consideration some of the hydrological time series have been 

used more than the others, however it should be noted that the input data selection has been mostly based on data 

availability in the study area rather than a physical analysis for the required data. In the meanwhile, this cannot 

be considered as aweakness of these studies because in many regions data is limited, and also it is the nature of 

AI models that they can work with any data. However it is better that a statistical analysis and in particular a 

correlationanalysisbedonewithdifferentdatabeforeemployingthemformodelinginordertoobtainsuitableinputpattern

forAImodels. 

 

DATA setsize 

According to the Table 1, the number of total sample data sets ap- plied for GWL modeling varies from 

23 sets (Banerjee et al., 2009) to 23,850 sets (Taormina et al., 2012). Generally the more samples especially for 

training can ensure better performance of model giving a better chance for locating global minimum of the error 

function, pro- vided that an overtraining does not happen during training. However there are some cases that we 

may not be able to even collect 40samples for training the model like the data of annual tree-rings in Gholamiet 

al., (2015). The quality of the available data and the relevance of the input data with the desired output are also 

important since a large amount of irrelevant data can hinder the model performance by con- fusing the training 

process (Tsanis et al., 2014). There therefore has to be a balance between the quantity of data and the relevancy 

to the output. 

In the all 67 reviewed papers there was not any fixed rule that say how to get an optimum data set size 

required for AI modeling. Itseems that considering the available data, experimental or perhaps trial-and- 

errortoolswereusedhere.FromTable1itcanbeseenthatthemajority of studies have been applied a data set size 

between 100 and 200 sets, and perhaps this can be considered as a suitable data set size. In the meanwhile it can 

be found that AI models are capable to deal with diff erent size of data set, but there was not any certain 

comment in the reviewed papers about that in each sample size (i.e. big or small) what should we do for 

optimizing the model performance (e.g. which training algorithm is better for small sample size in ANN?). It 

seems trial-and-error procedures have been usedhere. 

 

DATAdivision 

Inthecaseofdatadivisionfortraining,validationandtestingtasks, there was not a specific rule in the 

reviewed papers which explain how to consider an optimum amount for each sub-data set. In some of the 

reviewed papers, the total data set were divided into three parts and in some others into two parts (Fig. 6). In the 

three part data division, the first part was used as a training or calibration set; the second part as a 

validationsettoascertainthatthemodelisgeneralizingandtostopthe training before overfitting, and the third part for 

a testing of the model in the prediction stage. The names of these three parts, i.e., training, validation and test 

parts, of course, may be diff erent in some papers. For example in Wunsch et al. (2018), the word “validation” 

has been used for “testing” set and vice versa. But according to the reviewed papers, two parts data division i.e., 

using only the training and testing sets is also acceptable in the modeling of GWL time series, considering the 

fact that some researchers do not mention the validation step. As canbeseenfrom 
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Fig.6mostofpapershaveusedtwopartsdatadivision (training and testing sets), while some papers have included 

the vali- dationset,too.Among46papersthathaveusedtwopartsdatadivision, the training-testing sets respectively 

vary from 56% to 44% (Juan etal.,2015) to 90%–10% (Maheswaran and Khosa, 2013; Khalil et al., 2015)   of 

the total data with an average of approximately 70%–30%. In the remaining 20 papers that have added the 

validation set, the training, validation and testing sets are averagely 60%, 18% and 22% of total data, 

respectively. It should be noted that in Banerjee et al., (2009)there was not any explanation about the validation 

or testing sets, and the performance criteria has been only mentioned for the trainingdata. 

 
Fig. 6. Percentage of the training, validation and testing sets used in the studies related to AI-GWL modeling. 

 
Fig. 7. Number of published papers with respect to the countries where the study areas are located. 

 

Fig. 7shows the number of reviewed papers with respect to the countries where the study areas are 

located. A large number of the study areas are located in Iran (19 out of 67 cases). This point maybe shows the 

interest of Iranian researchers in this field, but it can also be duetothearidity/semi-
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aridityofregionslikeIran,suchthatthesurface water resources are low and the groundwater is the most available 

waterresource,andthereforetheGWLdataaremoreavailablethanthe surface water data. China with 11 and India 

with 9 case studies are placed in the next categories. In this regard, rest of the world can also be seen from the 

Fig. 7. It should be noted that the types of aquifers under study, i.e., whether they were confined, unconfined, 

karstic, sandy, etc. were briefly explained in the most papers. According to the descriptions about the study areas 

in the reviewed papers, the most of aquifers were unconfined with alluvial materials like sand, silt, clay, gravel, 

etc. and only a few of them were semi-confined or karstic, chalky, coastal, etc. It is known that the black-box AI 

techniques are useful for prediction and forecasting, but they are not built using in- sights on the physical 

processes involved. In this type of modeling, the knowledge about the underlying mechanisms is not necessary 

and the main purpose is obtaining accurateforecasts. 

 

Used SOFTWAREPROGRAMS 

Morethanhalfofthepapersreviewedinthisstudyhavementioned the software programs used for AI 

modeling, while the rest have pre- ferred not to mention the used software program. Fig. 8 shows number of 

times that diff erent software programs were used to develop ANN, ANFIS, GP 

andSVMmodelsforGWLforecasting.Itshouldbenotedthat in Fig. 8, the hybrid models are also considered. As can 

be seen, the MATLAB is the most used software program. The MATLAB software program has diff erent AI 

toolboxes that allow the user to easily apply them for the desired purpose with the least needs for coding. Other 

software programs have been also used. For example the NeuroSolu- tions (Mohammadi, 2008; Jha and Sahoo 

(2015); Gholami et al., 2015), Qnet (Emamgholizadeh et al., 2014) and R (Mukherjee andRamachandran, 2018) 

software programs have been used in somecases for developing the ANN. Even the programming languages 

such as Vi- sual Basic (Tapoglou et al., 2014) and C (Yoon et al., 2011; Shiri et al.,2013) have been used in 

several papers. The GeneXpro is a software program in the field of GP and evolutionary computation that has 

been used by Shiri et al. (2013). Details regarding these software programs can be found on the web, and we do 

not discuss about them here. Al- though many papers have not mentioned the used software, it seems 

thattheMATLABsoftwareprogramisagoodchoicefordevelopmentof the AImodels. 

 

IncorrectdevelopmentofAImodelsforGWLFORECASTING 

TheincorrectdevelopmentofAImodelsforGWLforecastingcan be occurred in diff erent stages of the 

modeling. It may be occurred during the input data consideration. If the data are insufficient, incorrect or 

irrelevant, we should not expect the model to have correct forecasts. When importing the inputs to the model, it 

is also important whether the inputs are average or related to a specific time. For example, in the monthly time 

steps, it is important to know whether the input data are relatedtothemonthlyaverageortoaspecificday 

whether they are recorded in the same day of each month or not (i.e., whether the record period is 30 

days or longer or shorter). Use of too many inputs is also caused by input redundancy, where they may 

provideredundantinformation,andcauseoverfitting,andthereforethe real-world forecasted GWL to be incorrect. 

The incorrect development canalsobeduringthedatadivisionintraining,validationandtesting sub-sets, when the 

data have not been appropriately divided. The training,validationandtestingsub-setsshouldhavethesamestatistical 

properties in order to develop the best possible model (Maier et al.,2010). A number of best ways for 

considering the input data, and input datadivisioncanbefoundinMaieretal.(2010). 

One of the most common mistakes occurs when developing hybrid 
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Fig. 8. Number of times diff erent software programs have been used to develop ANN, ANFIS, GP and SVM 

models for GWL forecasting. 

 

waveletAlmodels.Somerecentwaveletbasedhydrological(includingGWL)forecastingmodelshavebeenincorrectlydeel

opedandcannotproperlybeusedforrealworldforecastingproblems(QuiltyandAdamowski,2018).AccordingtotheQuilty

andAdamowski(2018),theincorrectdevelopmentofwaveletbasedforecastingmodelsoccursduringwaveletdecompositi

onandasaresultimportserrorintothemodelinputs.Theoriginofthiserrorisduetotheboundaryconditionthatislinkedto the 

waveletdecompositioninthreemainissues,i.e.,usingfuturedata,inappropriatelyselectingdecompositionlevelsandwavel

etfilters,andnotproperlypartitioningtraining,validationandtestingdata.Thefuturedataissueoccurswhenagivenwaveletr

equiresdatafromthefutureofthetimeseriestocalculateawaveletorscalingcoeffi cientinthepresent.Forsolvingthisproble

m,thecausalwaveletalgorithmssuchasAtrousandmaximaloverlapDWTshouldbeusedsincetheydonotusefuturedata.Inad

itiontothenotusingthefuturedata,thecausalalgorithmsreducethenumberofwaveletandscalingcoeffi cientsaff ectedbyth

eboundarycondition,whichmustberemovedfromtheinputsubtimeseriestohavearealworldforecastingmodel.Thepartitio

ningissueisalsosolvedwhenusingcausalwaveletalgorithms,butthewaveletmustbeappliedtothetesting/predictingsetoner

ecordatatime,andthentheforecastmustbecalculatedthroughthemodelforeachtesting/predictingrecordandsoon(Quiltya

ndAdamowski,2018). 

In the current review study several AI methods for GWL modeling were investigated by surveying the 

recent published researches in this field. Here, one of the important issues is exploring which AI method 

worksbetterandcanbestsimulatetheGWL.Itseemsthattheanswerto this question can be diff erent in diff erent 

studies. According to the Table 1, among 67 papers, the ANN, ANFIS, GP, and SVM were re- spectively 

declared as the most appropriate models by 28, 6, 2, and 7 papers; while 17 papers used hybrid wavelet-AI 

models and 7 papers appliedotherhybridAImodels,andreportedthathybridmodelsledto better modeling. It appears 

that in the last few years more attentionhas beenpaidtoapplyhybridmodels,sothatapplicationofhybridmodels 

leadstobetterresultsincomparisonwithsingleAImodels.Inparticular the pre-processing of input data by common 

tools such as wavelet analysis has frequently been used in this area to achieve better mod- elingperformance. 

 

III. Conclusions andrecommendations 
The AI methods have been used for GWL modeling as well asother hydrological and environmental 

modeling. In this study, 67 papers dealingwithAImethodsinGWLmodelingwhichwerepublishedin29 international 

journals from 2001 to 2018 were reviewed. From these papers it was found that AI methods can successfully be 

used to simu- late and predict the GWL time series in diff erent aquifers. This kind of modeling is based on an 

AI eff ort to find natural relationshipsbetween 

GWL and diff erent hydrological variables without the need for con- 

structinganyconceptualmodel.TheAImodelscanbeusefulwhenitis difficult to build an adequate knowledge driven 

simulation model due to the lack of the ability to satisfactorily construct a mathematical/ physical model of the 

underlying processes. These models haveseveral key stages including input data consideration, input data 

division, regulation of the model features, training, testing, etc. which if all the stagescarefully 

bedeveloped,itisexpectedthatthemodelperformance to be good. However, it should be noted that there was not a 

fixed rule for these stages, such that diff erent studies performed each stage based on an empirical manner and/or 

trial-and-error procedure considering available data and existing conditions. The obtained results from this 
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review study that were embedded in two separated parts (i.e., the re- sults of each AI method and the general 

results and discussion) can providemanyguidelinesforresearcherstoperformsimilarworksinthe related field, 

develop innovative methods and improve the quality of modeling .Forthispurpose, 

thefollowingrecommendationscanalsobe suggested: 

1) The AI methods can be linked to conceptual-numerical modelssuch asMODFLOW to 

developintegratedmodularmodelssuchthateach method covers the weak points of the other method. For example, 

if anAImodelgeneratesaccurateGWLforecastsinaspecialaquifer, it can be used to prepare and complete GWL 

data required for MODFLOWastheinput.AccordingtoMohammadi(2008)theANNs needed less input data and 

took less time to run, compared to MODFLOW, therefore using ANNs (and other AI methods) can de- crease 

the computations of MODFLOW which are very time-con- suming. In another example the GWL data sets 

estimated by MOD- FLOW can be used to train AI models, if there was not enough real data. 

2) Moreattentionshouldbegiveninthestageofinputconsideration in order to select appropriate input variables and 

lag times. In the re- viewedpapers,theinputvariableswereoftenselectedbasedondata availability or using simple 

user-defined relationships. More analy- tical methods or model-based approaches can be applied to de- termine 

input significance, as suggested by Wu et al. (2014). In particular, utilizing the 

GWLtimeseriesasthemostwidelyusedand most important input variable for AI GWL forecasting, should bemore 

investigated. The GWL fluctuations provide a direct measure of the impact of groundwater development, and 

important in- formation about the aquifer dynamics is embedded in GWL time series, so it can be said that the 

future of GWL is predictable form the past GWL. Furthermore, in the stage of input consideration, the non-

causal wavelets such as A trous and maximal overlap DWT can be explored to unravel the component features of 

diff erent input variables in order to determine the lags, correlation and interaction between the hydrological 

variables andGWL. 

3) Regarding diff erent AI methods to simulate the GWL, it can be said that it is not practically possible to 

recommend one particular type of AI model for a given problem. However it is clear that a hybrid/ coupled 

model likely perform better than a single AI model. Diff erent types of AI techniques can be tested at the 

diff erent stages of the GWL modeling to select the best AI method in each stage and 

thencombinethemtohaveanoptimummodelingperformance. 

4) In the wavelet decomposition of the GWL, border eff ects as well asthe caution of causality which occurs in 

the beginning and end of the decomposed sub-time series, is an area that has received a little 

attentioninthemostpaperswhichhaveusedwavelet-AImodelsfor GWL modeling, so this topic can be raised for the 

new researches. The decomposition of the total data set at once or each sub-data set (i.e., training, validation and 

testing sets) separately, and the ways to prepare the decomposed sub-time series for applying them asthe 

modelinputisaninterestingsubjectdeservingfurtherinvestigation. 

5) According to the Quilty and Adamowski (2018), some wavelet- basedhydrological models have 

beenincorrectlydeveloped,andthe solution is the use of non-causal wavelet algorithms such as Atrous 

andmaximaloverlapDWTalgorithms.Sincethishasnotbeendone so far in GWL forecasting, the use of these 

wavelet algorithms should be addressed in a newstudy. 
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