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ABSTRACT: In this article we analyze a generalized prey-predator system with a reserved zone and herd 

behaviour of prey species in the unreserved zone. Here we assume that the habitat is divided into two zones, 

namely free zone and reserved zone where predation is prohibited. The migration rate of the prey species from 

reserved zone to unreserved zone and vice-versa are predator's density dependent function. The local and global 

stability analysis of the model system have been carried out. We obtain persistent criteria for both the species. 

Finally, a particular model has been introduced and numerical simulation has been performed to support the 

analytical findings. 
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I. Introduction: 
Mathematical modeling is an important interdisciplinary activity which involves the study of some 

aspects of diverse discipline. The application of mathematical models to problem in ecology has resulted in a 

branch of ecology is known as mathematical ecology. The co-existence of interacting biological species has 

been of great interest in past few decades and has been studied extensively using mathematical model by several 

researchers [1-7]. Lotka-Volterra model was first in this context to describe the interaction of the species. After 

that many complex models are developed, where the prey-predator dynamics has been discussed from different 

angle and taking account of different defensive strategies/mechanisms adopted by both prey and predator for 

their self defense [8-14]. As the outcomes of these research works several suitable realistic measures such as 

restriction on harvesting, isolation and removal of infected species in case of spread of disease, arrange of 

alternative source to support a particular species and many other novel ideas/techniques have been adopted in 

many ecological system where particularly there is some threat on some species for extinction.  

A predator-prey model was recently considered by Ajraldi et al [15] in which the prey exhibits herd 

behavior, so that the predator interacts with the prey along the outer corridor of the herd of prey. As a 

mathematical consequence of the herd behavior, they considered competition models and predator-prey systems 

in which interaction terms use the square root of the prey population rather than simply the prey population. The 

use of the square root properly accounts for the assumption that the interactions occur along the boundary of the 

population. It has been shown by Peter A. Braza [16] that the origin to be either locally stable or unstable, 

depending on the location of the values of the predator and prey populations in the phase plane. Having different 

functional responses as a consequence of the prey or predator forming groups has been investigated by other 

authors [17,18]. Chattopadhyay et al[19] recognized that certain plankton (prey) aggregate in large groups so 

that the predator effectively only has access to them by way of surface area instead of volume. As demonstrated 

by these authors, using appropriate powers of the variables to properly account for the way of predators and prey 

aggregate is an innovation that allows for a more realistic portrayal of certain predator-prey systems. This type 

of advance is somewhat typical in the history of the development of predator-prey models. The models have 

been refined and have become more sophisticated in order to account for the many wide-ranging elements that 

are found in real predator-prey systems. For example, some papers have included impulsive effects that occur in 

harvesting [20], pest control [21], and other natural or man- made factors [22]. All of these modifications 
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contribute to a more accurate characterization of real predator-prey systems More recently, the idea of reserved 

zone and refuge of prey received considerable attention. Salih Djilali[23] considered Herd behaviour in a prey-

predator model with spatial diffusion. He examined Bifurcation analysis and Turing instability. Song,Y.,Zhang, 

T.,Peng,Y.[24]have investigate Turig-Hopf bifurcation in the reaction diffusion equations and its applications. 

S.P.Bera, A.Maiti,G.P Samanta[25] proposd a modelling herd behaviour of prey in a prey-predator model. 

Yakubu [26] shows that the presence of refuge can influence stable co-existence of all species. Krivan [27] 

investigated the dynamics of prey-predator ecosystem in presence of refuge using Lotka-Volterra time 

continuous models.  A.Mahata, S.P.Mondal ,S.Alam and B.Roy[ 28 ] proposed a mathematical model of glucose 

–insulin  regulatory system on diabetes mellitus in fuzzy and crisp environment. S.Paul ,S.P.Mondal ,A.Mahata 

,P.Bhattacharya And T.K.Roy [ 29]  considered classical modeling of HIV virus infected population in 

imprecise environment.  Dubey [30] proposed and analyzed the dynamics of a prey-predator model with a 

reserve zone; it is assumed that the habitat is divided into two disjoint zones, namely unreserved zone and 

reserved zone; the predators are not allowed to enter into the reserve zone; however, Mukherjee [31] studied a 

generalized prey- predator system with a reserve zone. He assumed that the migration rate of prey population 

from unreserved zone to reserved zone is predator density dependent and prey migration rate from reserved zone 

to unreserved zone is constant, where further attention was not given. 

It has not been yet analyzed what happens to a system if the prey migration rate from reserved zone to 

unreserved zone is also predator's density dependent. From this point of view we have proposed a generalized 

prey-predator model where we assume that the prey migration rate from reserved zone to unreserved zone is 

also predator's density dependent. In the time of migration of prey species from unreserved zone to reserved 

zone there will be a gathering in the unreserved area. Some prey can't enter to reserved area. They can take 

different defensive strategies. Here we assume that those prey will take strategy of herd behaviour and so we 

assume the square root function of prey species in the interaction term of prey-predator population. The model 

sys- tem has been analyzed analytically. We studied the local and global stabilities and persistence conditions of 

our model system. Finally, a particular model has been introduced and it's numerical simulation has been 

performed using Matlab software to support our analytical findings. 

 

II. Model Formation: 
We consider a zone where prey and predator cohabit and the zone is divided into two portion namely 

reserved zone and unreserved zone. The prey species can migrate from reserve zone to unreserved zone and 

vice-versa; but the predators are not allowed to enter into the reserve zone. Let x1(t), x2(t) and y(t) denote the 

prey density inside the unreserved zone, prey density of reserved zone and predator density respectively at time 

t. If more predators found on the unreserved zone then more prey will tend to leave the zone and enter into the 

reserve zone.  

Furthermore, also if the predator's density is high on the unreserved zone then there will be a natural 

tendency of low migration rate from reserved zone to unreserved zone. So we assume that both the migration 

rate of the prey species from reserved zone to unreserved and vice-versa are predator's density dependent 

function. Also here we assume that prey species will be taken a defensive mechanism of herd behaviour in the 

time of predation. Keeping the above facts in our mind the dynamics of the system can be written as following 

system of differential equations: 

 
𝑑𝑥1

𝑑𝑡
=  𝑥1𝑔1  𝑥1 − 𝑚 𝑦 𝑥1 + 𝑢 𝑦 𝑥2 − 𝑎𝑦 𝑥1  ,  

𝑑𝑥2

𝑑𝑡
=  𝑥2𝑔2𝑥2 + 𝑚 𝑦 𝑥1 − 𝑢 𝑦 𝑥2 ,                                                                                    (2.1) 

 𝑑𝑦

𝑑𝑡
= 𝑦(−𝑑 + 𝑎𝑐 𝑥1); 

               

where 𝑥1(0) > 0 , 𝑥2  0  > 0 and y(0) > 0. 

 

Here 𝑔𝑖 𝑥𝑖 ; 𝑖 = 1, 2 are growth functions that satisfy the conditions 𝑔𝑖 0  > 0 ;   𝑔𝑖
′ 𝑥𝑖 < 0, 𝑖 = 1,2.  Also 

there exists environmental carrying capacity K( >0 ) and 𝛼K such that 𝑔1 𝐾 = 0 and 𝑔2 𝛼𝐾 = 0, where 

0 < 𝛼 < 1. Here 𝑚(𝑦) is the prey migration rate from unreserved zone to reserved which satisfy the conditions  

𝑚 𝑦 > 0; 𝑚′ 𝑦 > 0. 

The prey migration rate from unreserved zone to reserved zone is assumed to be predator density 

dependent, which is supposed to be positive and to increase with y. In other words, the more predators found on 

free zone more prey tends to leave zone. In the time of predation of prey, which do not migrate from unreserved 

zone to reserved zone, they behave in herd. The interaction will be happened between prey species and predator 

population along the outer corridor of the herd of the prey. The outer corridor of the herd is proportional to the 
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square root of the area of the herd and area of the herd is proportional to the numbers of individuals i.e. the prey 

density. Therefore, the outer corridor is proportional to the square root of the prey density. So, in our prey-

predator model we use Lotka -Volterra interaction term with square root of prey population in the interaction 

term of prey species and predator population. a(> 0) is the predation rate of the prey. c(> 0) is the conversion 

rate of prey and d(>0) is the natural death rate coefficient of the predator species. 𝑢 𝑦 > 0 is the prey migration 

rate from reserved zone to unreserved zone and it satisfies the conditions 𝑢 𝑦 > 0; 𝑢′ 𝑦 < 0. In the system 

(2.1) all the functions have second order partial derivatives continuous in their argument on the interval (0, 1) 

which is sufficient to guarantee that solutions to initial value problems exists uniquely.  

 

III. Model Analysis 
3.1 Positivity and Boundedness of the system 

 

Theorem 3.1.1: All the solutions of the system (2.1) will be nonnegative. 

 

Proof:  The first equation of the system (2.1) can be written as 

 
𝑑𝑥1

𝑥1
=   𝑔1 𝑥1 − 𝑚 𝑦 + 𝑢 𝑦 

𝑥2

𝑥1
− 𝑎

𝑦

 𝑥1
  dt 

Which is of the form  
𝑑𝒙𝟏

𝑥1
=  𝑃 𝑥1 , 𝑥2, 𝑦  𝑑𝑡, where 

 𝑃 𝑥1 , 𝑥2, 𝑦   = 𝑔1 𝑥1 − 𝑚 𝑦 + 𝑢 𝑦 
𝑥2

𝑥1
− 𝑎

𝑦

 𝑥1
. 

Then integrating, the above equation from [0, t], we have 

𝑥1 𝑡 =  𝑥1(0)𝑒 𝑃 𝒙𝟏,𝒙𝟐,𝑦 𝑑𝑡
𝑡

0  > 0, ∀ t. 

 

Again from the second equation of the system (2.1), we have 
𝑑𝑥2

x2

= [𝑔2 𝑥2 +  𝑚 𝑦 
𝑥1

𝑥2

− 𝑢 𝑦  ]𝑑𝑡 

which is of the form  
𝑑𝑥2

x2
= 𝑄 𝑥1 , 𝑥2 , 𝑦 𝑑𝑡 ,where  𝑄 𝑥1 , 𝑥2 , 𝑦  = 𝑔2 𝑥2 +  𝑚 𝑦 

𝑥1

𝑥2
− 𝑢(𝑦). 

Integrating, the above equation from [0, t], we have 

𝑥2 𝑡 =  𝑥2 0 𝑒 𝑄 𝒙𝟏,𝒙𝟐,𝑦 𝑑𝑡
𝑡

0 > 0, ∀ t . 
 

Also from the last equation of the system (2.1), we have, 

 
𝑑𝑦

y
=  −𝑑 + 𝑎𝑐 𝑥1   𝑑𝑡  which is of the form 

𝑑𝑦

y
= 𝑅 𝑥1 , 𝑥2 , 𝑦 𝑑𝑡 , where 𝑅 𝑥1 , 𝑥2 , 𝑦 = −𝑑 + 𝑎𝑐 𝑥1 . 

Integrating, above the above equation from [0, t], we have 

𝑦 𝑡 = 𝑦 0 𝑒 𝑅 𝑥1 ,𝑥2 ,𝑦 𝑑𝑡
𝑡

0 > 0, ∀ t. 
Hence, all the solutions of the system (2.1) are nonnegative. 

 

Theorem 3.1.2: The solutions of the system (2.1) is bounded. 

 

Proof. We define a function W as below 

 

𝑊 = 𝑥1 +  𝑥2 +
1

𝑐
𝑦. 

So, the time derivative along a solution of (2:1) is 

𝑊 =  𝑥1𝑔1 𝑥1 + 𝑥2𝑔2 𝑥2 −
𝑑

𝑐
𝑦. 

For each λ > 0 the following inequality is fulfilled: 

𝑊 + λ 𝑊 = 𝑥1(𝑔1 𝑥1 + 𝜆) + 𝑥2 𝑔2 𝑥2 + λ  + (λ − 𝑑)
1

𝑐
𝑦 

Now, if we choose λ < d, then the right side is bounded for all (𝑥1 , 𝑥2,, 𝑦) ∊ ℝ+
3 . 

Thus we find, 

 𝑊 + λ𝑊 ≤ 𝑚1 + 𝑚2 

where, 𝑚𝑖 = max   𝑥𝑖(𝑔𝑖(𝑥𝑖) + λ), 𝑥𝑖 ∊  0, 𝑘𝑖 , 𝑖 = 1,2. 
Hence we get, 

 0 ≤ 𝑊 ≤
𝑚1+𝑚2

λ
+ 𝑊 𝑥1 0 , 𝑥2 0 , 𝑦 0  𝑒−(λ𝑡). 

We notice that if t→ ∞, then 0 ≤ 𝑊 ≤
𝑚1+𝑚2

λ
 . 
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Hence system (2.1) is bounded. 

 

3.2 Equilibria and existence 

 

System (2.1) has three non-negative equilibria: 

(i)The trivial equilibrium point 𝐸0 0,0,0 ; 

(ii)The planar equilibrium point 𝐸1(𝑥1   , 𝑥2    ,0)  and 

(iii)The interior equilibrium point 𝐸2(𝑥1
∗, 𝑥2

∗, 𝑦∗). 

 

Theorem 3.2.1: A planar equilibrium  𝐸1(𝑥1   , 𝑥2    ,0)  in the 𝑥1 − 𝑥2  plane exists if and 

only if the algebraic system 

 

𝑥1𝑔1 𝑥1 − 𝑚 0 𝑥1 + 𝑢 0 𝑥2 = 0   

𝑥1𝑔1 𝑥1 − 𝑚 0 𝑥1 + 𝑢 0 𝑥2 = 0                                                                    (3.1)   
 

Has a positive solution (𝑥1   , 𝑥2   ). 

 

Proof. The proof is obvious. 

 

Theorem 3.2.2: The interior equilibrium point 𝐸2(𝑥1
∗, 𝑥2

∗, 𝑦∗) exists if and only if the following 

conditions hold 

(i) 𝑦∗ <
𝑐

𝑑
(

𝑑2

𝑎2𝑐2 𝑔1  
𝑑2

𝑎2𝑐2 + 𝑥2
∗𝑔2 0 )   and  

(ii) 𝑦∗𝑑 + 𝑚 0 
𝑑2

𝑎2𝑐
< 𝑐(

𝑑2

𝑎2𝑐
𝑔1 0 + 𝑢 0 𝑥2

∗ ). 

 

Proof. The interior equilibrium point is 𝐸2(𝑥1
∗, 𝑥2

∗, 𝑦∗). Hence  𝑥1
∗, 𝑥2

∗ , 𝑦∗ are obtained by solving 

   

𝑥1
∗𝑔1  𝑥1

∗ − 𝑚 𝑦∗  𝑥1
∗ + 𝑢 𝑦∗ 𝑥2

∗ − 𝑎𝑦∗  𝑥1
∗ = 0, 

 

 𝑥2
∗𝑔2 𝑥2

∗ + 𝑚 𝑦∗  𝑥1
∗ − 𝑢 𝑦∗ 𝑥2

∗ = 0                                                              (3.2) 
 

−𝑑 + 𝑎𝑐  𝑥1
∗ = 0. 

 

Now from (3.3) we have, 𝑥1
∗ = 

𝑑2

𝑎2𝑐2. 

Adding the first two equations of (3.3) we get 

 

 𝑦∗ =
𝑐

𝑑
(

𝑑2

𝑎2𝑐2 𝑔1  
𝑑2

𝑎2𝑐2 + 𝑥2
∗𝑔2 𝑥2

∗ ). 

 

Again from first equation of (3.3) we have, 

 

𝑎(
𝑑2

𝑎2𝑐2 𝑔1  
𝑑2

𝑎2𝑐2 +  𝑢 𝑦∗ 𝑥2
∗) =  𝑦∗𝑑 + 𝑐𝑚( 𝑦∗)

𝑑2

𝑎2𝑐2 . 

 

Since 𝑔𝑖
′ 𝑥𝑖 < 0, so we can assume that 𝑔1(0) has the greatest value and due to same logic u(0) is the largest 

value of u(y). Also as m y   is an increasing function, we can assume that 𝑚(0) has the least functional value of 

𝑚(𝑦). Then we can write 

 

 𝑦∗𝑑 + 𝑐𝑚 0 
𝑑2

𝑎2𝑐2 < 𝑎(
𝑑2

𝑎2𝑐2 𝑔1(0) +  𝑢 0 𝑥2
∗ ). 

 

Hence 𝐸2 exists if and only if   𝑦∗ <
𝑐

𝑑
(

𝑑2

𝑎2𝑐2 𝑔1  
𝑑2

𝑎2𝑐2 + 𝑥2
∗𝑔2 0 ) and  

 𝑦∗𝑑 + 𝑐𝑚 0 
𝑑2

𝑎2𝑐2 < 𝑎(
𝑑2

𝑎2𝑐2 𝑔1(0) +  𝑢 0 𝑥2
∗) . 

 

3.3 Stability analysis of the model 

 

The Jacobian matrix of the system (2.1) is 
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𝑔1 𝑥1 + 𝑥1𝑔1
′  𝑥1 − 𝑚 𝑦 − 𝑎

1

2 𝑥1

𝑦 𝑢(𝑦) −𝑚′ 𝑦 𝑥1 + 𝑢′ 𝑦 𝑥2 − 𝑎 𝑥1

𝑚 𝑦 𝑔2 𝑥2 + 𝑥2𝑔2
′  𝑥2 − 𝑢(𝑦) 𝑚′ 𝑦 𝑥1 − 𝑢′ 𝑦 𝑥2

𝑎𝑐𝑦
1

2 𝑥1

0 −𝑑 + 𝑎𝑐 𝑥1  

  
 

 

 

 

The stability conditions of equilibria of the system (2.1) are stated in the following theorems. 

 

Theorem 3.3.1: The trivial equilibrium point Therefore the characteristic equation of the Jacobian matrix at 

𝐸0 0,0,0 ;  is given by,  is unstable if 𝑔1 0 − 𝑚 0 > 0   and 𝑔2 0 − 𝑢 0 > 0.  

The predator free equilibrium point 𝐸1(𝑥1   , 𝑥2    ,0) is locally asymptotically stable if  𝑥1   <
𝑑2

𝑎2𝑐2 . 

Proof. In the limiting case when𝑥 → 0 and 
𝑦

 𝑥1
→ 0. Therefore the characteristic Equation of the Jacobian 

matrix at 𝐸1(𝑥1   , 𝑥2    ,0)  is given by  

 

(−𝑑 − 𝜆)[(𝑔1 0 − 𝑚 0 − 𝜆)( 𝑔2 0 − 𝑢 0 − 𝜆) − 𝑢 0 𝑚(0)] = 0. 

 

So one eigen value is 𝜆 = −𝑑 and the other two eigen values are given by the equation, 

 

(𝑔1 0 − 𝑚 0 − 𝜆) )( 𝑔2 0 − 𝑢 0 − 𝜆) − 𝑢 0 𝑚 0 = 0. 

 

Thus it has one negative eigen value and other two positive eigen values whenever 

𝑔1 0 − 𝑚 0 > 0 and 𝑔2 0 − 𝑢 0 > 0 and in that case the equilibrium point 𝐸0 0,0,0  is unstable. 

 

The characteristic equation of the variational matrix around 𝐸1 𝑥1   , 𝑥2    ,0  is given by 

 −𝑑 + 𝑎𝑐 𝑥1   −  𝜆 [ 𝑔1 𝑥1    + 𝑥1   𝑔1
′  𝑥1    − 𝑚 0 − 𝜆   𝑔2 𝑥2    + 𝑥2   𝑔2

′  𝑥2    − 𝑢 0 − 𝜆  

−𝑢 0 𝑚 0 ] = 0 . 

It's one eigen value is 𝜆 = −𝑑 + 𝑎𝑐 𝑥1   and other two eigen values are given by equation, 

 

[ 𝑔1 𝑥1    + 𝑥1   𝑔1
′  𝑥1    − 𝑚 0 − 𝜆   𝑔2 𝑥2    + 𝑥2   𝑔2

′  𝑥2    − 𝑢 0 − 𝜆 − 𝑢 0 𝑚 0 ] = 0 . 

 

So the Jacobian matrix at  𝐸1 𝑥1   , 𝑥2    ,0 ) has two negative eigen values and one positive eigen value when 

−𝑑 + 𝑎𝑐 𝑥1   > 0 . Then 𝐸1 is a saddle point with stable manifold locally in the 𝑥1 − 𝑥2 plane and with unstable 

manifold locally in the z direction. Also when 𝑥1   <
𝑑2

𝑎2𝑐2  ,  then 𝐸1is locally asymptotically stable. 

 

Theorem 3.3.2: The interior equilibrium point  𝐸2  is locally asymptotically stable if the following conditions 

hold 

 

(i)𝑎𝑖 > 0 , 𝑖 = 1 ,2,3. 
(ii)𝑎1𝑎2 − 𝑎3 > 0 where 𝑎1 , 𝑎2  , 𝑎3 are given below. 

 

Proof.  At the equilibrium point 𝐸2 the variational matrix becomes, 

 

 

𝑉 𝐸2 = 
 

 

 
 
 

𝑔1 𝑥1
∗ + 𝑥1

∗𝑔1
′  𝑥1

∗ − 𝑚 𝑦∗ − 𝑎
1

2 𝑥1
∗
𝑦∗ 𝑢(𝑦∗) −𝑚′ 𝑦∗ 𝑥1

∗ + 𝑢′ 𝑦∗ 𝑥2
∗ − 𝑎 𝑥1

∗

𝑚 𝑦∗ 𝑔2 𝑥2
∗ + 𝑥2

∗𝑔2
′  𝑥2

∗ − 𝑢(𝑦∗) 𝑚′ 𝑦∗ 𝑥1
∗ − 𝑢′ 𝑦∗ 𝑥2

∗

𝑎𝑐𝑦∗
1

2 𝑥1
∗

0 0
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The characteristic equation for the variational matrix  𝑉 𝐸2  is given by, 

 

𝜆3 + 𝑎1 𝜆
2 +  𝑎2𝜆 + 𝑎3  = 0, 

 

where, 

 

𝑎1 =  −[ 𝑔1 𝑥1
∗ + 𝑥1

∗𝑔1
′  𝑥1

∗ − 𝑚 𝑦∗ − 𝑎
1

2 𝑥1
∗ 𝑦∗ + 𝑔2 𝑥2

∗ + 𝑥2
∗𝑔2

′  𝑥2
∗ − 𝑢 𝑦∗ ] , 

 

𝑎2 =    𝑔1 𝑥1
∗ + 𝑥1

∗𝑔1
′  𝑥1

∗ − 𝑚 𝑦∗ − 𝑎
1

2 𝑥1
∗ 𝑦∗  𝑔2 𝑥2

∗ + 𝑥2
∗𝑔2

′  𝑥2
∗ − 𝑢 𝑦∗  − 𝑢 𝑦∗ 𝑚 𝑦∗ + 

𝑎𝑐𝑦∗ 1

2 𝑥1
∗  (−𝑚′ 𝑦∗ 𝑥1

∗ + 𝑢′ 𝑦∗ 𝑥2
∗ − 𝑎 𝑥1

∗ ), 

 

𝑎3  = 𝑎𝑐𝑦∗
1

2 𝑥1
∗

 𝑢 𝑦∗    𝑚′ 𝑦∗ 𝑥1
∗ − 𝑢′ 𝑦∗ 𝑥2

∗ 

− 𝑎𝑐𝑦∗
1

2 𝑥1
∗

  −𝑚′ 𝑦∗ 𝑥1
∗ + 𝑢′ 𝑦∗ 𝑥2

∗ − 𝑎 𝑥1
∗   𝑔2 𝑥2

∗ + 𝑥2
∗𝑔2

′  𝑥2
∗ − 𝑢 𝑦∗  . 

 

Clearly 𝐸2  is locally asymptotically stable if 𝑎𝑖 > 0 , 𝑖 = 1 , 2, 3 and 𝑎1𝑎2 − 𝑎3 > 0. 

 

Theorem 3.3.3:The model system (2.1) does not have any closed trajectory in interior of the positive quadrant 

of the 𝑥1 − 𝑥2 plane. 

 

Proof.  Let, 𝐻 𝑥1 , 𝑥2 =  
1

𝑥1𝑥2
. 

So,  𝐻 𝑥1 , 𝑥2 > 0 in the interior of the positive quadrant of the 𝑥1 − 𝑥2 plane. 

We denote, 

𝐹1 𝑥1 , 𝑥2 = 𝑥1𝑔1 𝑥1 − 𝑚 0 𝑥1 + 𝑢(0)𝑥2 
 

𝐹2 𝑥1, 𝑥2 = 𝑥2𝑔2 𝑥2 + 𝑚 0 𝑥1 + 𝑢(0)𝑥2 

 

∆(𝑥1 , 𝑥2) =
𝜕

𝜕𝑥1
 𝐹1𝐻 +  

𝜕

𝜕𝑥2
 𝐹2𝐻 . 

 

Then, 𝐻 𝑥1, 𝑥2 𝐹1 𝑥1, 𝑥2 =
𝑔1 𝑥1 

𝑥2
−

𝑚(0)

𝑥2
+

𝑢(0)

𝑥1
 

 

𝐻 𝑥1 , 𝑥2 𝐹2 𝑥1 , 𝑥2 =
𝑔2 𝑥2 

𝑥1
+

𝑚(0)

𝑥2
−

𝑢(0)

𝑥1
. 

 

So,  ∆(𝑥1 , 𝑥2) =
𝑔1
′  𝑥1 

𝑥2
−

𝑢(0)

𝑥1
2 +

𝑔2
′  𝑥2 

𝑥1
−

𝑚 (0)

𝑥2
2 < 0,  as [𝑔1

′  𝑥1 < 0, 𝑔2
′  𝑥2 < 0] . 

Therefore by Bendixson-Dulac criterion , there is no closed trajectory in the interior of the positive quadrant of 

the  𝑥1 − 𝑥2  plane. Since 𝐸1 is locally asymptotically stable in the above plane, so it is globally asymptotically 

stable. 

 

Theorem 3.3.4: The system (2:1) is uniformly persistence if the following condition conditions 

Hold 

 

(i) 𝑔1 𝑥1    +
𝑢 0  𝑥2    

𝑥1    
> 𝑚 0,   

(ii) 𝑔2 𝑥2    +
𝑚 0  𝑥1    

𝑥2    
> 𝑢(0) , 

(iii) – 𝑑 + 𝑎𝑐 𝑥1   > 0 . 

 

Proof.  Consider the average Lyapunov function of the form  𝜎 𝑥1 , 𝑥2 , 𝑦 =  𝑥1
𝑝1𝑥2

𝑝2𝑦𝑝3 , where each 𝑝𝑖  , 𝑖 =
1, 2, 3 are assumed positive constants. Obviously 𝜎 𝑥1, 𝑥2 , 𝑦  is a 𝐶1 positive function defined in 𝑖𝑛𝑡 ℝ+

3  and 

𝜎 𝑥1 , 𝑥2 , 𝑦 → 0  if  𝑥1 → 0 or 𝑥2 → 0   or  𝑦 → 0. Consequently we obtain 

𝛺 𝑥1 , 𝑥2 , 𝑦 =
𝜎 ′ 𝑥1 ,𝑥2 ,𝑦 

𝜎 𝑥1 ,𝑥2 ,𝑦 
=  

𝑝1

𝑥1

𝑑𝑥1

𝑑𝑡

𝑝1

𝑥1

𝑑𝑥1

𝑑𝑡
+

𝑝2

𝑥2

𝑑𝑥2

𝑑𝑡
+

𝑝3

𝑦

𝑑𝑦

𝑑𝑡
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𝑝1  𝑔1 𝑥1 − 𝑚 𝑦 +
𝑢 𝑦 𝑥2

𝑥1
−

𝑎  𝑦 𝑥1

𝑥1
  + 𝑝2  𝑔2 𝑥2 +

𝑚 𝑦 𝑥1

𝑥2
− 𝑢 𝑦  + 𝑝3[−𝑑 + 𝑎𝑐 𝑥1  ]. 

 

 

Now since there is no periodic attractor in the boundary planes, then for any initial point in the  𝑖𝑛𝑡 ℝ+
3 , the only 

possible omega limit set in the boundary planes of the system (2.1) is the  equilibrium point 𝐸1. Thus the system 

uniformly persists if we can prove 𝛺 𝐸1 > 0 at each of these points.  

Since  

 𝛺 𝐸1 = 𝑝1  𝑔1 𝑥1    − 𝑚 0 +
𝑢 0 𝑥2    

𝑥1    
 + 𝑝2  𝑔2 𝑥2    +

𝑚 0 𝑥1    

𝑥2    
− 𝑢 0  + 𝑝3[−𝑑 + 𝑎𝑐 𝑥1      ]. 

 

Obviously, 𝛺 𝐸1 > 0 for any positive constants 𝑝𝑖  , 𝑖 = 1 ,2, 3 provided the following conditions 

 

𝑔1 𝑥1    +
𝑢 0 𝑥2    

𝑥1    
>  𝑚 0 ,  𝑔2 𝑥2    +

𝑚 0 𝑥1    

𝑥2    
> 𝑢(0) and −𝑑 + 𝑎𝑐 𝑥1      hold. 

Then strictly positive solution of system (2.1) do not have omega limit set in the boundary planes. Hence system 

(2.1) is uniformly persistence. 

 

IV. Numerical Simulation And Discussions: 
For numerical simulation we have considered the following particular model  
𝑑𝑥1

𝑑𝑡
= 𝑟𝑥1  1 −

𝑥1

𝑘
 − 𝛼0 1 + 𝜃𝑦 𝑥1 + 𝛽0 1 − 𝜃𝑦 𝑥2 − 𝛽1 𝑥1  𝑦,  

𝑑𝑥2

𝑑𝑡
= 𝑠𝑥2  1 −

𝑥2

𝛼𝐾
 + 𝛼0 1 + 𝜃𝑦 𝑥1 − 𝛽0 1 − 𝜃𝑦 𝑥2  

𝑑𝑦

𝑑𝑡
= 𝛽2 𝑥1 𝑦 − 𝑑 𝑦 . 

Here the growth function are 𝑔1 𝑥1 = 𝑟  1 −
𝑥1

𝑘
  and 𝑔2 𝑥1 = 𝑠  1 −

𝑥2

𝛼𝐾
 , where 𝐾  is the carrying 

capacity of the environment , 𝑟 and 𝑠 are the intrinsic growth rate of the prey  populations inside the unreserved 

zone and reserved zone respectively, the growth functions satisfy the conditions, 𝑔𝑖 0 > 0; 𝑔𝑖
′ 0 < 0, 𝑖 = 1,2. 

We have taken the migration functions as 𝑚 𝑦 = 𝛼0 1 + 𝜃𝑦  and 𝑢 𝑦 = 𝛽0 1 − 𝜃𝑦 .The migration functions 

are predator’s density dependent and satisfy the conditions 𝑚 0 > 0; 𝑚′ 𝑦 > 0 and 𝑢 0 > 0; 𝑢′ 𝑦 < 0  and 

0 < 𝜃 < 1. 
We perform numerical simulation in Matlab to observe the stability of the equilibrium points 

𝐸1(𝑥 1,𝑥 2,0)  and 𝐸2 𝑥1
∗, 𝑥2

∗, 𝑦∗ .  Figure-1 shows the stability of planar equilibrium point 𝐸1(𝑥 1,𝑥 2,0).During 

numerical simulation we observe that the stability of 𝐸1(𝑥 1,𝑥 2,0) is robust  in the sense that change of values of 

several parameters does not effect on it. Here we could not identify any parameter except the death rate of the 

predators which is bring lots of change in dynamics of the system .Figure-2 depicts the stability of planar 

equilibrium point 𝐸2 𝑥1
∗, 𝑥2

∗, 𝑦∗ .We have simulated our model system by changing several parametric values in 

a loop and observe that death rate of predators is relatively sensitive with respect to other model parameters. It 

has been observed that if the death rate cross a certain threshold value then predator species goes to extinct, 

which is quite natural in ecological sense as the prey population, adopts defense mechanism through reserved 

zone and predators miss the opportunity to kill the prey in reserved zone.  
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Figure-1: Depict the stability of planar equilibrium point  𝐸1(𝑥 1,𝑥 2,0).The model system (2.1) has been solved 

using following set of values of parameters: 𝑟 = 0.08: 0.01: 0.12;  𝑠 = 0.03;  𝐾 = 500;   𝛼0 = 0.5;   𝜃 =
0.06; 𝛽0 = 0.1; 𝛽1 = 0.0025;   𝛼 = 0.5;  𝛽2 = 0.0014;  𝑑 = 0.058. 

 
Figure-2: Show the stability of interior equilibrium point𝐸2 𝑥1

∗, 𝑥2
∗, 𝑦∗ . The model system (2.1) has been solved 

using following set of values of parameters: r = 0.5: 0.1: 0.9;  𝑠 = 0.02;  𝐾 = 500 ; 𝛼0 = 0.3;  𝜃 = 0.01;  𝛽0 =
0.4; 𝛽1 = 0.026;  𝑠 = 0.02; 𝛽2 = 0.0023; 𝛼 = 0.45;  𝑑 = 0.018 . 

 

V. Conclusion: 
In this paper, we have discussed generalized prey-predator models where we have assumed that the 

prey migration rate from reserve zone to unreserved zone and vice –versa both are predator’s density dependent. 

We have shown that the system is bounded we have discussed about the equilibriums of the system and perform 

stability analysis. We established the positivity and persistent criteria of our generalized model itself revealed 

the inter linkage between growth functions, migration rates (both from reserved zone to unreserved zone and 

vice –versa) and death rate of predator. For a better understanding of these inter-linkage we introduce a 

particular model and extensive numerical  simulation has been done and it is  observed that death rate of 

predator and the migration rates (from reserved   zone to un reserved zone and vice-versa ) has great effect on 

dynamics of the model system. 
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