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I. Introduction 

Throught we shall deal with n n  quaternion matrices: Let 
*A denote the conjugate transpose of A . 

Any matrix n nA H   is called q-EP. If 
*( ) ( )R A R A  and is called, q-EPr if A is q-EP and ( )rk A r , 

where ( ),N A  ( )R A  and ( )rk A denote the null space, range space and rank of A respectively. It is well 

known that sum and product of q-EP, Generalized Inverse Group Inverse and Reverse order law for q-EP, 

Bicomplex representation methods and application of q-EP matrices and Schur Complements in q-EP matrices 

[3-8]. 

1. FACTORIZATION OF q-EP 

Throught this section, M is a 2 2n n matrix of the form 
A B

M
C D

 
  
 

---------  (I)  

With ( ) ( )M A r   . where A is n n and D is n n  if M is q-EP. By [8, Theorem 1],  

( ) ( )N A N C ,
* *( ) ( )N A N B ,

†D CA B  

Lemma 1.1 

 If M is q-EPr of the form(I) then there exists a ( 2 )p n p  matrix X such that 

* *

A AX
M

X A X AX

 
  
 

 ---------------------    (II) 

and A is q-EPr. 

Proof 

Since M is of the form (I) and ( ) ( )A M  . Hence there is an ( 2 )p n p  matrix X such that C YA

and B AX By [11,p.21]. Since M is q-EP, a is q-EP and 
† † *( )CA A B  

*YA X A   

Also 
† *D CA B YAX X AX   , therefore M is of the form(II) 

 

Theorem 1.2     

If M is q-EPr of the form(I) and A is q-EPr, then M is a product of q-EPr matrices. 

Proof 

 If M is q-EPr of the form(I) then it satisfies ( ) ( )N A N C , 
* *( ) ( )N A N B , 

†D CA B then 

there exists X and Y such that  
† †, ,C YA B AX D CA B YAA AX YAX      

consider the matrices 

† † *

† † *

A A AA Y
S

YAA YAA Y

 
  
 

, 
0

0 0

A
L

 
  
 

 and 

† †

* † * †

A A AA X
T

X A A X A AX

 
  
 
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By theorem [8, Theorem 1.8] S,L and T are q-EPr 
† † *( )CA A B   

Also ( )( )( )
A AX A B

S L T M
YA YAX C D

   
     
   

 

Thus, M is a product of S,L, and T are all q-EPr matrices. Therefore M SLT . 

Theorem 1.3 

 Let 
E F

L
G F

 
  
 

be a 2 2n n  matrix of rank r. if E is an n n non-singular matrix then 

0

0 0

rI
L S T

 
  

 
, where S,T are q-EPr matrices. 

Proof 

 
0

0 0

rI
L P Q

 
  

 
, where P,Q are non-singular matrix. If we write  

1 1

1 1

A B
P

C D

 
  
 

, 
1 1

1 1

A B
Q

C D

 

 

 
 
  
 

, then  
1 1 1 1

1 1 1 1

( )( ) ( )( )

( )( ) ( )( )

A A A B
L

C A C B

 

 

 
 
  
 

 and 11( )( )A A E


   

is non-singular. Thus ,A A


are non-singular. 

 So, 
1

1

A

C

 
 
 

and 
11A B

  
 
 

have rank r. 

  Thus there is an 2n r r  matrix X and 2r n r  matrix Y such that 1 1XA C and 

1 1A Y B
 


, 

Put 

*

1 1

*

1 1

A A X
S

XA XA X

 
  
 

, 
1 1

* *

1 1

A A Y
T

Y A Y A Y

 

 

 
 
  
 

 

Now, 

*
1 11 1

*
* *1 1

1 1

0 0

0 0 0 0

r r
A A YI IA A X

S T L
XA XA X

Y A Y A Y

 

 

 
                 

 

 By [1,p.91]

 

 

Hence S,T are q-EP matrices. 

Any matrix 2 2n nA H   of rank r is called a q-EPr matrix. If it has a principal r r non-singular matrix. 

Lemma 1.4 

 Let M be a 2 2n n matrix of order r. If M is a rP matrix then M is a product of q-EPr matrices. 

Proof 

 Let M be a 2 2n n matrix of order r having E as a principal r r non-singular sub-matrix there is a 

permutation matrix P such that  

 
T

E F
PMP

G H

 
  
 

, by theorem 1.3 
0

0 0

rE F I
S T

G H

   
   

   
, where S,T are q-EPr matrices. 

Hence,  
0

0 0

rT
I

PMP S T
 

  
  , 

0

0 0

rT
I

M P S TP
 

  
  ,

 
† †

0
( ) ( )

0 0

rT
I

M P SP P P P TP
 

  
 

 

Since S,T are q-EPr matrices, 
TP SP and 

†P TP are q-EP matrices. Thus, M is a product of q-EP matrices. 

Remark 1.5 

 The converse of theorem (1.4) need not be true. 

Example 1.6 
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 Let 

0 0 0 0 0 0

0 1 , 1 0 , 0 1 0

1 0 0 1 0 1

i k k

A j B k C

i j k

     
     

        
            

 

 Where A,B,C are q-EP matrices of rank 3 but 

0

1 1

0 1

j i

ABC i j

k j

 
 

   
    

has rank 3, does not have a  

P3 Matrices. More over, ABC is not q-EP. 

 

Lemma 1.7 

 Let 
E F

A
G H

 
  
 

be a q-EP matrix is an r r matrix and  E F has rank r, then E is non-

singular. 

Proof 

                
0

0 0 0 0

rI E F E F

G H

    
    

    
 where rI is the r r identity matrix. 

0 0

0 0 0

rE F I E

G H G

    
    

    
has rank r. By [11, P.52] E has rank r. Thus E is non-singular. 

Lemma 1.8 

 Let A and B be 2 2n n q-EP matrices. If AB has rank r, then AB is unitarily similar to a rP matrix. 

Proof 

 Since A is q-EPr, there is a unitary matrix U such that A is unitarily similar to a diagonal block       q-

EPr matrix 
D O

O O

 
 
 

where D is a r r non-singular matrix 

 
*

D O
A U U

O O

 
  

  ,

 put 
*( )

E F
U B U

G H

 
  
 

where E is r r matrix 

Then, *( )( )
D O E F

U A B U
O O G H

  
   
   , 

*( )
DE DF

U AB U
O O

 
  
 

   has rank r. 

Thus ( * )( * )
E F D O

U AU U BU
G H O O

  
   
  

 

  *
0

0

ED
U ABU

GD

 
  
 

,therefore GD O

 

Hence G O  

E is Non-Singular. Applying lemma 1.3. A is a product of q-EPr matrices. 

Remark 1.10 

 The condition on ( )A r  is essential If ( )A r   then theorem(1.9) fails. 

 For example, 

 Let 
0 0 0

,
1 0 0

i
A B

i

   
    

     

 Here ( ) 1, ( ) 0A B   , B is q-EP0 

0 0

0 0
AB

 
  
 

is q-

EP0,Here B AB . Hence the statement of (1.9) fails. 

Theorem 1.11 

 Let ,
A B P Q

M L
C D R S

   
    
   

be q-EPr matrices and ML be of rank r. Then the following are 

equivalent. 

(i) ML is q-EPr 
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(ii) AP is q-EPr and 
† †CA RP  

(iii) AP is q-EPr and 
† †A B P Q  

Proof 

 ,
A B P Q

M L
C D R S

   
    
          

*

* * * * * *
( )( ) , 1

A AX P PY AZP AZPY
M L Z XY

X A X AX Y P Y PY X AZP X AZPY

     
       
     

 

 Clearly , 
*( ) ( )N AZP N X AZPY  

  
* *( ) ( )N AZP N X AZPY  

 Schur complements of AZP in ML, 

  
* * †( / ) ( ) ( )( ) ( ) 0ML AZP X AZPY X AZP AZP AZP  

 , 
( ) ( )AZP ML r    

Hence by theorem “Let 
A B

M
C D

 
  
 

with ( ) ( )M A r   , then M is q-EPr and 
† † *( )CA A B ”. 

 A and P are both q-EPr matrices 

  
† † * * *( ) , ( † )CA A B RP P Q   

  ( ) ( )R AZP R A  

  
* *( ) ( ) ( )R AZP R P R P    (Since P is q-EP) 

 and ( ) ( ) ( )AZP A P r      

 Hence, 
*( ) ( ); ( ) ( )R AZP R A R AZP R P   

  
† †( )( ) ( )( )AZP AZP A A  

  
† †( ) ( ) ( )( )AZP AZP P P  

 ML is q-EPr  (M)(L) is EPr 

         AZP is EPr 

  
* † † *( )( ) ( ) ( )X AZP AZP AZP AZPY  

  
*( ) ( )R AZP R AZP  

  
* † * †( )( ) ( )( ) ( ) ( )X A A Y P P R A R P     

 and by 
† † * † * †( )( ) , ( )( ) ( )( )AZP AZP AA X A A Y P P   

 Since A and P are both q-EPr matrices, 

  AP is q-EPr, 
† †CA RP  

AP is q-EPr and 
† †CA RP  

AP is q-EPr and 
† * † *( ) ( )A B P Q  

  AP is q-EPr and 
† †( )A B P Q  

Thus, ML is q-EPr AP is q-EPr and 
† †A B P Q

 
 

II. PIVOTAL TRANSFORM ON Q-EP MATRICES 

 Let 
A B

M
C D

 
  
 

then principal re-arrangement of square matrix M (i.e) 
TP MP , where P is a 

permutation matrix, 
T

D C
P MP

B A

 
  
 

, where p is permutation matrix 
0 1

1 0
P

 
  
 

. 
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 Let us consider a system of linear equations, MZ T , where 
A B

M
C D

 
  
 

satisfying 

* *( ) ( ), ( ) ( )N A N C N A N B  . 

If z and t are partitioned conformably as 
x

z
y

 
  
   

and 
u

t
v

 
  
 

, then Ax By u  , Cx Dy v   Then by 

[10,p.21] we can solve for x and v as 
† †x A u A By, 

† †( )v CA u D CA B y   . Thus a matrix 

A B
M

C D

 
  
 

satisfying 
* *( ) ( ), ( ) ( )N A N C N A N B  can be transformed into the matrix  

   

† †

† ( / )

A A B
M

CA M A

  
  
 

 -------------------------------------------  (1) 

 M


is called a principal pivot transform of M. 

Lemma 2.1 

 Let 
A B

M
C D

 
  
 

with ( ) ( )N A N C , ( ) ( )N D N B  then the following are equivalent. 

(i) M is q-EP, ( / ) ( )N M A N B , ( / ) ( )N M D N C  

(ii) A and M/D are q-EP and D and (M/A) are q-EP 

Further, 
*( ) ( / ) ( )N A N M D N B  and 

*( ) ( / ) ( )N D N M A N C   

Proof 

 ( ) ( )i ii
 
Since M is q-EP, ( ) ( )N A N C , ( / ) ( )N M A N B By theorem [8, Theorem1], 

 A is q-EP and /M A is q-EP, 
* *( ) ( )N A N B and 

* *( / ) ) ( )N M A N C . Since A is q-EP, 

*( ) ( )N A N A (By definition of q-EP) . 

 Therefore 
*( ) ( )N A N B since M is q-EP, M is EP, implies the principal rearrangement 

T
D C

P MP
B A

 
  
 

is also EP. Further ( ) ( )N D N B and ( ) ( )N D N B and ( / ) ( )N M D N C

holds hence by theorem [6, Theorem 1], D is EP ( / )M D is EP. 

 
* *( ) ( )N D N C and 

*( / ) ( )N M D N B   

Thus we have, D is q-EP , ( / )M D  is q-EP. 

 
* *( ) ( )N D N C  and 

*( / ) ( )N M D N B  

Since D is q-EP, by definition
*( ) ( )N D N D .  

Thus 
*( ) ( )N D N C  

Since the relations, ( ) ( )N A N C , 
* * *( ) ( ), ( ) ( )N A N C N A N B  , ( / ) ( )N M A N B and 

* *( / ) ( )N M A N C holds for A. 

According to the assumption and from the definition 

 

† † † † † †

†

† † †

( )( )( / ) ( ) ( ) ( / )

( / ) ( ) ( / )

A A B M A A A B M A
M

M A C A M A

  
  

 
 ------------------------------ (2) 

Using 
†( / )( / )C M A M A and 

†( )( ) ( )B A A B  

 

†

†

†

( )( ) 0
( )( )

0 ( / )( / )

A A
M M

M A M A

 
  
 

   ------------------------------ (3) 
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Since the relations, ( ) ( )N D N C  and 
*( / ) ( )N M D N B  holds for d, according to the assumptions by 

theorem. 

 

† † †

†

† † †

( / ) ( ) ( / )
( )

( ) ( / ) ( / )

M D A B M A
M

D C M D M A

 
  

 
 ------------------------------------ (4) 

 
† †( )( ) ,C D D C C DD C  and  

† †( )( ) ( ),B A A B B AA B 
 
in (3)  

 

†

†

†

( / )( / ) 0
( )( )

0 ( / )( / )

M D M D
M M

M A M A

 
  
 

 

Comparing (2) and (4)  
† †( )( ) ( / )( / )A A M D M D † †( / )( / )AA M D M D    

Since A and ( / )M D are q-EP, 
† †( / ) ( / )A A M D M D

 
† †( / ) ( / )A A M A M D  

Thus, ( ) ( / )N A N M D  

Similarly, we can obtain the expressions for 
†M M , comparing 

† †( / ) ( / )D D M A M A  

 ( ) ( / )N D N M A   

( ) ( ) :ii i ( / ) ( )N M A N B follows directly from ( / ) ( ) ( )N M A N D N B    

Similarly, ( / ) ( )N M D N C  follows ( / ) ( ) ( )N M D N A N C   

Now, A is q-EP and ( / )M A  is q-EP satisfying the relations ( ) ( )N A N C , 
* *( ) ( )N A N B ,

( / ) ( )N M A N B and 
* *( / ) ( )N M A N C  

Hence by theorem [8, Theorem 1] . Therefore M is q-EP. Thus (i) holds. 

Theorem 2.2 

Let 
A B

M
C D

 
  
 

be a q-EPr matrix, ( ) ( )N A N C , ( ) ( )N D N B , ( / ) ( )N M A N B  

( / ) ( )N M A N B  and ( / ) ( )N M A N C . Then the following are hold. 

(i) Principal sub-matrix A is q-EP and principal sub matrix D is q-EP 

(ii) The Schur Complement ( / )M A is q-EP 

(iii) Each principal pivot transforms of M is q-EP 

Proof 

 (i)  and (ii) are consequence of lemma 2.1 (iii); By Lemma 2.1, M satisfies ( ) ( )N A N C  

* *( ) ( )N A N B  hence by pivoting the block A, the principal pivot transform M


of M is of the form. 

 

† †

†

( ) ( ) ( )

( )( ) ( / )

A A B
M

C A M A

  
  
  , 

 

† †

† ( / )

A A
M

CA M A

  
  
 

 

In M


,  
† †( ) ( )N A N CA , 

† * † *( ) ( )N A N CA  

Further, 
† † † † †( / ) ( / ) ( )( ) ( )M A M A CA A A B



 
† †( / )M A CA AA B  †( / )M A CA B   

  
†( / )M A D



  

By the assumption, 
†( / ) ( )N M A N D



  which implies
†( / ) ( ) ( )N M A N D N B



  . 

From Lemma 2.1, A is q-EP and D is q-EP. Therefore, 
†A is q-EP and 

†( / )M A


 is q-EP. 

 Hence, 
†( / )D M A



  

 Also, 
† * *( / ) ( )N M A N D




, 

 
† * * *( / ) ( ) ( )N M A N D N C



   

Now applying theorem [8, Theorem 2.1] 
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Now ( ) ( ) ( / )r M A M A             [2, Theorem 

1] 

  
†( ) ( )A D          (Lemma 2.1) 

  
† †( ) ( / )A M A 



   

  ( )M


         [2, Theorem 

1] 

Thus M


is q-EPr. Similarly, under the conditions given on M, M can be transformed to its principal pivot 

transform by pivoting the block D without changing the rank. 

Remark 2.3 

 For ( )K i i , (the identity transposition), theorem (2.2) reduced to Theorem [9, Theorem] 

 Let 
A B

M
C D

 
  
 

, then ( ) ( ) ( / )M A M A    with equality if and only if 

†( / ) ( )N M A N IAA B  

 
* † *( / ) ( )N M A N I A A C   and 

† †( ) ( / ) ( ) 0I AA B M A I A A     

Remark 2.4 

 In the special case when M is non-singular with A and D non-singular, then the conditions 

( ) ( )N A N C  and ( ) ( )N D N B . Automatically hold ( / )M A  and ( / )M D  are non-singular  

by [2, Theorem 1]. 

 Further, ( ) ( ) ( )M A D  


  . Hence it follows that each principal pivot transform of M is non-

singular. We note that the non-singularity of M


need not imply M is non-singular. 
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