Unit Graphs and Subgraphs of Finite Groups U_n and K_4

Pankaj¹, Dev Deep²

1 Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India 2 Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India

Abstract: We represent finite group in the form of graphs. These graphs are called unit graphs. In this paper we shall study unit graphs of finite groups U_n (multiplicative group of integers modulo n) and K_4 (Klein's four group). Also study of different properties like the subgroups of a group are carried out using the unit graph of the group.

Keywords: Finite Group, Graph, Subgraph

I. INTRODUCTION

The phenomenon of representing Groups using Graphs has been studied theoretically by number of researchers [6-8, 12, 13]. In a series of investigations S. Akbari and A. Mohammadian [1] discussed the zero divisor graphs of finite rings. In this paper, we give unit graphs and subgraphs of finite groups U_n (multiplicative group of integers modulo n) and K_4 (Klein's four group).

II. UNIT GRAPH OF A GROUP

2.1. Definition

A graph G (V, E) is Unit Graph of a group (G,.) if

(i) Distinct elements v_i and v_j are adjacent in graph G (V, E) if $v_i \cdot v_j = e$ in group (G, .).

(ii) Every element of group (G,.) is adjoined with the unity of group (G,.).

2.2. Unit Graph of U_n

The multiplicative group of integers modulo *n* is given by $U_n = \{x \in Z | 1 \le x < n, (x, n) = 1\}$. The unit graphs of U_n for some *n* are given as follows:

2.2.1. Unit Graph of U_2

The multiplicative group of integers modulo 2 is $U_2 = \{1\}$. The unit graph of U_2 is:

1

Fig. 1: Unit Graph of U_2

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is complete graph.
- (iii) This graph is connected graph
- (iv) The chromatic number is $\chi(U_2) = 1$.

2.2.2. Unit Graph of U_3

The multiplicative group of integers modulo 3 is $U_3 = \{1,2\}$. The unit graph of U_3 is:

Fig. 2: Unit Graph of U_3

We have some following properties of this graph:-

- (i) This graph is Bipartite because the vertex set V can be decomposed into two disjoint subsets V_1 and V_2 such that every edge in U_3 has one end point in V_1 and one end point in V_2 .
- (ii) This graph is Regular because every vertex is of same degree i.e., every vertex is of degree one.
- (iii) This graph is finite because there are finite numbers of vertices and edges.
- (iv) This graph is complete graph.
- (v) This graph is connected graph
- (vi) This graph is planar graph.
- (vii) The chromatic number is $\chi(U_3) = 2$.

2.2.3. Unit Graph of U_5

The multiplicative group of integers modulo 5 is $U_5 = \{1,2,3,4\}$. The unit graph of U_5 is:

Fig. 3: Unit Graph of U_5

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph
- (iii) The chromatic number is $\chi(U_5) = 3$.

2.2.4. Unit Graph of U_9

The multiplicative group of integers modulo 9 is $U_9 = \{1, 2, 4, 5, 7, 8\}$. The unit graph of U_9 is:

Fig. 4: Unit Graph of U_9

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) The chromatic number is $\chi(U_9) = 3$.

2.2.5. Unit Graph of U_{13}

The multiplicative group of integers modulo 13 is $U_{13} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. The unit graph of U_{13} is:

Fig. 5: Unit Graph of U_{13}

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) The chromatic number is $\chi(U_{13}) = 3$.

2.2.6. Unit Graph of U_{16}

The multiplicative group of integers modulo 16 is $U_{16} = \{1,3,5,7,9,11,13,15\}$. The unit graph of U_{16} is:

We have some following properties of this graph:-

- (iv) This graph is finite graph.
- (v) This graph is connected graph.
- (vi) The chromatic number is $\chi(U_{16}) = 3$.

2.2.7. Unit Graph of U_{17}

The multiplicative group of integers modulo 17 is $U_{17} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$. The unit graph of U_{17} is:

Fig. 7: Unit Graph of U_{17}

We have some following properties of this graph:-

- (iv) This graph is finite graph.
- (v) This graph is connected graph.
- (vi) The chromatic number is $\chi(U_{17}) = 3$.

2.2.8. Unit Graph of U_{19}

The multiplicative group of integers modulo 19 is $U_{19} = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$. The unit graph of U_{19} is:

Fig. 8: Unit Graph of *U*₁₉

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) The chromatic number is $\chi(U_{19}) = 3$.

2.2.9. Unit Graph of U_{21}

The multiplicative group of integers modulo 21 is $U_{21} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$. The unit graph of U_{21} is:

Fig. 9: Unit Graph of U_{21}

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) The chromatic number is $\chi(U_{21}) = 3$.

2.2.10. Unit Graph of U_{22}

The multiplicative group of integers modulo 22 is $U_{22} = \{1,3,5,7,9,13,15,17,19,21\}$. The unit graph of U_{22} is:

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) The chromatic number is $\chi(U_{22}) = 3$.

2.3. Unit Graph of K_4

The Klein's four group K_4 is given by $K_4 = \{e, a, b, c\}$, where $a^2 = b^2 = c^2 = e$ and ab = ba = c, bc = cb = a and ca = ac = b. The unit graph of K_4 is:

We have some following properties of this graph:-

- (i) This graph is finite graph.
- (ii) This graph is connected graph.
- (iii) This graph is planar graph.
- (iv) The chromatic number is $\chi(K_4) = 2$.

III. UNIT SUBGRAPH OF A GROUP

3.1. Definition

Let graph G (V, E) be an unit graph of a group (G,.). If H is a subgroup of the group G, then the unit graph drawn for the subgroup H is known as the unit subgraph of the group G.

3.2. Unit Subgraphs of U_n

The unit subgraphs of U_n for some *n* are given as follows:

3.2.1. Unit Subgraphs of U_2

The multiplicative group of integers modulo 2 is $U_2 = \{1\}$. Subgroup of U_2 is $H_1 = \{1\} = U_2$ only. The unit subgraph of U_2 is:

•

Fig. 12: Unit Graph of H_1

3.2.2. Unit Subgraphs of U_3

The multiplicative group of integers modulo 3 is $U_3 = \{1,2\}$. Subgroups of U_3 are $H_1 = \{1\}$ and $H_2 = \{1,2\} = U_3$. The unit subgraphs of U_3 are:

3.2.3. Unit Subgraphs of U_5

The multiplicative group of integers modulo 5 is $U_5 = \{1,2,3,4\}$. Subgroups of U_5 are $H_1 = \{1\}$, $H_2 = \{1,4\}$ and $H_3 = \{1,2,3,4\} = U_5$. The unit subgraphs of U_5 are:

Fig. 16: Unit Graph of H_2

Fig. 17: Unit Graph of H_3

3.2.4. Unit Subgraphs of U_9

The multiplicative group of integers modulo 9 is $U_9 = \{1, 2, 4, 5, 7, 8\}$. Subgroups of U_9 are $H_1 = \{1\}, H_2 = \{1, 8\}, H_3 = \{1, 4, 7\}$ and $H_4 = \{1, 2, 4, 5, 7, 8\} = U_9$. The unit subgraphs of U_9 are:

 $H_1 = \{1\}, H_2 = \{1, 12\}$ U_{13} are:

Fig. 25: Unit Graph of H_4

3.2.6. Unit Subgraphs of U_{16}

The multiplicative group of integers modulo 16 is $U_{16} = \{1,3,5,7,9,11,13,15\}$. Subgroups of U_{16} are $H_1 = \{1\}$, $H_2 = \{1,7\}$, $H_3 = \{1,9\}$, $H_4 = \{1,15\}$, $H_5 = \{1,5,9,13\}$ and $H_6 = \{1,3,5,7,9,11,13,15\} = U_{16}$ etc. The unit subgraphs of U_{16} are:

www.ijesi.org

Fig. 35: Unit Graph of *H*₄

The multiplicative group of integers modulo 19 is $U_{19} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$.

8

 $H_4 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\} = U_{19}$ etc. The unit subgraphs of U_{19} are:

3.2.8. Unit Subgraphs of Unit Group U₁₉

 U_{19}

are

of

Subgroups

12

10

 $H_1 = \{1\}, \qquad H_2 = \{1, 18\},$

and

 $H_3 = \{1,7,11\}$

Fig. 39: Unit Graph of *H*₄

3.2.9. Unit Subgraphs of Unit Group U_{21}

The multiplicative group of integers modulo 21 is $U_{21} = \{1,2,4,5,8,10,11,13,16,17,19,20\}$. Subgroups of U_{21} are $H_1 = \{1\}$, $H_2 = \{1,8\}$, $H_3 = \{1,13\}$, $H_4 = \{1,20\}$, $H_5 = \{1,8,13,20\}$ and $H_4 = \{1,2,4,5,8,10,11,13,16,17,19,20\} = U_{21}$ etc. The unit subgraphs of U_{21} are:

3.2.10. Unit Subgraphs of Unit Group U₂₂

The multiplicative group of integers modulo 22 is $U_{22} = \{1,3,5,7,9,13,15,17,19,21\}$. Subgroups of U_{22} are $H_1 = \{1\}, \quad H_2 = \{1,21\}, H_3 = \{1,3,5,9,15\}$ and $H_4 = \{1,3,5,7,9,13,15,17,19,21\} = U_{22}$ etc. The unit subgraphs of U_{22} are:

Fig. 49: Unit Subgraph of H_4

www.ijesi.org

15

Fig. 48: Unit Graph of *H*₃

3.3. Unit Subgraphs of K_4

The Klein's four group K_4 is given by $K_4 = \{e, a, b, c\}$, where $a^2 = b^2 = c^2 = e$ and ab = ba = c, bc = cb = a and ca = ac = b. Subgroups of K_4 are $H_1 = \{e\}, H_2 = \{e, a\}, H_3 = \{e, b\}, H_4 = \{e, c\}$ and $H_5 = \{e, a, b, c\} = K_4$. The unit subgraphs of K_4 are:

REFERENCES

- [1] Akbari S. and Mohammadian A., On zero divisor graphs of finite rings, J. Algebra, 314, (2007), 168-184.
- [2] Anderson D.F. and Livingston P.S., The zero divisor graph of a commutative ring, J. Algebra, 217, (1999), 434-447.
- [3] Beck I., Colouring of a commutative ring, J. Algebra, 116, (1988), 208-226.
- [4] Birkhoff G. and Bartee T.C., Modern Applied Algebra, Mc- Graw Hill, New York, (1970).
- [5] Bollobas B., Modern Graph Theory, Springer-Verlag, New York, (1998).
- [6] DeMeyer F.R. and DeMeyer L., Zero Divisor Graphs of Semigroup, J. Algebra, 283, (2005), 190 198.
- [7] Godase A. D., Unit Graph of Some Finite Group Z_n, C_n and D_n, International Journal of Universal Science and Technology, 1(2), (2015), 122-130.
- [8] Godase A. D., Unit Subgraph of Some Finite Group Z_n, C_n and D_n, Research Gate pub. DOI: 10.13140/RG.2.1.3415.6648, (2015).
- [9] Hall Marshall, Theory of Groups, The Macmillan Company, New York, (1961)..
- [10] Herrnstein I.N., Topics in Algebra, Wiley Eastern Limited, (1975).
- [11] Lang S., Algebra, Addison Wesley, (1967).
- [12] Pankaj, Gunjan and Pruthi M., Unit Graph and Subgraph of Symmetric, Quaternion and Heisenberg Groups, Journal of Information & Optimization Sciences, 38(1), (2017), 207-218.
- [13] Pankaj, Unit Graphs and Subgraphs of Direct Product of Dihedral and Symmetric Groups, Arya Bhatta Journal of Mathematics & Informatics, 9(1), (2017), 59-70.

International Journal of Engineering and Science Invention (IJESI) is UGC approved Journal with Sl. No. 3822, Journal no. 43302.