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Abstract: Quantum hydrodynamic model for one component plasma along with coupled mode theory is used to 

study dispersion characteristics of acoustic wave in a laser irradiated semiconductor plasma medium. 

Dispersion effects are explored in this paper through second order susceptibility of the medium which is a 

measure of the strength of second order nonlinear interaction. Dispersion characteristics are found to be 

effectively modified through quantum effects. It is found that doping concentration and pump field amplitude 

could be used to tune the dispersion characteristics of acoustic wave. Positive and negative magnitudes of real 

part of second order susceptibility are favourable for self-focusing and defocusing of laser light. It can be 

envisaged that a practical demonstration of the above kind of parametric dispersion may lead to the possibility 

of observation of group velocity dispersion in semiconductor plasma medium by considering a small degree of 

phase mismatch. 
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I. Introduction 
Earlier studies find classical treatment sufficient to describe the behavior of semiconductor plasma. 

However under some extreme conditions quantum treatment has been established to be beneficial. Quantum 

electron gas in metals, semiconductors and laser produced plasmas are some initial metaphors of the most 

immediate quantum plasma. Different approaches based on semi-classical quantum mechanical methods were 

adopted in the pioneering fundamental works [1-6]. In cases of metals, semiconductors and laser produced 

plasmas, when temperature is low and density is quite high, the thermal de-Broglie wavelength of carrier may 

become comparable to the inter-particle distance [7-11]. Consequently prevailed situation makes quantum 

effects more significant because of the overlapping of wave functions of neighbouring particles. Classical 

hydrodynamic model can be converted into a quantum hydrodynamic model by incorporating an appropriate 

quantum correction term. This quantum correction adds new aspects in the collective behavior of plasma having 

purely quantum origin. 

The plasma density in a semiconductor spans over many orders of magnitude. This versatility makes 

semiconductor plasma more advantageous than any other plasma medium to study the collective behaviour. The 

coherent interactions of waves and particles in plasmas have been the subject of extensive studies in nonlinear 

optics for the last three decades [12-13]. Many research papers have been devoted to the nonlinear interactions 

of waves in infinite homogeneous plasma [14-15]. These nonlinear effects are crucial when studying plasma 

instabilities and turbulence. The second order susceptibility of crystalline sample has been a glamorous topic 

because of its relevance to many technological applications. In case of second order polarization the problem of 

retardation is closely related to that of phase matching. However, most of these studies considered energy and 

momentum conservation relation fulfilled as far as propagation characteristics of the waves are concerned [16-

18]. These conservation laws are termed as phase matching conditions. Phase matching techniques involve 

precise control of the indices at the three frequencies involved in mixing process. Infact phase matching 

techniques are the methods for restoring the proper phasing of the dipoles. Many techniques achieve phase 

matching condition through quasi-phase matching [19-20], birefringent [21] or metamaterials [22-24]. The 

advent of artificially engineered metamaterials has unlocked extensive opportunities for nonlinear optics 

offering novel approaches for phase matching. In case of quasi phase matching, in which the nonlinear 

properties are made to vary periodically, the efficient frequency conversion can be achieved by reversing the 

sign of nonlinear coefficient. Quasi phase matching can easily be achieved by periodically poled crystal; but this 

type of crystals are limited in nature. Alternatively, in birefringent phase matching, the refractive index 

difference due to dispersion is balanced by the index relation between the ordinary and extraordinary wave in a 

birefringent medium, through appropriately chosen propagation direction in the crystal. The birefringent phase 



Parametric dispersion of acoustic wave in a laser irradiated semiconductor plasma: Quantum effects 

www.ijesi.org                                                                78 | Page 

matching, thus naturally requires that the difference between extraordinary and ordinary refractive indices for 

the pump and signal frequencies must be larger than that due to dispersion. 

However, in case of a cubic semiconductor plasma medium, none of the above said techniques is found 

applicable to manage the phase mismatch situation. In view of dispersion caused by free electrons of a doped 

semiconductor specimen, it would be stimulating to consider a small tolerable phase mismatch and investigate 

its effect on the dispersion characteristics of the medium. Interdependence of wave vector mismatch between 

different waves propagating in the nonlinear medium and dispersion effects caused due to doping of medium 

will certainly affect the susceptibility dispersion. 

Hence motivated by the above state of art, we have analytically probed the second order dispersion 

characteristics of semiconductor quantum plasma medium. Dispersion characteristics are explored in this paper 

through real part of second order susceptibility of the plasma medium which is a measure of the strength of 

second order nonlinear interaction. Modifications induced by the quantum effects in the dispersion 

characteristics of semiconductor plasma medium and comparative study of classical and quantum plasma media 

have been undertaken. Study of dispersion characteristics of acoustic wave is the main focus of present 

theoretical investigations. Numerical estimations are made for n-CdS crystal duly irradiated by CO2 laser. 

This paper organized as follows: section II deals with the description of quantum hydrodynamic (QHD) 

model and relevant basic equations governing the dynamics of laser irradiated semiconductor plasma medium. 

Section III contains numerical and graphical analysis of the problem. In section IV important conclusions have 

been drawn. 

 

II. Theoretical Formulation 
This section is devoted to the theoretical formulation of nonlinear polarization and second order 

susceptibility in one component compound semiconductor plasma. We consider the case of three wave mixing 

where the frequency combination a  01 is created in a nearly cubic diatomic crystal. Wave vector is a 

material dependent function of frequency due to the dispersion in the index of refraction. In case of non-phase 

match wave vectors (Δk≠0), propagation characteristics of the waves considers a nonzero phase mismatch factor

akkkk  10 . 0k , 1k  and ak  are the wave vectors of pump, signal and idler waves, respectively. 

The QHD model is used to describe carrier dynamics of one component quantum plasma by including 

of quantum pressure term and quantum Bohm potential. The quantum statistics is included in the model through 

the equation of state which takes into account the Fermionic character of the electrons. Following field geometry 

is considered in the present problem:-  

(1) Pump electric field is considered along x direction as  txkiExE 0000 exp 


. 

(2) External magnetostatic field B0 is applied across the direction of pump E0 and wave vector k0. 

The nonlinear response to this three wave parametric interaction is mathematically modelled with the 

help of analytical treatment of Guha et al [25] and quantum hydrodynamic model of Manfredi [26] and 

following basic equations are used:  
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Zeroth order momentum transfer equation (eq. (1)) shows that carrier will oscillate under the influence 

of a pump electric field. Equation (2) represents equation of motion of QHD model under the influence of 

external magnetostatic field. Last term of equation (2) reveals that quantum mechanical effects move in two 

distinct ways: the first is statistical in the sense that the equilibrium distribution is the Fermi distribution and the 

second is quantum dynamical arising from the energy associated with the finite momentum transfer of an 

electron interacting with plasma oscillation. Non-dimensional quantum parameter

FB

p

Tk
H

2


   measures the 

relevance of quantum effects being proportional to quantum diffraction. 
m

Tk
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2
 , is Fermi velocity of 

electrons at Fermi temperature TF, Bk is the Boltzmann constant, and 
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Conservation of charge is represented by the continuity equation (equation (3) given below) in which 0n  and 

1n are the unperturbed and perturbed electron densities. 
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The induced space charge field E1 due to nonlinear interaction is determined from Poisson’s equation 

(4) in which β is piezoelectric constant of semiconductor medium. Equation (5) describes the lattice vibration in 

a piezoelectric semiconducting medium with material density ρ and elastic constant C. γ and η are the damping 

constant and refractive index of the medium respectively. 

The components of oscillatory electron fluid velocity 0  in the presence of a pump and the 

electromagnetic fields are obtained from equation (1) as  
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Using standard approach [25], we shall differentiate equation (3) and then simplify it with the help of 

equations (1) and (2) to get  
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plasma waves in a magnetized quantum plasma medium. This term signifies contribution of magnetic field and 

quantum correction term to the plasma frequency. 

Using rotating wave approximation, following coupled equations for slow and fast components of 

density perturbation are obtained from equation (7) as 
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Subscripts s and f stand for slow and fast components, respectively and * represent complex conjugate 

of the quantity. It is evident from above equations that slow and fast components of density perturbations are 

coupled to each other via the pump field. 

The usage of equations (5) and (8a, 8b) and mathematical simplification allows one to calculate the 

slow component of the density perturbation as  
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where )( 222

1 ap    and )( 2
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We confined ourselves to the Stokes component of the induced current density that is oscillating at the 

acoustic wave frequency and is expressed as 
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Substituting
*

1sn from equation (9) and for the component of oscillatory electron fluid velocity x0  

(equation 6) in equation (9), we get 
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The time integral of J1 yields the nonlinear-induced polarization at the Stokes frequency that may be 

derived using equation (11) as 
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The second order optical susceptibility can be obtained by defining the nonlinear polarization at 

frequency (ω1) as 
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Now rationalizing equation (13) one may get the real and imaginary parts of second order susceptibility. It 

is well known that pure electric dipole susceptibilities are real in the non-dissipative case [27]. Present work 

focusses on the dispersion characteristics of acoustic wave which could be investigated through the real χ(2) in 

equation (13). Dispersion characteristics of acoustic wave are effectively modified in quantum semiconductor 

plasma through )( 222

1 ap   , )( 2

1

22

2   p  and contribution of phase mismatch appears through 

second term in square bracket of eq. (13). 

 

III. Results And Discussion 
Theoretical formulation presented in the former section abides the fact that one may observe second-order 

nonlinearity by employing the QHD model and explore electron dynamics and dispersion characteristics in the 

semiconductor plasma. The numerical estimations have been made for n-type CdS assumed to be duly irradiated 

by pulsed 10.6 µm CO2 lasers at 77K. The physical parameters used are 0107.0 mm  , 35.91  , 

13108.1  msa , 
221.0  Cm ,

331082.4  kgm , 
111102  sa , 114

0 1078.1  s , 

113105  s , KTF 77 .  

Being one of the principal objectives of the present analysis, the nature of the parametric dispersion via 

real part of the second order optical susceptibility  2Re   has been analyzed in the figures 1-4. Signature of 

distinct anomalous parametric dispersion in quantum plasma is quite significant when variation of  2Re   with 

respect to 0n  and E0 are examined in figures 1 and 2. It appears that χ(2) can both be positive and negative under 

the anomalous dispersion regime at carrier density around 
324

0 104  mn . 

Figure 1 depicts variation of  2Re  as a function of E0 for quantum and classical plasma media. In 

quantum plasma medium, one can notice that there exists a distinct anomalous parametric dispersion regime 

with positive and negative values; but dispersion in classical plasma exhibits only positive magnitudes of real 

part of χ(2). Inclusion of quantum corrections leads to initial decrements in real χ(2) upto
17105.3  Vm  

afterwards a rapid increase is observed leading to a maximum at 
17104  Vm . Beyond

17

0 104  VmE  

Re (χ2) decreases leisurely for the quantum plasma as well as in classical plasma. 
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Fig. 1 Variation of the  2Re  versus pump amplitude E0 at
324

0 104  mn and
16106  mk . 

 

The nature of parametric dispersion arising due to the real part of the second order optical 

susceptibility, (equation 13) for quantum and classical plasma media has been displayed in figure 2 with respect 

to carrier concentration 0n . For the quantum plasma medium initial negative magnitude of Re(χ2) first decreases 

with 0n  reaches a minimum value at around
324

0 103  mn . A slight shift from this doping concentration 

increases Re(χ2) abruptly leading towards maximum magnitude of Re(χ2) at around
324

0 104  mn . On the 

other hand for classical plasma medium positive magnitudes of Re(χ2) increases with increasing carrier 

concentration. 

 

Fig.2 Variation of the  2Re   versus carrier concentration 0n  at 
17

0 108.3  VmE and

16106  mk . 

 

Parametric dispersion characteristics of classical and quantum semiconductor plasmas with respect to 

phase mismatch factor has been explored in figure 3. Quite distinct behavior is obtained when Δk is increased in 

both the media. Initially for small Δk, i.e. in the vicinity of linear phase matched direction Re (χ2) is maximum 

for classical plasma and minimum for quantum plasma. However as soon as Δk is increased, Re (χ2) decreases 

in classical plasma medium in contrast to increasing magnitude in quantum medium. At higher Δk values the 

curves exhibit maximum Re (χ2) for quantum plasma and minimum Re (χ2) for classical plasma. However 

considered range of phase mismatch factor resulted into negative magnitude of Re (χ2) for quantum plasma and 

positive magnitudes of Re (χ2) for classical plasma. 
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Fig. 3 Variation of the  2Re   versus momentum mismatch Δk, at 
324

0 104  mn and

17

0 108.3  VmE . 

 

Let us now consider a laser irradiated quantum semiconductor plasma and examine the effect of 

quantum diffraction parameter on Re (χ2). Figure 4 examines this behavior with B0 as a parameter. Identical 

curves are obtained for both the cases. Initially Re (χ2) slightly traces two distinct paths leading towards minima 

at H=5.20 and H= 5.01 for with and without magnetic field respectively. Further increase in H leads to an abrupt 

increase in Re (χ2), which subsequently achieves positive values and attains maxima for the both cases. Finally 

with increasing diffraction parameter fall in Re (χ2) is observed. Cross over at H=5.60 signifies same magnitude 

of Re (χ2) irrespective of presence or absence of external magnetic field. 

 

Fig. 4 Variation of the  2Re  versus quantum parameter H, magnetic field as a parameter
324

0 104  mn , 

17

0 108.3  VmE and
16106  mk . 
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IV. Conclusion 
In the present paper, using electromagnetic treatment the nonlinear susceptibility dispersion via second 

order optical susceptibility has been studied in piezoelectric II-VI doped semiconductor crystal like n-CdS in the 

classical and quantum plasmas with non-phasematched condition. The following important conclusions may be 

drawn:- 

1. Dispersion characteristics are found to be effectively modified in quantum plasma through carrier 

concentration. 

2. Enhancement of parametric dispersion could be easily achieved by a proper selection of pump amplitude, 

doping profile and appropriate phase mismatch. 

3. Second order susceptibility is found to be effectively modified by the quantum corrections and hence 

dispersion characteristics of scattered wave in parametric scattering gets novel character. 

4. Positive and negative values of  2Re   may be utilized for frequency conversion methods and self -focusing 

and defocusing applications. 

5. Inclusion of quantum mechanical effects are found to effectively modify the parametric dispersion 

characteristics. It can be envisaged that a real-world demo of the above kind of parametric dispersion may lead 

to the possibility of observation of group velocity dispersion in semiconductor plasma medium. 
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