Chromatic Number of Some S-Valued Graphs

T.V.G. Shriprkash* and M. Chandramouleeswaran**

*Kurinji College Of Engineering And Technology MANAPPARAI – 621 307 Tamil Nadu. India ** Saiva Bhanu Kshatriya College Aruppukottai – 626 101 Tamil Nadu, India.

ABSTRACT: In [3], the authors introduced the notion of semiring valued graphs. In [1], theauthors introduced the notion of regularity on S-Valued graphs. In [4], we have introduced colouring on S-valued graphs. In [5], we have introduced the notion of K-colouring on S-Valued graphs. In this paper, we study the upper bounds for chromatic number of some S-valued graphs.

*Keywords:*Semiring,S-valued graph, colouring, K-colouring,Chromatic-number, *AMS* subject classification:05C25, 16Y60

Date of Submission: 17-07-2017 Date of acceptance: 18-08-2017

I. Introduction

An assignment of colors to the vertices of a graph so that no two adjacent vertices get the same colour is called a colouring of the graph. For each color, the set of points which get the samecolour is independent and is called a colourclass. A colouring of a graph G usingatmost n colours is called a n-colouring. The chromatic number $\chi(G)$ of a graph G is the minimum number of colours needed to colour G. A graph G is called, n-colourable if

 $\chi(G) \leq n.$

The problem of colouring in crisp graph is dealt in [2] by Jensen. In [3], the authors introduced the notion of semiring valued graphs. In [1], the authors introduced the notion of regularity on S-valued graphs. Motivated by this, in [4], we have introduced the notion of coloring on S-valued graphs. In [5], we introduced the notion of K-colouring on S-valued graphs. In this paper, we study the chromatic number of some S-valued graphs.

II. Preliminaries

In this section, we recall some basic definitions that are required for our work in the sequel.

Definition 2.1

A semiring (S, +, \cdot) is an algebraic system with a non-empty set S together with two binary operators + and \cdot such that

(1) (S, +, 0) is a monoid.

- (2) (S, \cdot) is a semi group.
- (3) For all a, b, c \in S, a \cdot (b + c) = a \cdot b + a \cdot c and (a + b) \cdot c = a \cdot c + b \cdot c.
- (4) $0 \cdot x = x \cdot 0 = 0$ for all $x \in S$.

Definition 2.2

Let $(S, +, \cdot)$ be a semiring. \leq is said to be a canonical preorder if for $a, b \in S$, $a \leq b$ if and if there exists $c \in S$ such that a + c = b.

Definition 2.3 [6]

Let $(S_1, +, .)$ and $(S_2, +, .)$ be given two semirings. A mapping $\beta : S_1 \rightarrow S_2$ is a semiring homomorphism if $\beta(0_{S_1}) = \beta(0_{S_2})$; $\beta(a+b) = \beta(a) + \beta(b)$; $\beta(ab) = \beta(a) \beta(b) \notin \forall a, b \in S_1$.

Remark 2.4. If the semiring contains multiplicative identity then $\beta(1_{S_1}) = 1_{S_2}$ must be satisfied.

Definition 2.5 [6]

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be given two graphs. A mapping $\alpha: V_1 \rightarrow V_2$ is said to be a graph Homomorphism if $(u, v) \in E_1 \Rightarrow (\alpha(u), \alpha(v)) \in E_2$.

Remark 2.6A graph homomorphism is an edge preserving map . It need not be 1-1, onto (or) both. **Definition 2.7** [2]

A k – vertex colouring of a graph G is an assignment of k – colours to the vertices of G such that no two adjacent vertices receive the same colour.

Definition 2.8 [2]

A graph G that required k – different colours for its colouring and not less number of colours is called a k – chromatic graph and the number k is called the chromatic number of G, denoted by (G). That is $\chi(G) = k$. **Theorem 2.8 (a):**

G is r-colorable iff there is a homomorphism from G to K_r where K_r is a complete graph. of r vertices. . Definition 2.9 [3]

Let G = (V, E) be a given graph with $V, E \neq \phi$. For any semiring $(S, +, \cdot)$ a Semiring - valued graph (or S-valued graph) G^S is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \rightarrow S$ and $\psi : E \rightarrow S$ is defined to be

$$\psi(x,y) = \begin{cases} \min\{\sigma(x), \sigma(y)\} & \text{if } \sigma(x) \leq \sigma(y) \text{or } \sigma(y) \leq \sigma(x) \\ 0 & \text{otherwise} \end{cases}$$

for every unordered pair (x, y) of $E \subseteq V \times V$. We call σ , a S-vertex set and ψ a S-edge set of S-valued graph G^S .

Definition 2.10[4]

Consider the S-valued graph G^S . A colouring f on G^S is said to be equi-weight (or vertex regular) proper colouring f for all $v \in V$, $\sigma(v)$ have equal value in S and $c(v) \in C$ differ for adjacent vertices.

Definition 2.11[4]

A colouring f: $V \times V \rightarrow S \times C$ is said to be proper weight-unicolouring, if $\forall v \in V$ and $c(v) \in C$ is the same, but $\sigma(v) \in S$ differ for adjacent vertices.

Definition 2.12[4]

Consider the S-valued graph G^S . A colouring f on G^S is said to be total proper colouring if for all $v \in V$, $\sigma(v) \in S$ and $c(v) \in C$ differ for adjacent vertices.

Definition 2.13[4]

Let G^{s} be a S-valued graph. The vertex chromatic number of G^{s} , denoted by $(\chi_{s}(G^{s}))$, is defined to be $\chi_{s}(G^{s}) = (\underset{v \in V}{\min}\sigma(v), \min |C|)$

Definition 2.14[4]

A S-valued graph G^{S} is said to be k-colourable, if it has a proper vertex regular or total proper colouring such that |C| = k.

Definition 2.15. [6]

Let $G_1^{S_1} = (V_1, E_1, \sigma_1, \psi_1)$ and $G_2^{S_2} = (V_2, E_2, \sigma_2, \psi_2)$ be given two S-values graphs. A mapping $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a S – valued vertex homomorphism if $\alpha : V_1 \to V_2$ is a graph homomorphism.

(ii) $\beta: S_1 \rightarrow S_2$ is a semiring homomorphism with $\beta(\sigma_1(v)) = \sigma_2(\alpha(v)) \forall v \in V_1$.

Definition 2.16. [6]

(i)

Let $G_1^{S_1} = (V_1, E_1, \sigma_1, \psi_1)$ and $G_2^{S_2} = (V_2, E_2, \sigma_2, \psi_2)$ be given two S-valued graphs.

A mapping $\phi = (\alpha, \beta) : G_1^{S_1} \to G_2^{S_2}$ is a S – valued edge homomorphism if

(i) $\alpha : V_1 \rightarrow V_2$ is a graph homomorphism.

(ii) $\beta: S_1 \rightarrow S_2$ is a semiring homomorphism

with β (ψ_1 (v_i , v_j)) = $\psi_2(\alpha(v_i), \alpha(v_j)) \forall$ (v_i , v_j) $\in E_1$.

3.CHROMATIC NUMBER OF SOME S-VALUED GRAPHS.

In this section, we are going to find the upper bounds of chromatic number of some S-valued graphs.

Theorem:3.1

Let $T^{S} = \{ V, E, \sigma, \psi \}$ be a s – valued tree with $|V| = n \ge 3$. Then T^{S} is 2 – chromatic. Thus, $\chi_{S}(T^{S}) = \binom{\min}{\nu \in V} \sigma(\nu), 2)$

Proof:

Let $T^{S} = \{V, E, \sigma, \psi\}$ be a S – valued tree with $n \ge 2$ vertices. Assume that T^{S} is rooted at vertex v. Assign color 1 to v. Then assign color 2 to all vertices which are adjacent to v. Let $v_1, v_2, ..., v_r$ be the vertices which have been assigned color 2. Now assign color 1 to all the vertices which are adjacent to $v_1, v_2, ..., v_r$. Continue this process till every vertex in T^{S} has been assigned the color. We observe that in T^{S} all vertices at odd distance from v have color 2 and vertices at even distance from v have color 1. Therefore along any path in T^{S} , the vertices are of alternating colors. Since there is one and only one path between any two vertices in a tree, no two adjacent vertices have the same color. Thus T^{S} is colored with two colors. Hence T^{S} is 2- chromatic. Since T^{S} is S-valued tree, by definition

 $\chi_{S}(T^{S}) = (\underset{v \in V}{\min} \sigma(v), \min|C|) \\ = (\underset{v \in V}{\min} \sigma(v), 2)$

Theorem: 3.2

For any S – valued vertex regular wheel graph W^S with S – vertex set {a}, $a \in S$. $\chi_S(W^S) = \int_{S} (a, 3) if |V| is odd$

(a, 4) if |V| is even

Proof:

Case: (i)

 W_{2m+1}^{S} is the join of even cycle C_{2n}^{S} and complete graph K_{1}^{S} . The crisp graph C_{2m} can be coloured withone colour, the cycle can be coloured with 2 colours. Therefore the join, the crisp graph W_{2m+1}^{S} is coloured by three colors. Therefore $\chi_{S}(W_{2m+1}^{S}) = \binom{\min}{v \in V} \sigma(v)$, 3) = (a,3). **Case: (ii)**

Let W_{2m}^S be vertex regular graph with S – vertex set {a}, $a \in S$. Therefore, $\sigma(v) = a \forall v \in V$. Now W_{2m}^S is the join of odd cycle C_{2m+1}^S and the complete graph K_1^S , the crisp graph C_{2m+1} is colored by 3 colors and the centre K_1^S is colored by one color. This implies even order wheel W_{2m}^S is colored by 4 colors.

 $\therefore \chi_{S}(W_{2m}^{S}) = (\underset{v \in V}{\min} \sigma(v), 4) = (a, 4).$

Theorem:3.3

For a S- valued graph $\chi_S(C_n^S)$ with $n \ge 3$, $\chi_S(C_n^S) = \begin{cases} \{ \begin{pmatrix} \min_{v \in V} \sigma(v), 3 \end{pmatrix} \} \text{ if } n \text{ is odd} \\ \{ \begin{pmatrix} \min_{v \in V} \sigma(v), 2 \end{pmatrix} \} \text{ if } n \text{ is even} \end{cases}$

Proof:

Let C_n^S be a S – cycle of length n. let $v_1, v_2, ..., v_n$ be the vertices in C_n^S with σ - values. $\sigma(v_i) \in S$ ($1 \le i \le n$)

Assume that $n \ge 3$,

For vertices $v \in V$ with odd indices assign color c_1 , for vertices with even indices assign c_2 . If n is an even, no adjacent vertex get the same color. $\chi_S(C_n^S) = (\underset{v \in V}{\min}\sigma(v), 2)$ If n is odd the vertices v_1 and v_n are adjacent and have the same color c_1 . Also v_{n-1}

will have color c_2 . Hence we need to assign a third color c_3 to v_n .

$$\therefore \chi_{S}(C_{n}^{S})) = (\underset{1 \le i \le n}{\overset{min}{ s i \le n }} \sigma(v_{i}), 3).$$

Thus for the cycle C_{n}^{s} with vertices $v_{1}, v_{2}, ..., v_{n}$ we have.
$$\chi_{S}(C_{n}^{S}) = \begin{cases} (\underset{1 \le i \le n}{\overset{min}{ s o (v_{i}), 3}}) & \text{if } n \text{ is odd} \\ (\underset{1 \le i \le n}{\overset{min}{ s o (v_{i}), 2}}) & \text{if } n \text{ is even} \end{cases}$$

Hence the proof. **Theorem: 3.4**

A S-valued graph G^{S} is *l*-colorable if and only if there is a S- valued vertex homomorphism from G^{S} to K_{l}^{S} .

Proof:

Let $G^{S}=(V,E,\sigma,\chi)$ be *l*-colorable and let it be colored by 1,2,3,...,*l* colors.Let $v_{i} \in V$ be the vertex colored by i in G^{S} . Since G^{S} is *l*-colorable, its underlying graph G must be *l*-colorable. By theorem 2.8(a), we see that there is a homomorphism $\alpha : V(G) \rightarrow V(K_{l})$ defined by $\alpha(v_{i}) = k_{i}$,

 $1 \le i \le l$, where k_i is the vertex colored by i in K_l^S . Let $v \in V$ be arbitrary. Therefore $v=v_i$ for some i proving that $\alpha(v_i) \in V(K_l)$.

That is, $\alpha(v) = \alpha(v_i) \in V(K_i)$ for all $v \in V$. Since α is graph homomorphism from $V(G) \rightarrow V(K_i)$, it preserves edges.

That is, for any $(v_i, v_j) \in E(G)$, $(\alpha(v_i), \alpha(v_j)) \in E(K_l)$.

Now, define a semiring homomorphism $\beta: S \rightarrow S$ by $\beta(\sigma(v_i)) = \sigma(\alpha(v_i))$. Then $\beta(\sigma(v_i)) = \sigma(\alpha(v_i)) = \sigma(k_i)$ for all i. Thus β preserves S-values.

If suppose some vertices of K_l are not in image set, let their weights be 'a', for some $a \in S$. Then K_l is a complete graph with S-vertex set $\{(k_i), a\}, 1 \le i \le l$.

Thus we have K_l^S as a S-valued graph colored by l colors with α and β as a crisp graph and semiringhomorphisms respectively. Therefore by definition of S- valued vertex homomorphism, $\varphi = (\alpha, \beta)$: $G^S \rightarrow K_l^S$ form a S- valued vertex homomorphism.

Conversely,

Let $\varphi = (\alpha, \beta) : G^{S} \rightarrow K_{l}^{S}$ be a S-valued vertex homomorphism. Then $\alpha : G \rightarrow K_{l}$ is graph homomorphism. Therefore by theorem 2.8.a, G is*l*-colorable.Since β preserves S-values, G^S is *l*-colorable. **Cor.1:**

If G^{S} is *l*-colorable then there is a S-valued edge homomorphism from G^{S} to K_{l}^{S} .

Proof:

Since every S-valued vertex homomorphism is a S-valued edge homomorphism, by the above result, it follows.

Remark:3.11

Converse of the above corollary is not true because every S-valued edge homomorphism is nota S-valued vertex homomorphism, in general. For example, consider a semiringhomomorphism $\beta : S_1 \rightarrow S_2$ in example 3.2. Let $G_1^{S_1}$ and $G_2^{S_2}$ be as follows:

Define $\alpha : V_1 \mapsto V_2$ by $v_1 \mapsto u_3$; $v_2 \mapsto u_5$; $v_3 \mapsto u_2$; $v_4 \mapsto u_6$; $v_5 \mapsto u_7$; $v_6 \mapsto u_4$. Clearly, $(v_1, v_4) \mapsto (u_3, u_6)$; $(v_1, v_2) \mapsto (u_3, u_5)$; $(v_1, v_6) \mapsto (u_3, u_4)$; $(v_2, v_3) \mapsto (u_5, u_2)$; $(v_2, v_6) \mapsto (u_5, u_4)$; $(v_3, v_4) \mapsto (u_2, u_6)$; $(v_3, v_5) \mapsto (u_2, u_7)$; $(v_4, v_5) \mapsto (u_6, u_7)$; $(v_5, v_6) \mapsto (u_7, u_4)$. $\Rightarrow (v_i v_j) \in E_1 \Rightarrow (\alpha(v_i), \alpha(v_j)) \in E_2 \forall (v_i, v_j) \in E_1$. Therefore α is a graph homomorphism. Now $\beta(\psi_1(v_1, v_4)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_4)) = \psi_2(u_3, u_6)$ $\beta(\psi_1(v_1, v_2)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_2)) = \psi_2(u_3, u_5)$ $\beta(\psi_1(v_1, v_6)) = \beta(a) = f = \psi_2(\alpha(v_1), \alpha(v_6)) = \psi_2(u_3, u_4)$ $\beta(\psi_1(v_2, v_3)) = \beta(a) = f = \psi_2(\alpha(v_2), \alpha(v_3)) = \psi_2(u_5, u_2)$ $\beta(\psi_1(v_3, v_4)) = \beta(a) = f = \psi_2(\alpha(v_2), \alpha(v_6)) = \psi_2(u_5, u_4)$ $\beta(\psi_1(v_3, v_4)) = \beta(a) = f = \psi_2(\alpha(v_3), \alpha(v_4)) = \psi_2(u_2, u_6)$ $\beta(\psi_1(v_3, v_5)) = \beta(b) = h = \psi_2(\alpha(v_3), \alpha(v_5)) = \psi_2(u_2, u_7)$

 $\beta(\psi_1(v_4, v_5)) = \beta(a) = f = \psi_2(\alpha(v_4), \alpha(v_5)) = \psi_2(u_6, u_7)$ $\beta(\psi_1(v_5, v_6)) = \beta(a) = f = \psi_2(\alpha(v_5), \alpha(v_6)) = \psi_2(u_7, u_4)$ $\Rightarrow \beta (\psi_1(v_i, v_i)) = \psi_2 (\alpha(v_i), \alpha(v_i)) \forall (v_i, v_i) \in E_1 \dots (*).$ $\Rightarrow\beta$ is a semiringhomomophism satisfying equation (*). Therefore $\varphi = (\alpha, \beta)$: $G_1^{S_1} \rightarrow G_2^{S_2}$ is a S – valued edge homomorphism. Now, Inparticular, σ_1 (v_1) = a $\Rightarrow \beta$ ($\sigma_1(u_1)$) = β ($\sigma_1(u_1)$) = β (a) = f and $\sigma_2 \left(\alpha \left(v_1 \right) \right) = \sigma_2 \left(u_3 \right) = h.$ Therefore $\beta(\sigma_1(v_1)) \neq \sigma_2(\alpha(V_1))$. $\Rightarrow \phi = (\alpha, \beta)$ is not a S – valued vertex homomorphism. It is a S – valued edge homomorphism but not a S – valued vertex homomorphism.

Cor.2:

A S- valued graph G^S is *l*-colorable iff there is a S-valued semi homomorphism from G^S to K_l^S .

Proof:

Since every S-valued vertex homomorphism is a S- valued semi homomorphism and every S-valued semi homomorphism is both S-valued vertex and edge homomorphisms, this corollary holds.

III. CONCLUSION

In this paper, we have discussed the Chromatic number for some S-valued graphs. Further investigation will be done on bounds for chromatic numbers of S-valued graphs.

References

- [1] Jayalakshmi. S, Rajkumar. M and Chandramouleeswaran.M : Regularity on S-valued Graphs, GJPAM, Vol. 11(4), (2015), pp-2971-2978. [2]
 - JensenT.R. Toft.: Graph coloring problems. John-Wiley & Sons, New York, 1995.
- Rajkumar, M, Jeyalakshmi, S. and Chandramouleeswaran. M.: Semiring Valued Graphs. IJMSEA Vol. 9(3), (2015), 141-152 [3]
- [4] Shriprakash T.V.G and Chandramouleeswaran.M :Colouring on S-Valued graphs, International journal of pure and Applied Mathematics, 112(5) (2017), 123-129 doi:10.12732/ijpam.v112i5.14
- Chandramouleeswaran.M :k-colorableS-valued [5] Shriprakash T.V.G and graphs.International J.ofmath.Sci.&Engg.Appls.(IJMSEA) ISSN 0973-9424, Vol.11 No. I (April, 2017)
- Rajkumar M and Chandramoule.M : S-valved semi homomorphism (Print). [6]
- [7] Jonathan Golan :Semirings and Their Applications, Kluwer Academic Publishers, London.
- [8] Vandiver. H. S: Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc., Vol 40, 1934, 916 -920.

International Journal of Engineering Science Invention (IJESI) is UGC approved Journal with Sl. No. 3822, Journal no. 43302.

T.V.G. Shriprkash. "Chromatic Number of Some S-Valued Graphs." International Journal of Engineering Science Invention (IJESI), vol. 6, no. 8, 2017, pp. 29-33.
