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Abstract: The aim of the paper is to investigate a good quality direct input data for mathematical models of 

pulsatile flow of blood in animal cardio-vascular system (CVS). It is first shown that the input data used in the 

literature of pulsatile flow of blood is either too ideal or incorrect. Then using Fourier series and numerical 

integration methods, four in-vivo experimental data (pressure gradient profiles for pulsatile flow of blood) for 

four different locations of animal CVS are converted into a mathematical form that could be readily used as 

input data for mathematical models. A comparison of experimental and mathematical profiles shows a good 

agreement between them (error about 10%). A computer program is developed using this method and is 

presented through appendix. 
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I. Introduction 
Womersley [1] considered oscillating flow and obtained the analytic expressions for axial velocity, 

flow rate, wall shear, etc. In terms of oscillatory pressure gradient of the form                                                                                     
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Blood flow in animal CVS is pulsatile which consists of two parts: oscillatory flow superimposed on 

steady state flow. Womersley [1] considered only oscillatory part of the pressure gradient. Steady part of the 

pressure gradient profile was neglected. Obviously this is too ideal input form. 

Sud and Sekhon [2] considered pulsatile flow (oscillatory as well as steady part of the pressure 

gradient) as     
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Where pp f2 , pf  is pulse frequency, 0  is a steady component of pressure gradient and is given by 
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R is the tube radius, f = 
113 smkg104   and pf = 1.2 hz. 

Tsangaris and Drikakis [3] developed a mathematical model based on McDonald’s [4] experimental 

data of pressure gradient profiles for the femoral artery of the dog. They discussed pulsating flow of a viscous 

incompressible fluid in an initially stressed elastic tube with anisotropic structure by taking pressure gradient of 

the following form 
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  is angular velocity and iR  (= r - h/2), r is average radius of the tube and nc  is the pulse wave velocity. 

 For pressure gradient profile in the femoral artery of a dog, Tsangaris and Drikakis [3] obtained 

Fourier series taking eleven terms. Abdalla [5] reduced number of terms in Fourier series. He represented 

pressure gradient with five terms as given below 
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Where nn B&A  are Fourier coefficients and are given in Table- I. 

 

Table I: Fourier coefficients for femoral artery of a dog (n
3m
) 

0A  
N 

nA  nB  

4466.29 1 13652.17 3199.72 

 2 -1679.85 17945.41 

 3 10919.07 6359.46 

 4 -4066.32 26.66 

 5 -3466.37 -1919.84 

 

Abdalla [5] considered the time period as 0.833 sec for the mathematical forms of some experimental 

pressure gradient profiles. But, for calculation of the Fourier coefficients, he took the period t = 2 , which 

appears to be incorrect. It is noticed that the period does not have fixed values in all cases. It may change from 

person to person, with surroundings and due to health conditions etc. Hence, one needs to be careful with the 

period of the pulsatile flow of blood. 

 In view of the above-mentioned problems with input data, it is desirable to have proper input pressure 

gradient profile. So the aim of this paper is to obtain a reliable mathematical form of in-vivo experimental 

pressure gradient profile which can be readily used as input data for mathematical models of pulsatile flow of 

blood in animal CVS. 

 

II. Method for Converting an Experimental Pressure Gradient Profile into Mathematical Form 
 There are many ways to convert geometrical profiles into mathematical form. Here Fourier series 

method is chosen for this purpose. Let the given geometrical profile be represented by Fourier series (Kreyszig 

[6]) as given by 
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pp f 2 ,  pf  is the frequency and t is time period of the pulsating pressure gradient. 

Simpson’s 1/3 rule is used to evaluate the integrals (9) as given by 

              

T

mm tftftftftf
h

dttf
0

224220 .........2
3

   

                               1231 .........4  mtftftf        …(10)        

 



Generation Of Good Quality Direct Input Data For Mathematical Models Of Pulsatile Flow Of Blood  

www.ijesi.org                                                                3 | Page                                                                          

Where the function f (t) is defined in the interval [0, t]. The interval [0, t] is divided into an even number of 

equal subintervals; say 2m, of length 
m

T
h

2
  with end points    Ttandt m  20 ,0 .  

The values of f(t). I.e.  zp   for required values of t are obtained from the given experimental 

pressure gradient profiles. Experimental pressure gradient profiles in literature (Hwang et.al. [7], Pedley [8], 

Milnor [9] etc.] are given in graphical form. Time scale is presented on the x-axis, which ranges from 0-t 

seconds and  zp   is presented on the y-axis. The x-axis is divided into number of equal intervals and the 

values of  zp   at these points are measured manually from the given experimental profiles. Thus, the 

coefficients 0A , nA and nB  can be determined and the given experimental geometrical forms are converted 

into mathematical forms. 

 Now, we shall use this method to obtain mathematical form of in-vivo experimental pressure gradient 

profiles of pulsatile flow of blood in animal CVS. A computer program in C++ language is developed for this 

method that takes very less time and presented through appendix. 

 

III. Mathematical Forms of In-Vivo Experimental Pressure Gradient Profiles In Animal CVS 
 There are very few in-vivo experimental pressure gradient profiles in animal CVS available in 

literature. We could locate the following profiles: 

1. Pressure gradient profile for descending thoracic aorta of a dog (Hwang et.al. [7]),  

2. Pressure gradient profile for left circumflex coronary artery of a dog (Hwang et.al. [7]), 

3. Pressure gradient profile for femoral coronary artery of a dog (Pedley [8]),  

4. Pressure gradient profile for thoracic aorta of a dog (Milnor [9]).  

 
Figure 1. Comparison of experimental (Hwang et.al. [7]) and mathematical profiles of the pressure gradient in 

descending thoracic aorta (r=0.65 cm) of a dog. 

 

Table II: Fourier coefficients for descending thoracic aorta (r= 0.65 cm) of a dog, (Hwang et.al. [7]). 

0A
 

N 
nA

 nB
 

1364.92 1 -11332.69 4043.53 

 2 2683.66 7196.16 
 3 -3851.00 -3736.13 

 4 4488.65 7695.82 

 5 4627.80 -8959.60 

 6 -2627.71 3494.69 

 7 5323.93 -4081.13 

 8 -3601.25 128.80 
 9 3718.95 -1020.85 

 10 -3824.07 -3536.89 
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Figure 2. Comparison of experimental (Hwang et.al. [7]) and mathematical profiles of the pressure gradient in 

left circumflex coronary artery (r= 0.15 cm) of a dog. 

 

Table III: Fourier coefficients for left circumflex coronary artery (r= 0.15 cm) of a dog (Hwang et.al. [7]). 

0A
 

N 
nA

 nB
 

4500.51 1 2938.26 2103.13 
 2 649.06 18.96 

 3 396.62 -1124.90 

 4 -342.60 -43.53 
 5 699.35 -4098.68 

 6 -763.11 956.39 

 7 -1950.11 -1579.31 

 8 -2031.38 -61.45 

 9 -1359.08 3097.95 
 10 -663.84 503.37 

 

 
Figure 3. Comparison of experimental (Pedley [8]) and mathematical profiles of the pressure gradient in 

femoral artery (r=0.2 cm) of a dog. 

 

Table IV: Fourier coefficients for femoral artery (r= 0.2 cm) of a dog  (Pedley [8]). 

0A
 

N 
nA

 nB
 

2372.35 1 -9263.54 867.58 
 2 3903.00 17190.46 

 3 
8510.28 -6161.66 

 4 -4128.19 -1143.66 

 5 333.10 985.21 

 6 -12.75 65.50 
 7 52.60 -292.88 

 8 -296.11 116.34 
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Figure 4. Comparison of experimental (Milnor [9]) and mathematical profiles of the pressure gradient in 

thoracic aorta (r=0.47 cm) of a dog. 

 

Table V: Fourier coefficients for thoracic aorta (r=0.47 cm) of a dog (Milnor [9]). 

0A
 

N 
nA

 nB
 

631.73 1 -2912.33 952.42 

 2 548.01 2588.90 

 3 419.24 -1436.03 
 4 65.03 -165.66 

 5 -1032.77 -2352.53 

 6 -1539.84 1282.44 
 7 9.67 343.48 

 8 -93.11 1237.42 

 9 1433.55 367.90  

 

IV. Results And Discussion 
Using method given in previous section, four experimental pressure gradient profiles have been 

converted into mathematical forms i.e. Fourier coefficients are calculated and given through Table II to V. Thus, 

obtained mathematical forms are compared with experimental profiles as shown in figures 1 to 4. It is observed 

that they have good agreement with experimental profiles in most part of the interval, except at sharp points 

where error is more; on an average error is about 10%. 

Number of terms in Fourier series is determined by trial and error method. For the value of n, when 

error is about 10%, the computation is stopped at that n. That is why different profiles have different number of 

Fourier coefficients. Accuracy can be improved by increasing the number of terms in the Fourier series.  

 

V. Conclusion 
Pressure gradient profiles are required as input data in mathematical models of pulsatile flow of blood. 

But it is observed that forms of pressure gradient profiles, considered in literature, are either too ideal 

(womersley [1]) or incorrect (Sud aand Sekhon [2] etc.). Obviously the obtained results from such models will 

not be relevant and useful to the physical situations, which they correspond to. Efforts have been made to 

provide relevant input data for mathematical models of pulsatile flow of blood in animal CVS. Four in-vivo 

experimental pressure gradient profiles for four different locations of animal CVS are converted into 

mathematical form (Fourier series) and shown through figures 1 to 4. The values of Fourier coefficients are 

given through Table II to V. A comparison of mathematical profiles with experimental profiles shows a good 

agreement between them (error about 10%). A computer program is developed for this procedure in C++ 

language and presented through appendix. 
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Appendix 

 /* Program To Experimental Data Into Theoretical Data (Mathematical Form)*/ 

# Include <Stdio.H> 

# Include <Math.H> 

# Include <Conio.H> 

# Include <Iostream.H> 

Void Main () 

{ 

Int I, N; 

Float A0, J, F ; 

Float A[20], B[20], Pge[52], Pgm[52]; 

 

Clrscr(); 

For (I=0; I<=50; I=I+1){ 

Cout<<"Enter Value Of Pressure Gradient For J="<<I<<"\T";; 

Cin>>Pge[I]; 

} 

A0 = Pge[0] + Pge[50]; 

For (I=0; I<=46; I=I+2){ 

A0 = A0 + 2*Pge[I+2] + 4*Pge[I+1];} 

A0 = 0.00667*(A0+4*Pge[49]); 

For (I=0; I<=50; I=I+1){ 

Pgm[I] =A0;} 

 

Again : 

N=N+1; 

For (I=1; I<=46; I=I+2){ 

J=J+0.02; 

A[N] = A[N] + 2*Pge[I+2]*Cos(N*44*F*(J+0.04)/7) + 4*Pge[I+1]* Cos(N*44*F*(J+0.02)/7); 

 B[N] = B[N] + 2*Pge[I+2]*Sin(N*44*F*(J+0.04)/7) + 4*Pge[I+1]* Sin(N*44*F*(J+0.02)/7); 

} 

For (I=0; I<=50; I=I+1){ 

Pgm[I] = Pgm[I] + A[N]*Cos(N*44*F*I*0.02) +B[N]*Sin(N*44*F*I*0.02);} 

For (I=0; I<=50; I=I+1){ 

X[I]=Abs(Pgm[I]-Pge[I]); 

If (X[I]>0.001){ 

Goto Again;}} 

Clrscr(); 

Cout<<"\Nj\Tpressure Gradient\N"; 

For(J=0; J<=50; J=J+1){ 

Cout<<J<<"\T"<<Pgm[J]<<"\N";} 

Getch ();  

} 

 

Anand Bansal "Generation of Good Quality Direct Input Data for Mathematical Models 

of Pulsatile Flow of Blood in Animal CVS "International Journal of Engineering Science 

Invention (IJESI), vol. 07, no. 05, 2018, pp 01-06 

 

 

 

 

 


	Abstract: The aim of the paper is to investigate a good quality direct input data for mathematical models of pulsatile flow of blood in animal cardio-vascular system (CVS). It is first shown that the input data used in the literature of pulsatile flow...

