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Abstract:The modulus of composites formed from three selected natural fiber sources (Empty Plantain Bunch 

Fiber, Empty Palm Bunch Fiber and Rattan Palm Fiber) - mercerized at optimum conditions - with two selected 

thermosetting resins (Polyester and Epoxy resins) has been studied. The modulus was obtained as the slope of 

the linear part of the stress-strain curve. Selected micromechanics models were used for composite modulus 

prediction and their closeness to the experimental value was studied using the R
2
 obtained from regression of 

the two data points. The micromechanics models studied did not adequately model the Composite behavior, a 

new micromechanics model obtained by modifying the Halpin-tsai equation which gave a better fit was 

proposed in this study. The modified model presented in this work is recommended for prediction of composite 

modulus for natural fiber based composites especially after further improvement by adjusting the model 

parameters: A,   and  to make them composite specific, using data from experiments. 
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I. Introduction 
The elastic properties of a composite can be predicted by micromechanics models based on the 

properties of the individual constituent materials of the composite and their geometrical characteristics. Better 

prediction of the mechanical properties of natural fiber composites will help our understanding of the effect of 

the constituents on the final properties of the material. Using micromechanics models, the composite properties 

can be optimized for a given application by varying the composition of the composite. The simplest 

micromechanical model used to predict the composite elastic modulus parallel to the principal axis is Rule of 

Mixture (RoMP). It is a parallel spring model based on the assumption that the fibers and matrix will experience 

equal strain during loading in fiber direction. The RoMP equation for the modulus of a continuous unidirectional 

fiber composite in the fiber direction can be generally represented as shown below; 

     E1 = k EfVf + Em Vm          

(1) 

Where E1 is composite modulus in fiber direction, Ef and Em are fiber and matrix modulus respectively 

and Vf  and Vm  are fiber and matrix volume fraction, while k is the fiber efficiency factor and has values as 

follows; for complete alignment and when stress is parallel to fibers      (k = 1); for fibers laid in two directions 

at right angles (bi-directional or cross-laid fibers) and stress is in one of these directions (k = ½); for fibers in 

random and uniform distribution within a specific plane, and stress is in any direction in the plane of the fibers 

(k = 3/8) and for fibers in random and uniform distribution within three dimensions in space, and stress is in any 

direction (k = 1/5). RoMP provides the upper bound for the composite modulus when; 

    m =  f           (2)  

Where  m  and  f  are the matrix and fiber axial Poisson‟s ratios respectively. The composite modulus 

in the direction transverse to the fiber direction is given by RoMS. This series spring model assumes that the 

fibers and matrix experience the same stress when the composite is loaded in the direction transverse to the 

fibers. 

The RoMS equation is;  E2 =
Ef Em

Ef Vm +Em Vf
                    (3) 

Where, E2 is the composite modulus, in a direction transverse to the fibers. RoMS gives the lower 

bound for the composite modulus (Jones, 1998; Hyer and Waas, 2000; Katchy, 2008; Virk, 2010). 

Modified models for composite modulus, in a direction transverse to the fibers, are also presented by 

Voyiadjis and Kattan (2005): 

   E2 =
Vf +Vm
V f

Ef2
+
V m
Em

          (4) 
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Where, Ef2 is fiber modulus in the transverse direction and is the stress-partitioning factor.  The 

stress-partitioning factor satisfies the condition 0 < <1, but usually taken between 0.4 and 0.6. Alternatively, 

we also have; 

   E2 =
Ef2Em

Emf Vf +Ef2m Vm
         (5) 

Where, 
f
 and 

m
 are stress-partitioning factors for the fiber and matrix respectively. 

Halpin and Tsai (1969) developed a semi-empirical method to predict the composite properties. Halpin-

Tsai method tries to make a sensible interpolation between upper and lower bounds of composite properties. 

Halpin-Tsai equation is;  

    E∗ = Em  
1+Vf

1−Vf
          (6) 

Where    =  
Ef−Em

Ef +Em
          (7) 

E* is composite modulus, Ef  and Em are fiber and matrix modulus respectively, Vf  is fiber volume 

fraction and  is reinforcing efficiency (which depends on fiber geometry, packing arrangement and loading 

condition). A variety of empirical equations for  are available in literature and they depend on the shape of the 

particle and the modulus that is being predicted. For circular or rectangular fiber, assuming tensile modulus on 

the principal fiber direction is desired; 

    = 2  
L

T
  or 2  

L

D
          (8) 

Where L is the length of the fiber in the one direction and T or D is thickness or diameter respectively. 

In some cases, for the reinforcing efficiency a constant value  = 2 has been used (Katchy, 2008). 

The reinforcing efficiency  can be calculated from experimental test result, where composite modulus, E* and 

fiber volume fraction, Vf  are known and Vm is matrix volume fraction which is equal to 1-Vf assuming a zero 

void fraction, using the equation below; 

    =  
Ef (E∗−Em )−Vf E∗(Ef−Em )

Em {(Ef−E∗)−Vm (Ef−Em )}
      (9) 

Values of reinforcement efficiency, , can vary from 0 to . When  = , Halpin-Tsai equation becomes RoMP 

and for  = 0, Halpin-Tsai equation is reduced to RoMS. The higher reinforcing efficiency signifies that fibers 

are contributing to the composite stiffness. Halpin-Tsai method offers the advantage of being simple (easy to use 

in design process) and offers more exact prediction but normally requires empirical data to determine the 

reinforcing efficiency, . 

Though Halpin-Tsai equation is basically used for modulus in the transverse direction, it has been modified for 

randomly oriented fiber reinforced composites by using the relation below; 

   E =
3

8
E1 +

5

8
E2       (10) 

Where E1 and E2 (composite modulus in fiber direction and in transverse direction respectively) are obtained 

from Halpin-Tsai equation by using  = 2(lf/df) and  = 0.5 respectively (lf  and df  are fiber length and 

diameter respectively) (Jones, 1998; Daniel and Ishai, 2005; Ku et al, 2011). 

Similar to the Halpin-Tsai equation is the Bintrup equation for composite modulus in transverse direction is 

given as;  

   E2  =  
(Em

′ Ef )

[Ef Vm + Vf Em
′ ]

       (11) 

Where  Em
′ = Em /(1 − m

  2) and m is the Poisson ratio of the matrix. 

The modulus for discontinuous fiber composite can be estimated using Cox Shear-Lag model. The RoMP is 

modified by including a length factor, which is a function of fiber length, fiber and matrix properties, fiber 

geometry and placement. The modified RoMP equation is; 

  E = 
l
EfVf + Em Vm        (12) 

  
l
 =  1 −

tan h⁡(cox l/2)

cox l/2
      (13) 

  
cox

=  √ 
2Gm

Ef A f In (
R

rO
)
        (14) 

Where 
l
is fiber length distribution factor, l is fiber length, Gm is matrix shear modulus, Af is fiber cross 

sectional area, r0 and R are the fiber radius and half of inter-fiber spacing respectively. For square and hexagonal 

fiber arrangement and fiber of circular cross section the fiber volume fraction is given by equations 15 and 16 

respectively. 

  Vf  =  
rO

2

4R2        (15) 

  Vf  =  
2rO

2

√3R2          (16) 
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This model assumes that the interface between fiber and matrix is perfect, fiber and matrix response is elastic 

and no axial force is transmitted through the fiber ends (Cox, 1952; Piggot, 1980; Folkes, 1982; Virk, 2010). 

Facca et al (2006) also presented modified equations for the shear-lag parameter; 

 
cox

=  
1

r
√ 

2Em

Ef (1+m )In (
P f
V f

)
       (17) 

Where m  ,  Pf  and r are poisson ratio of matrix, packing factor of fibers ( for square packing and 2/3 for 

hexagonal packing) and radius of fiber respectively. 

For axisymmetric cases, the shear lag parameter below gives more accurate results: 

 
𝑐𝑜𝑥

=  
2

𝑟2𝐸𝑓𝐸𝑚
 

𝐸𝑓𝑉𝑓+𝐸𝑚 𝑉𝑚

𝑉𝑚
4𝐺𝑓

+
1

2𝐺𝑚
 

1

𝑉𝑚
 𝐼𝑛 

1

𝑉𝑓
 −1−

𝑉𝑚
2

 

  

1/2

   (18) 

Where 𝐺𝑓  and 𝐺𝑚  are shear modulus of fiber and matrix respectively. A generalized form of equation 18 is 

given below: 

    
𝑐𝑜𝑥

=  
2

𝑟2𝐸𝑓𝐸𝑚
 

𝐸𝑓𝑉𝑓+𝐸𝑚 𝑉𝑚

𝑉𝑚
4𝐺𝑓

+
1

2𝐺𝑚
 

1

𝑉𝑚
 𝐼𝑛 

1

 +𝑉𝑓
 −1−

𝑉𝑚
2

 +
1

𝑟𝐷𝑠

  

1/2

                          (19) 

The parameter  is generally taken as 0.009, while 𝐷𝑠  is an interface parameter. A value of 𝐷𝑠 =  indicates 

perfect adhesion. The above equation can therefore be used to characterize improvement in interfacial adhesion. 

The modulus of partially oriented composite can be estimated by including the fiber orientation distribution 

factor by Krenchel (1964) in the RoMP equation. The resulting equation is; 

 𝐸 = 
𝑂
𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚       (20) 

                  
𝑂

=  𝑎𝑛𝑐𝑜𝑠
4𝜃𝑛𝑛       (21) 

Where 
𝑂

is fiber orientation distribution factor, an  is the proportion of the fiber making 𝜃𝑛angle to the applied 

load. 

The modulus (stiffness) of discontinuous fiber composite with partially orientated fibers can be predicted by 

combining equations 12 and 20. 

  𝐸 = 
𝑙


𝑂
𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚       (22) 

However, if 
𝑙
 is unity (for long fibers) this returns the same results as Krenchel (Equation (20)). 

The modulus of natural fibers has been reported to decrease with increasing fiber diameter (Lamy and Baley, 

2000;Bodros and Baley, 2008). The modulus of composite reinforced with natural fiber can be estimated by 

equation proposed by Summerscales et al (2010). The RoMP equation is extended to include a fiber “diameter” 

distribution factor, 
𝑑

 as in equation 23:  

  𝐸 = 
𝑑


𝑙


𝑂
𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚     (23) 

When the fibers used in the composite are well characterized 
𝑑

 can be taken as 1 i.e. the modulus of the batch 

of fiber used has been measured independently. 

These modifications are because the rule of mixtures cannot be directly applied to short fiber composites 

because the assumption of uniform strain does not hold. The critical fiber length (fiber length at which the 

maximum stress in fiber equals the tensile strength of the fiber (𝑙𝑐 )) or critical fiber aspect ratio (𝑐𝑟𝑖𝑡 ) is the 

basis for further modification. There are three special cases (Katchy, 2008): 

1. Fiber length is less than critical length (𝑙 < 𝑙𝑐) 

                                       𝐸𝑐 = (𝜏𝑖𝑙/𝑑)𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚     (24) 

2. Fiber length is equal to critical length (𝑙 = 𝑙𝑐) 

                                     𝐸𝑐 = (𝜏𝑖𝑙𝑐/𝑑)𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚     (25) 

3. Fiber length is greater than critical length (𝑙 > 𝑙𝑐) 

                                    𝐸𝑐 = (1 − 𝑙𝑐/2𝑙)𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚     (26) 

𝐸𝑐  and 𝜏𝑖  are the composite moduli and mean shear stress at the fiber/matrix interface respectively. 

Strength of the unidirectional (continuous fiber) composite can be predicted by assuming all the reinforcing 

fibers have identical strength and the strain in the fibers and the matrix is equal during loading. If the fiber 

failure strain is less than the matrix failure strain then the composite longitudinal tensile strength (parallel to the 

fibers) can be estimated using Kelly-Tyson equation (27) (Kelly and Tyson, 1965); 

                         𝑐 = 𝑓  𝑉𝑓 +  𝑚  𝑓 1 − 𝑉𝑓     (27) 

Where 𝑐  is unidirectional composite tensile strength, 𝑓   is fiber tensile strength and  𝑚  𝑓  is matrix stress at 

the strain equal to failure strain in the fibers. Equation (27) is not true for low fiber volume fraction (2% or less - 
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which is below the critical value for effective load transfer between fiber and matrix), therefore for low fiber 

volume fraction the composite strength is approximated by; 

                                                            𝑐 ≅ 𝑚𝑚𝑎𝑥
 1 − 𝑉𝑓      (28) 

Where 𝑚𝑚𝑎𝑥
  is the maximum matrix tensile strength. 

The composite strength is given by the higher of the two values calculated using equations (27) and (28). 

The tensile strength of quasi-unidirectional composite loaded slightly off axis to the fiber direction is given by 

Potter (1994); 

                                                           𝑐𝑢 = 𝑐𝑠𝑒𝑐
2𝜃     (29) 

Where 𝑐𝑢  is ultimate composite strength, 𝑐  is unidirectional composite tensile strength and 𝜃 is angle between 

the fiber axes and the composite loading axes.  

Katchy (2008) presented some equations for the case when the fiber failure strain is greater than the matrix 

failure strain, but this case is hardly ever seen in practical applications. 

Katchy (2008) presented three model equations for application in strength of short fiber reinforced composites, 

based on the critical fiber length, as follows:  

1. Fiber length is less than critical length (𝑙 < 𝑙𝑐) 

                            𝜎𝑐 = (𝜏𝑖𝑙/𝑑)𝑉𝑓 + 𝜎𝑚𝑉𝑚      (30) 

2. Fiber length is equal to critical length (l = lc) 

                            σc = (τilc/d)Vf + σm Vm       (31) 

3. Fiber length is greater than critical length (l > lc) 

                           σc =  1 −
lc

2l
 σf,max Vf + σm Vm      (32) 

σc  and σf ,max  are the composite tensile strength and maximum fiber tensile strength respectively. 

Facca et al (2007) used a micromechanical model which was a semi-empirical modification of the rule of 

mixture to model composite behavior for several natural fibers and E-glass, with good prediction: 

                                                            σc =  1 −
lc

2l
 σf,max Vf +  m

∗  (1 − Vf)      (l    lc)   (33) 

Modified equation for cylindrical fibers, (l  lc)  

  σc =   
τi l

d
 Vf +  m

∗  (1 − Vf)     (34) 

Modified equation for rectangular fibers, (l  lc) 

                                σc = α  
τi l

2
 Vf  

W+T

WT
 +  m

∗  (1 − Vf)    (35) 

Where α, m
∗  , d, W and T are the clustering parameter, matrix stress evaluated at the peak composite 

strength, cylindrical fiber diameter, rectangular fiber width and rectangular fiber thickness respectively. 

The mechanical properties predicted by the appropriate micromechanics model were compared to the 

experimental results to assess the error in the prediction. Knowing that the micromechanics models have inbuilt 

limitations and assumptions (i.e. they often assume perfect bond between fibers and matrix, fibers are 

homogenous, linear elastic and regularly spaced in the composite and the matrix is also homogenous, linear 

elastic and void free), the micromechanics model which most closely predicts the experimental data will be 

deemed more appropriate for natural fiber composites. 

 

II. Methodology 

Empty plantain bunch fiber, Oil palm empty fruit fiber and rattan palm fibers were mercerized at their 

respective optimum NaOH concentration and treatment times (4wt % NaOH for 120mins, 6wt% NaOH for 

90mins and 4wt% NaOH for 120mins respectively) and were chopped into lengths of 10mm, 30mm and 50mm 

and the aspect ratios corresponding to the lengths were obtained as a ration of length to average fiber diameter. 

These fibers were used to produce randomly oriented fiber composites by the hand lay-up method, using a 

stainless steel sheet female mould with a marble tile male mould having dimensions 300x300x3mm
3 

for fiber 

volume fractions 10%, 30% and 50% respectively using polyester and epoxy as resin.  

Prior to the composite preparation, the mould surface was polished well and a mould-releasing agent 

(mirror-glaze) was applied on the surface of the mould. General unsaturated polyester resin (HSR 8113M) was 

mixed well with 1 wt. % cobalt naphtenate accelerator and 1wt. % by MEKP catalyst, while the epoxy resin was 

mixed with amine hardener in a ratio of 2:1. All chemicals were supplied by Nycil Industrial Chemicals, Ota, 

Ogun State, Nigeria. The fiber mat was placed in the mould and the resin mixture was poured evenly on it. 

Using a metallic roller, the air bubbles were carefully removed and the mat was allowed to wet completely. The 

mould was closed and the excess resin was allowed to flow out as 'flash' by pressing in a hydraulic press. The 

pressure was held constant during the curing process at room temperature for 24 hours. The composite sheet was 

post cured at 80°C for 4 hours. Test specimens, according to ASTM standards, were cut from the sheet. 

The tensile properties were determined using Hounsfield Monsanto Universal Tensometer Machine, 

based on ASTM D 638-99. 
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The slope of the linear part of the stress-strain curve obtained from the tensile test was used as the Young‟s 

modulus for the analysis in this work. 

 

III. Results And Analysis 
The general equation for micromechanics modeling of composite modulus is given in equation (12). 

Four equations are presented [equations (14), (17), (18) and (19)] for computation of the shear lag parameter 

which is applied in equation 13 to obtain the fiber length distribution factor and then equation (12) can be used 

to estimate the composite modulus, based on the modulus and volume fractions of the fiber and matrix.  

For this work, equation (18) was used to compute the shear lag parameter. This is because equation 

(14) requires inter-fiber spacing, which is not available for our random fiber orientation, while equation (17) 

requires packing factor, for which values are not available for a random arrangement. Equations (24) to (26) 

could not be used because of challenges in obtaining or measuring the critical fiber length and mean shear stress 

at fiber-matrix interface. Two multiaxial models, the Bintrup equation (equation 11) and the modified Halpin-

tsai equation (equations 6, 7 and 10) for different constant reinforcing efficiencies in the transverse direction, 

were also used and compared to equation 12 to know the model that best fits the data. 

In this study, it was observed that composite modulus increased with increase in fiber volume fraction 

to a maximum before a decline. A simple model which is a modification of Halpin-tsai equation is presented 

below based on the above observation. 

 E =  A sin⁡( Vf

)  

3

8
E1 +

5

8
E2          (36) 

Where A,   and  are a model constants and Vf   is fiber volume fraction. E1 and E2 are composite 

modulus in lateral and transverse directions based on Halpin-tsai equation using  = 2 for the transverse 

direction. Equation 36 was used to simulate composite modulus for A=1,  =3/2 and  = 11/16 and the 

simulated results are presented in Table 1 to Table 6 alongside other micromechanics models. 

Micromechanics Study for Empty Plantain Bunch-Polyester Reinforced Composite 

It can be observed from Table 1 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. All model predicted modulus 

values were significantly different from the experimental, though the modified model proposed in this work was 

the closest to the experimental modulus with R
2
 of 0.4712. The shear-lag model is the least accurate model for 

empty plantain bunch-polyester composite with an R
2
 value of 0.1155 and this can be explained based on the 

fact that the model is a uniaxial model and thus is likely to be less accurate. The Bintrup model is the least 

accurate of the multiaxial models. 

 

Table 1: Comparison of Predicted Modulus for Empty Plantain Bunch-Polyester 
Fiber Aspect  

Ratio  

(m/m) 

Volume 

Fraction 

 (%) 

Modulus 

Expt. 

(GPa) 

Shear-lag 

model 

 

Halpin- 

Tsai (=2) 

Halpin- 

Tsai  

(=0.5) 

Bintrup 

model 

Osoka- 

Onukwuli 

Model 

23.6183 10 4.4744 4.9559 2.0400 2.1339 3.8737 1.7575 

23.6183 30 5.6100 13.8464 4.5323 4.8844 6.7356 4.3126 

23.6183 50 3.7312 23.1306 7.8186 8.6000 10.6260 1.8393 

70.8550 10 3.9542 5.4607 2.4628 2.5567 4.2965 2.1056 

70.8550 30 4.6690 14.7097 5.6925 6.0445 7.8958 5.3370 

70.8550 50 3.5700 24.0899 9.4701 10.2514 12.2774 2.1925 

118.0916 10 3.6803 5.5616 2.6000 2.6938 4.4336 2.2186 

118.0916 30 4.7661 14.8823 6.0415 6.3935 8.2448 5.6451 

118.0916 50 3.1617 24.2817 9.9251 10.7064 12.7324 2.2898 

R-squared   0.1155 0.1852 0.1859 0.1857 0.4712 

 

Micromechanics Study for Empty Plantain Bunch-Epoxy Reinforced Composite 

It can be observed from Table 2 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. All model predicted modulus 

values were significantly different from the experimental, though the modified model proposed in this work was 

the closest to the experimental modulus with R
2
 value of 0.8479.  
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Table 2: Comparison of Predicted Modulus for Empty Plantain Bunch-Epoxy 
Fiber Aspect  

Ratio  

(m/m) 

Volume 

Fraction 

 (%) 

Modulus 

Expt. 

(GPa) 

Shear-lag 

model 

 

Halpin- 

Tsai (=2) 

Halpin- 

Tsai  

(=0.5) 

Bintrup 

model 

Osoka- 

Onukwuli 

Model 

23.6183 10 1.1027 5.1994 2.7035 2.5794 4.9708 2.2266 

23.6183 30 2.2720 13.9007 5.8711 5.4106 8.2515 5.1839 

23.6183 50 1.7210 23.0768 10.0399 9.0350 12.5860 2.1472 

70.8550 10 1.6760 5.7651 3.0756 2.9515 5.3429 2.5330 

70.8550 30 2.9710 14.9014 6.8604 6.3999 9.2408 6.0574 

70.8550 50 1.7710 24.1959 11.3964 10.3915 13.9425 2.4373 

118.0916 10 1.6320 5.8782 3.1852 3.0612 5.4526 2.6233 

118.0916 30 2.5850 15.1015 7.1338 6.6733 9.5141 6.2987 

118.0916 50 1.6430 24.4198 11.7448 10.7399 14.2909 2.5119 

R-squared   0.0362 0.0246 0.0283 0.0239 0.8479 

 

Micromechanics Study for Empty Palm Bunch-Polyester Reinforced Composite 

It can be observed from Table 3 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. All model predicted modulus 

values were significantly different from the experimental, though the modified model proposed in this work was 

the closest to the experimental modulus with an R
2
 value of 0.8477. The shear-lag model is the least accurate 

model for empty palm bunch-polyester composite with an R
2
 value of 0.0836 and this can be explained based on 

the fact that the model is a uniaxial model.  

 

Table 3: Comparison of Predicted Modulus for Empty Palm Bunch-Polyester 
Fiber Aspect  
Ratio  

(m/m) 

Volume 
Fraction 

 (%) 

Modulus 
Expt. 

(GPa) 

Shear-lag 
model 

 

Halpin- 

Tsai (=2) 

Halpin- 
Tsai  

(=0.5) 

Bintrup 
model 

Osoka- 
Onukwuli 

Model 

22.2222 10 2.9470 2.4075 1.6152 1.5378 3.3370 1.3303 

22.2222 30 4.4500 5.3889 3.0363 2.7599 4.8087 2.6809 

22.2222 50 2.4989 8.4551 4.8340 4.2679 6.6501 1.0338 

66.6667 10 3.6756 2.5026 1.6972 1.6198 3.4190 1.3978 

66.6667 30 4.4643 5.5645 3.2425 2.9661 5.0149 2.8629 

66.6667 50 3.1069 8.6547 5.0995 4.5338 6.9156 1.0906 

111.1111 10 3.5699 2.5216 1.7177 1.6404 3.4396 1.4147 

111.1111 30 4.3021 5.5996 3.2921 3.0157 5.0645 2.9067 

111.1111 50 3.1357 8.6946 5.1606 4.5945 6.9767 1.1037 

R-squared   0.0836 0.1049 0.0980 0.1037 0.8477 

 

Micromechanics Study for Empty Palm Bunch-Epoxy Reinforced Composite 

It can be observed from Table 4 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. There is significant difference 

between the experimental modulus and predicted for most models with the modified model proposed in this 

work having the best fit with R
2
 value 0.7076. All other micromechanics models gave very poor fit to the 

experimental modulus for empty palm bunch-epoxy composite. 

 

Table 4: Comparison of Predicted Modulus for Empty Palm Bunch-Epoxy 
Fiber Aspect  

Ratio  
(m/m) 

Volume 

Fraction 
 (%) 

Modulus 

Expt. 
(GPa) 

Shear-lag 

model 
 

Halpin- 

Tsai (=2) 

Halpin- 

Tsai  

(=0.5) 

Bintrup 

model 

Osoka- 

Onukwuli 
Model 

22.2222 10 1.1572 2.7292 2.0562 1.9609 4.2930 1.6935 

22.2222 30 2.0740 5.6116 3.6202 3.2879 5.8714 3.1964 

22.2222 50 1.4303 8.5935 5.5677 4.9128 7.7899 1.1908 

66.6667 10 1.6508 2.8330 2.1190 2.0237 4.3557 1.7452 

66.6667 30 2.4607 5.8123 3.7751 3.4428 6.0263 3.3332 

66.6667 50 1.7133 8.8248 5.7631 5.1082 7.9853 1.2325 

111.1111 10 1.5134 2.8538 2.1339 2.0386 4.3706 1.7575 

111.1111 30 2.1628 5.8525 3.8108 3.4785 6.0619 3.3647 
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111.1111 50 1.5882 8.8711 5.8066 5.1518 8.0289 1.2419 

R-squared   0.0232 0.0121 0.0139 0.0134 0.7076 

 

Micromechanics Study for Rattan Palm Fiber-Polyester Reinforced Composite 

It can be observed from Table 5 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. All the micromechanics models 

presented failed to effectively predict the experimental modulus for rattan palm fiber-polyester composite, with 

the shear lag model having the highest R
2
 value of 0.2880. This is a deviation from previous observations. 

 

Table 5: Comparison of Predicted Modulus for Rattan Palm Fiber-Polyester 
Fiber Aspect  

Ratio  

(m/m) 

Volume 

Fraction 

 (%) 

Modulus 

Expt. 

(GPa) 

Shear-lag 

model 

 

Halpin- 

Tsai (=2) 

Halpin- 

Tsai  

(=0.5) 

Bintrup 

model 

Osoka- 

Onukwuli 

Model 

8.1733 10 1.4148 1.2157 1.1668 1.1409 2.7569 0.9610 

8.1733 30 2.8296 1.6668 1.5335 1.4589 2.8837 1.3558 

8.1733 50 2.1576 2.1354 1.9593 1.8395 3.0205 0.4190 

24.5198 10 1.2981 1.2320 1.1731 1.1473 2.7632 0.9662 

24.5198 30 3.0956 1.7040 1.5508 1.4741 2.8989 1.3692 

24.5198 50 2.8016 2.1818 1.9781 1.8582 3.0393 0.4230 

40.8664 10 1.9681 1.2353 1.1746 1.1487 2.7646 0.9673 

40.8664 30 3.2375 1.7114 1.5542 1.4776 2.9023 1.3723 

40.8664 50 2.3033 2.1911 1.9822 1.8624 3.0435 0.4239 

R-squared   0.2880 0.2571 0.2496 0.2859 0.1018 

 

Micromechanics Study for Rattan Palm Fiber-Epoxy Reinforced Composite 

It can be observed from Table 6 that the experimental modulus increases to a maximum, with increase 

in volume fraction, after which it declines. The micromechanics models do not follow this trend, instead their 

predicted modulus increase continually with increase in fiber volume fraction, except the modified model 

proposed in this work. The model predicted modulus in each case was compared to the experimental modulus 

using an R
2
 value obtained by regression of the experimental modulus against the model predicted modulus, for 

each model. The most accurate model would be one with the highest R
2
 value. The modified model proposed in 

this work predicted the modulus more accurately that other micromechanics models with an R
2 

value of 0.5621 

while the Bintrup model is the least accurate of all models studied for rattan palm fiber-epoxy composite 

modulus prediction. 

 

Table 6: Comparison of Predicted Modulus for Rattan Palm Fiber-Epoxy 
Fiber Aspect  
Ratio  

(m/m) 

Volume 
Fraction 

 (%) 

Modulus 
Expt. 

(GPa) 

Shear-lag 
model 

 

Halpin- 

Tsai (=2) 

Halpin- 
Tsai  

(=0.5) 

Bintrup 
model 

Osoka- 
Onukwuli 

model 

8.1733 10 1.9649 1.5496 1.5302 1.5094 3.5345 1.2602 

8.1733 30 3.4090 1.9222 1.8714 1.8132 3.4484 1.6524 

8.1733 50 1.0260 2.3127 2.2486 2.1639 3.4008 0.4809 

24.5198 10 1.6321 1.5665 1.5337 1.5129 3.5380 1.2631 

24.5198 30 2.7131 1.9627 1.8797 1.8216 3.4567 1.6597 

24.5198 50 1.0182 2.3649 2.2587 2.1740 3.4109 0.4831 

40.8664 10 1.1422 1.5699 1.5344 1.5136 3.5388 1.2637 

40.8664 30 1.5762 1.9708 1.8816 1.8234 3.4585 1.6613 

40.8664 50 1.0315 2.3753 2.2609 2.1762 3.4131 0.4835 

R-squared   0.0963 0.0956 0.1015 0.0176 0.5621 

 

Conclusion 
The existing micromechanics models fail to effectively predict the modulus of natural fiber reinforced 

composites. The modification of the Halpin-tsai equation as proposed in this work improved its effectiveness in 

modeling composites from natural (plant) fibers as opposed to synthetic fibers. The new modified model gave 

modulus predictions that followed the profile of the experimental modulus for all samples and closest to the 

experimental based on the R
2
 value. Further improvement can be made on the modified Halpin-tsai model 

presented in this work by adjusting the model parameters: A,   and  to make them composite specific, using 

data from experiments. 
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