Unit Graphs and Subgraphs of Finite Groups $\boldsymbol{U}_{\boldsymbol{n}}$ and $\boldsymbol{K}_{\boldsymbol{4}}$

Pankaj ${ }^{1}$, Dev Deep ${ }^{2}$
1 Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India 2 Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India

Abstract

We represent finite group in the form of graphs. These graphs are called unit graphs. In this paper we shall study unit graphs of finite groups U_{n} (multiplicative group of integers modulo n) and K_{4} (Klein's four group). Also study of different properties like the subgroups of a group are carried out using the unit graph of the group.

Keywords: Finite Group, Graph, Subgraph

I. INTRODUCTION

The phenomenon of representing Groups using Graphs has been studied theoretically by number of researchers [6-8, 12, 13]. In a series of investigations S. Akbari and A. Mohammadian [1] discussed the zero divisor graphs of finite rings. In this paper, we give unit graphs and subgraphs of finite groups U_{n} (multiplicative group of integers modulo n) and K_{4} (Klein's four group).

II. UNIT GRAPH OF A GROUP

2.1. Definition

A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is Unit Graph of a group (G,.) if
(i) Distinct elements v_{i} and v_{j} are adjacent in graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ if $v_{i} . v_{j}=e$ in group ($\mathrm{G},$.).
(ii) Every element of group (G,.) is adjoined with the unity of group (G,.).

2.2. Unit Graph of $\boldsymbol{U}_{\boldsymbol{n}}$

The multiplicative group of integers modulo n is given by $U_{n}=\{x \in Z \mid 1 \leq x<n,(x, n)=1\}$. The unit graphs of U_{n} for some n are given as follows:

2.2.1. Unit Graph of \boldsymbol{U}_{2}

The multiplicative group of integers modulo 2 is $U_{2}=\{1\}$. The unit graph of U_{2} is:

1

Fig. 1: Unit Graph of U_{2}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is complete graph.
(iii) This graph is connected graph
(iv) The chromatic number is $\boldsymbol{\chi}\left(U_{2}\right)=1$.

2.2.2. Unit Graph of $\boldsymbol{U}_{\mathbf{3}}$

The multiplicative group of integers modulo 3 is $U_{3}=\{1,2\}$. The unit graph of U_{3} is:

Fig. 2: Unit Graph of U_{3}
We have some following properties of this graph:-
(i) This graph is Bipartite because the vertex set V can be decomposed into two disjoint subsets V_{1} and V_{2} such that every edge in U_{3} has one end point in V_{1} and one end point in V_{2}.
(ii) This graph is Regular because every vertex is of same degree i.e., every vertex is of degree one.
(iii) This graph is finite because there are finite numbers of vertices and edges.
(iv) This graph is complete graph.
(v) This graph is connected graph
(vi) This graph is planar graph.
(vii) The chromatic number is $\boldsymbol{\chi}\left(U_{3}\right)=2$.

2.2.3. Unit Graph of \boldsymbol{U}_{5}

The multiplicative group of integers modulo 5 is $U_{5}=\{1,2,3,4\}$. The unit graph of U_{5} is:

Fig. 3: Unit Graph of U_{5}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{5}\right)=3$.

2.2.4. Unit Graph of $\boldsymbol{U}_{\mathbf{9}}$

The multiplicative group of integers modulo 9 is $U_{9}=\{1,2,4,5,7,8\}$. The unit graph of U_{9} is:

Fig. 4: Unit Graph of U_{9}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{9}\right)=3$.

2.2.5. Unit Graph of $\boldsymbol{U}_{\mathbf{1 3}}$

The multiplicative group of integers modulo 13 is $U_{13}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. The unit graph of U_{13} is:

Fig. 5: Unit Graph of U_{13}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{13}\right)=3$.

2.2.6. Unit Graph of $\boldsymbol{U}_{\mathbf{1 6}}$

The multiplicative group of integers modulo 16 is $U_{16}=\{1,3,5,7,9,11,13,15\}$. The unit graph of U_{16} is:

Fig. 6: Unit Graph of U_{16}
We have some following properties of this graph:-
(iv) This graph is finite graph.
(v) This graph is connected graph.
(vi) The chromatic number is $\boldsymbol{\chi}\left(U_{16}\right)=3$.

2.2.7. Unit Graph of $\boldsymbol{U}_{\mathbf{1 7}}$

The multiplicative group of integers modulo 17 is $U_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$. The unit graph of U_{17} is:

Fig. 7: Unit Graph of U_{17}
We have some following properties of this graph:-
(iv) This graph is finite graph.
(v) This graph is connected graph.
(vi) The chromatic number is $\boldsymbol{\chi}\left(U_{17}\right)=3$.

2.2.8. Unit Graph of $\boldsymbol{U}_{\mathbf{1 9}}$

The multiplicative group of integers modulo 19 is $U_{19}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$. The unit graph of U_{19} is:

Fig. 8: Unit Graph of U_{19}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{19}\right)=3$.

2.2.9. Unit Graph of \boldsymbol{U}_{21}

The multiplicative group of integers modulo 21 is $U_{21}=\{1,2,4,5,8,10,11,13,16,17,19,20\}$. The unit graph of U_{21} is:

Fig. 9: Unit Graph of U_{21}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{21}\right)=3$.

2.2.10. Unit Graph of $\boldsymbol{U}_{\mathbf{2 2}}$

The multiplicative group of integers modulo 22 is $U_{22}=\{1,3,5,7,9,13,15,17,19,21\}$. The unit graph of U_{22} is:

Fig. 10: Unit Graph of U_{22}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) The chromatic number is $\boldsymbol{\chi}\left(U_{22}\right)=3$.

2.3. Unit Graph of K_{4}

The Klein's four group K_{4} is given by $K_{4}=\{e, a, b, c\}$, where $a^{2}=b^{2}=c^{2}=e$ and $a b=b a=c$, $b c=c b=a$ and $c a=a c=b$. The unit graph of K_{4} is:

Fig. 11: Unit Graph of K_{4}
We have some following properties of this graph:-
(i) This graph is finite graph.
(ii) This graph is connected graph.
(iii) This graph is planar graph.
(iv) The chromatic number is $\boldsymbol{\chi}\left(K_{4}\right)=2$.

III. UNIT SUBGRAPH OF A GROUP

3.1. Definition

Let graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be an unit graph of a group (G,.). If H is a subgroup of the group G , then the unit graph drawn for the subgroup H is known as the unit subgraph of the group G .

3.2. Unit Subgraphs of $\boldsymbol{U}_{\boldsymbol{n}}$

The unit subgraphs of U_{n} for some n are given as follows:

3.2.1. Unit Subgraphs of \boldsymbol{U}_{2}

The multiplicative group of integers modulo 2 is $U_{2}=\{1\}$. Subgroup of U_{2} is $H_{1}=\{1\}=U_{2}$ only.
The unit subgraph of U_{2} is:

Fig. 12: Unit Graph of H_{1}

3.2.2. Unit Subgraphs of $\boldsymbol{U}_{\mathbf{3}}$

The multiplicative group of integers modulo 3 is $U_{3}=\{1,2\}$. Subgroups of U_{3} are $H_{1}=\{1\}$ and $H_{2}=\{1,2\}=$ U_{3}. The unit subgraphs of U_{3} are:

Fig. 13: Unit Graph of H_{1}

Fig. 14: Unit Graph of H_{2}

3.2.3. Unit Subgraphs of \boldsymbol{U}_{5}

The multiplicative group of integers modulo 5 is $U_{5}=\{1,2,3,4\}$. Subgroups of U_{5} are $H_{1}=\{1\}, H_{2}=\{1,4\}$ and $H_{3}=\{1,2,3,4\}=U_{5}$. The unit subgraphs of U_{5} are:

\bullet

Fig. 15: Unit Graph of H_{1}

Fig. 16: Unit Graph of H_{2}

Fig. 17: Unit Graph of H_{3}

3.2.4. Unit Subgraphs of $\boldsymbol{U}_{\mathbf{9}}$

The multiplicative group of integers modulo 9 is $U_{9}=\{1,2,4,5,7,8\}$. Subgroups of U_{9} are $H_{1}=\{1\}, H_{2}=\{1,8\}$, $H_{3}=\{1,4,7\}$ and $H_{4}=\{1,2,4,5,7,8\}=U_{9}$. The unit subgraphs of U_{9} are:

\bullet

Fig. 18: Unit Graph of H_{1}

Fig. 19: Unit Graph of H_{2}

Fig. 21: Unit Graph of H_{4}

3.2.5. Unit Subgraphs of $\boldsymbol{U}_{\mathbf{1 3}}$

The multiplicative group of integers modulo 13 is $U_{13}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$. Subgroups of U_{13} are $H_{1}=\{1\}, H_{2}=\{1,12\}, H_{3}=\{1,3,9\}$ and $H_{4}=\{1,2,3,4,5,6,7,8,9,10,11,12\}=U_{13}$ etc. The unit subgraphs of U_{13} are:

$\stackrel{\rightharpoonup}{\bullet}$

Fig. 22: Unit Graph of H_{1}

Fig. 23: Unit Graph of H_{2}

Fig. 24: Unit Graph of H_{3}

Fig. 25: Unit Graph of H_{4}

3.2.6. Unit Subgraphs of \boldsymbol{U}_{16}

The multiplicative group of integers modulo 16 is $U_{16}=\{1,3,5,7,9,11,13,15\}$. Subgroups of U_{16} are $H_{1}=\{1\}$, $H_{2}=\{1,7\}, H_{3}=\{1,9\}, H_{4}=\{1,15\}, H_{5}=\{1,5,9,13\}$ and $H_{6}=\{1,3,5,7,9,11,13,15\}=U_{16}$ etc. The unit subgraphs of U_{16} are:

\bullet

Fig. 26: Unit Graph of H_{1}

Fig. 29: Unit Graph of H_{4}

Fig. 27: Unit Graph of H_{2}

Fig. 28: Unit Graph of H_{3}

Fig. 31: Unit Graph of H_{6}

3.2.7. Unit Subgraph of Unit Group $\boldsymbol{U}_{\mathbf{1 7}}$

The multiplicative group of integers modulo 17 is $U_{17}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$.
Subgroups of $U_{17} \quad$ are $H_{1}=\{1\}, \quad H_{2}=\{1,16\}, \quad H_{3}=\{1,2,4,8,9,13,15,16\} \quad$ and $H_{4}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}=U_{17}$ etc. The unit subgraphs of U_{17} are:
\bullet
Fig. 32: Unit Graph of H_{1}

Fig. 33: Unit Graph of H_{2}

Fig. 34: Unit Graph of H_{3}

Fig. 35: Unit Graph of H_{4}

3.2.8. Unit Subgraphs of Unit Group \boldsymbol{U}_{19}

The multiplicative group of integers modulo 19 is $U_{19}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$.
Subgroups of $\quad U_{19} \quad$ are $H_{1}=\{1\}, \quad H_{2}=\{1,18\}, \quad H_{3}=\{1,7,11\} \quad$ and $H_{4}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}=U_{19}$ etc. The unit subgraphs of U_{19} are:

1

Fig. 36: Unit Graph of H_{1}

Fig. 37: Unit Graph of H_{2}

Fig. 38: Unit Graph of H_{3}

Fig. 39: Unit Graph of H_{4}
3.2.9. Unit Subgraphs of Unit Group $\boldsymbol{U}_{\mathbf{2 1}}$

The multiplicative group of integers modulo 21 is $U_{21}=\{1,2,4,5,8,10,11,13,16,17,19,20\}$. Subgroups of U_{21} are $H_{1}=\{1\}, \quad H_{2}=\{1,8\}, \quad H_{3}=\{1,13\}, \quad H_{4}=\{1,20\}, \quad H_{5}=\{1,8,13,20\} \quad$ and $H_{4}=\{1,2,4,5,8,10,11,13,16,17,19,20\}=U_{21}$ etc. The unit subgraphs of U_{21} are:

\bullet
 1

Fig. 40: Unit Graph of H_{1}

Fig. 43: Unit Graph of H_{4}

Fig. 41: Unit Graph of H_{2}

Fig. 44: Unit Graph of H_{5}

Fig. 42: Unit Graph of H_{3}

Fig. 45: Unit Graph of H_{6}

3.2.10. Unit Subgraphs of Unit Group $\boldsymbol{U}_{\mathbf{2 2}}$

The multiplicative group of integers modulo 22 is $U_{22}=\{1,3,5,7,9,13,15,17,19,21\}$. Subgroups of U_{22} are $H_{1}=\{1\}, \quad H_{2}=\{1,21\}, H_{3}=\{1,3,5,9,15\}$ and $H_{4}=\{1,3,5,7,9,13,15,17,19,21\}=U_{22}$ etc. The unit subgraphs of U_{22} are:

\bullet

Fig. 46: Unit Graph of H_{1}

Fig. 47: Unit Graph of H_{2}

Fig. 49: Unit Subgraph of H_{4}

3.3. Unit Subgraphs of \boldsymbol{K}_{4}

The Klein's four group K_{4} is given by $K_{4}=\{e, a, b, c\}$, where $a^{2}=b^{2}=c^{2}=e$ and $a b=b a=c$, $b c=c b=a$ and $c a=a c=b$. Subgroups of K_{4} are $H_{1}=\{e\}, H_{2}=\{e, a\}, H_{3}=\{e, b\}, H_{4}=\{e, c\}$ and $H_{5}=\{e, a, b, c\}=K_{4}$. The unit subgraphs of K_{4} are:

e

Fig. 50: Unit Graph of H_{1}

Fig. 51: Unit Graph of H_{2}

Fig. 52: Unit Graph of H_{3}

Fig. 54: Unit Graph of H_{5}

REFERENCES

[1] Akbari S. and Mohammadian A., On zero divisor graphs of finite rings, J. Algebra, 314, (2007), 168-184.
[2] Anderson D.F. and Livingston P.S., The zero divisor graph of a commutative ring, J. Algebra, 217, (1999), 434-447.
[3] Beck I., Colouring of a commutative ring, J. Algebra, 116, (1988), 208-226.
[4] Birkhoff G. and Bartee T.C., Modern Applied Algebra, Mc- Graw Hill, New York, (1970).
[5] Bollobas B., Modern Graph Theory, Springer-Verlag, New York, (1998).
[6] DeMeyer F.R. and DeMeyer L., Zero Divisor Graphs of Semigroup, J. Algebra, 283, (2005), 190 - 198.
[7] Godase A. D., Unit Graph of Some Finite Group Z_{n}, C_{n} and D_{n}, International Journal of Universal Science and Technology, 1(2), (2015), 122-130.
[8] Godase A. D., Unit Subgraph of Some Finite Group Z_{n}, C_{n} and D_{n}, Research Gate pub. DOI: 10.13140/RG.2.1.3415.6648, (2015).
[9] Hall Marshall, Theory of Groups, The Macmillan Company, New York, (1961)..
[10] Herrnstein I.N., Topics in Algebra, Wiley Eastern Limited, (1975).
[11] Lang S., Algebra, Addison Wesley, (1967).
[12] Pankaj, Gunjan and Pruthi M., Unit Graph and Subgraph of Symmetric, Quaternion and Heisenberg Groups, Journal of Information \& Optimization Sciences, 38(1), (2017), 207-218.
[13] Pankaj, Unit Graphs and Subgraphs of Direct Product of Dihedral and Symmetric Groups, Arya Bhatta Journal of Mathematics \& Informatics, 9(1), (2017), 59-70.

