Load Flow and Voltage Instability Analysis Using MI Power Software

Vibha Parmar¹, Margi Shah²

¹(Assistant Professor, Electrical department, Charusat University, India) ²(Junior research fellow, Electrical department, Charusat University, India) Corresponding Auther: Vibha Parmar

Abstract: The load flow study or power flow analysis is very important for planning, control and operations of existing systems as well as planning its future expansion. The satisfactory operation of the system depends upon knowing the effects of interconnections, new loads, new generating stations or new transmission lines etc., before they are installed. It also helps to determine the best size and favorable locations for the power capacitors both for the improvement of the power factor and also raising the bus voltage of the electrical network. They help us to determine the best locality as well as optimal capacity of the proposed generating stations, substations or new lines. For this work the Fast Decoupled method is used for numerical analysis. This type of analysis is useful for solving the power flow problem in different power systems. voltage instability takes on the form of a dramatic drop of transmission system voltages, which may lead to system disruption it is a factor leading to limit power transfer. The objective of this paper is to describe load flow studies using Fast Decoupled Method and voltage instability analysis using MI Power software.

Keywords: Power flow analysis, Fast Decoupled Method, voltage instability, MI Power software.

Date of Submission: 30-05-2018

Date of acceptance: 15-06-2018

I. INTRODUCTION

The Load flow problem consists of calculation of voltage magnitude and its phase angle at the buses. And also the active and reactive lines flow for the specified terminal or bus conditions. Load flow studies are used to ensure that electrical power transfer from generators to consumers through the grid system is stable, reliable and economic. Conventional techniques for solving the load flow problem are iterative, using the Newton-Raphson or the Gauss-Seidel methods. Depending upon the quantities specified for the buses, they are classified into three types namely load bus, generator bus or voltage controlled bus and slack bus or swing bus or reference bus.

II. BUS CLASSIFICATION

Buses are classified according to which two out of the four variables are specified Load bus: No generator is connected to the bus. At this bus the real and reactive power are specified and it is desired to find out the voltage magnitude and phase angle through load flow solutions. It is required to specify only Pd and Qd at such bus as at a load bus voltage can be allowed to vary within the permissible values.

Load Bus: In these buses no generators are connected and hence the generated real power P_{Gi} and reactive power Q_{Gi} are taken as zero. The load drawn by these buses are defined by real power $-P_{Li}$ and reactive power $-Q_{Li}$ in which the negative sign accommodates for the power flowing out of the bus. This is why these buses are sometimes referred to as P-Q bus. The objective of the load flow is to find the bus voltage magnitude $|V_i|$ and its angle δ_i

Generator bus or voltage controlled bus: Here the voltage magnitude corresponding to the generator voltage and real power Pg corresponds to its rating are specified. It is required to find out the reactive power generation Qg and phase angle of the bus voltage. Slack (swing) bus: For the Slack Bus, it is assumed that the voltage magnitude |V| and voltage phase are known, whereas real and reactive powers Pg and Qg are obtained through the load flow solution

Slack or Swing Bus: Usually this bus is numbered 1 for the load flow studies. This bus sets the angular reference for all the other buses. Since it is the angle difference between two voltage sources that dictates the real and reactive power flow between them, the particular angle of the slack bus is not important. However it sets the reference against which angles of all the other bus voltages are measured. For this reason the angle of this bus is usually chosen as 0° . Furthermore it is assumed that the magnitude of the voltage of this bus is known.

Now consider a typical load flow problem in which all the load demands are known. Even if the generation matches the sum total of these demands exactly, the mismatch between generation and load will persist because of the line I^2R losses. Since the I^2R loss of a line depends on the line current which, in turn, depends on the magnitudes and angles of voltages of the two buses connected to the line, it is rather difficult to estimate the loss without calculating the voltages and angles. For this reason a generator bus is usually chosen as the slack bus without specifying its real power. It is assumed that the generator connected to this bus will supply the balance of the real power required and the line losses.[7]

III. Fast Decoupled Method

The Fast Decoupled Power Flow Method is one of the improved methods, which is based on a simplification of the Newton-Raphson method and reported by Stott and Alsac in 1974. This method, like the Newton-Raphson method, offers calculation simplifications, fast convergence and reliable results and became a widely used method in load flow analysis. Generally the power system have very high X/R ratio[1]. Hence the real power changes are less sensitive to change in voltage magnitude |V| but it is more sensitive for changes in phase angle δ . Whereas the reactive power are more sensitive to changes in voltage magnitude and less sensitive for change in phase angle δ . Therefore it is reasonable to set J2 and J3 of Jacobian matrix to zero. Hence the equation for ΔP and ΔQ becomes:

By solving this we get two decoupled equations which require less time to solve as compared with N-R method. Hence finally after solving the above equations we get,

Here B' and B" are the bus susceptance matrixes *i.e.* it is imaginary part of admittance matrix Ybus. The bussusceptance matrix is constant and required to evaluate onlyonce at beginning of the iterations. B' is the order of (n-1).For voltage regulated buses the Qi are not specified and hencethe corresponding rows and columns of the Ybus matrix areeliminated, hence we get B" matrix of the order of (n-1-m)where 'n' is the total number of buses and 'm' is the number of voltage controlled buses. The fast decoupled method requires more iteration than N-R method, but the time required is considerably less and we get rapidly the power flow solutions.[8]

IV. Mi Power Software

Mi Power is a highly interactive, user friendly windows based Power System Analysis package. It includes a set of modules for performing a wide range of power system design and analysis study. Mi Power features include a top notch Windows GUI with centralized database. Steady state, transient and electromagnetic transient analysis can be performed with utmost accuracy and tolerance. Designed to assess the risk of Voltage instability and margin of stability during sudden disturbances, under steady state conditions. It ranks the load busses based on the L-index value and the highest L-index indicates the system collapse point. The value of

L-index is zero at no load and 1 at the verge of collapsing point. Performs three-phase harmonic load flow to compute harmonic distortion factors. Calculates harmonic transfer and driving point impedances for both transmission and distribution power systems.

V. SYSTEM UNDER STUDY

Figure 1 shows the single line diagram of the system under study in MI Power software. The Transmission line data for the system is given in table 1.generator data in table 2. Load data in Table 3.

[Figure.1: 5 bus system]

	Table.1: Transmission line data									
Line, Bus Length km to Bus		Nominal voltage	R in p.u.	X in p.u.	Charging MVAR	Positive sequence Susceptance (B/2)	Therma rating			
	1-2	64.4	138	0.042	0.168	4.1	0.0205	100		
	1-5	48.3	138	0.031	0.126	3.1	0.0155	100		
	2-3	48.3	138	0.031	0.126	3.1	0.0155	100		
	3-4	128.7	138	0.084	0.336	8.2	0.041	100		
	3-5	80.5	138	0.053	0.210	5.1	0.0255	100		

0.063

Susceptance B/2= (Charging MVAR / Base MVA) / 2

138

96.5

4-5

Table.2: Generator data

0.252

6.1

0.0305

100

NAME	Generator 1	Generator 2
Manufacture reference number	111	222
Type of modeling	Infinite	Infinite
De- rated MVA	500	225
Specific voltage	143.52	140.76
Scheduled power	300	180
Reactive power minimum	0	0
Reactive power maximum	200	110.3
Breaker rating	2500	2500

Table.3: load data

Load number	Load-1	Load-2	Load-3	Load-4	Load-5
Bus number	1	2	3	4	5
Real power in MW	65	115	70	70	85
Reactive power in MVAR	30	60	40	30	40

VI. Voltage Instability

The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavorable direction of any pertinent quantity will cause instability. The nature of the unstable response will depend upon the characteristics of the system and the operating condition. Voltage instability analysis in electric power system is one of the most important factors in order to maintain the equilibrium of the power system. A power system is said to be unstable if the system is

not able to maintain the voltage at all buses in the system remain unchanged after the system is being subjected to a disturbance.in this paper to perform voltage instability consider bus no 2, 4 and 5 of five bus system and plot the instability curve. In this paper to perform load flow analysis and voltage instability analysis Consider load variation at bus 5 for the voltage instability analysis with following data.

Power	Minimum	Maximum	Step
Real power (MW)	0	600	10
Reactive power (MVAR)	0	64	4

Select a Load			
5 Load5 [5 (Bus5)]		-	
Change in Real Power Minimum Real Power in MW Maximum Real Power in MW Step in MW	0 600 10	Select Buses of Interest 1 Bus1 2 Bus2 3 Bus3	Actual Load
Change in Reactive Power Minimum Reactive Power in MVAR Maximum Reactive Power in MVAR Step in MVAR Multiplication Factor	0 64 4	4 Bus 5 Bus 5	40.0000 MVAR

VII. Summary Of Result

Load flow analysis result (Fast Decoupled method): When perform load flow studies on 5 bus system using fast decoupled method using Mi Power software the following result we got.

[Figure2: 5 bus system result with load flow analysis]

NO.	FROM	V-MAG P.U.	ANGLE	GE	Ň	MVAR GEN		LOAD	1	OAD		COMP		
1 2	Bus1 Bus2	1.0400	0.00	234.66	8 10	0.127	6 11	5.000	30. 60.	000	0	.000		
345	Bus3 Bus4	1.0200 0.9203 0.9683	-3.71 -10.89 -6.16	180.00	0 11	0.302	7(0.000	40. 30. 40	000	000	.000	8	
NUMBI	R OF BUSE	S EXCEE	DING MINI	MUM VOL	TAGE	LIMIT	50 m	ark)		L				
	R OF GENE	RATORS RATORS	EXCEEDING	MINIMU MAXIMU	IQ L	IMIT	(< mai) mai	8		Ś				
INE	FLOWS AND	LINE L	OSSES											
il NO	CS FROM F	ROM	TO TO	E		FORM	ARD MVAJ		MW	oss	MVAR	LOA	% DING	
1	1 1	8us1	2	Bus2	73.9	81	31.55	2	5683	6	1609		77.34	
345	1 2 1 3	Bus2 Bus3 Bus3	345	Bus3 Bus4 Bus5	43.5	87 - 69 47	34.60		0062	-0	0445		56.01 43.4/	
6	î 4	Bus4	5	Bus 5	31.2	57 -	11.09	5 Ö.	7806	-2	3206		34.3/	
NUP	BER OF LI	NES LOA	DED BEYON	D 125%	410	1355	: :	2						
NU	BER OF LI	NES LOA	DED BETW	EN 75%	AND	100%		2						
NUP NUP NUP	ABER OF LI ABER OF LI ABER OF LI ABER OF LI	NES LOAI NES LOAI NES LOAI	DED BETWE DED BETWE DED BETWE DED BETWE	EN 50% EN 25% EN 1% EN 0%	AND AND AND AND	75% 50% 25% 1%								
SLA	D FREQUEN	CY SLAC	K-BUS (ONVERGE	0(1)									
	1 50.000	00	1	0										
Summa	ry of res	ults												
IATO TAL	REAL POW REAL POW REACT. P	ER GENE ER INJE OWER GE	RATION CT,-Ve L NERATION	21	4.668	MW MW MVAR								
GENER TOTAL	CATION PT	ACTOR T	NIECTION		0.892	MW								
OTAL	SHUNT RE	ACTOR I	NJECTION	-	0.000	MVAR								
IATOTAL	SHUNT CA	PACIT.I	NJECTION		0.000 0.000	MW MVAR								
TOTAL	TCSC REA	CTIVE D	RAWL	:	0.000	MVAR								
TOTAL	SPS REAC	TIVE DR	Alet.		0.000	MVAR								
TOTAL	SHINT EA	TS. INJ	ECTION	: -0	. 0000	NVAR								
TOTAL	SHUNT FA	CTS. DRA	MAL		0.000	MVAR								
IATO!	REAL POW	ER LOAD	AL -ve g	40	5.000 0.000 0.000	MW MW MVAR								
LOAD	pf	- salen		: 1	0.897									
TOTAL	COMPENSA	TION AT	LOADS		0.000	MVAR								
OTA	HUDC REA	CTIVE N	Of the P		3. 636243	MU A								

Zone wise distribu	tion
	2016 - 1
MW generation	414.6684
MVAR generation	210.4289
MW load	405.0000
MVAR load	200.0000
MVAR compensation	0.0000
MW loss	9.6741
MVAR loss	10.4290
MVAR - inductive	0.0000
MVAR - capacitive	0.0000
1	
Area wise distribu Description	tion Area # 1
Area wise distribu Description MW generation	tion Area # 1 414.6684
Area wise distribu Description MW generation MVAR generation	tion Area # 1 414.6684 210.4289
Area wise distribu Description MW generation MVAR generation MW load	tion Area # 1 414.6684 210.4289 405.0000
Area wise distribu Description MW generation MVAR generation MW load MVAR load	tion Area # 1 414.6684 210.4289 405.0000 200.0000
Area wise distribu Description Mw generation MVAR generation Mw load MVAR load MVAR compensation	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000
Area wise distribu Description Mw generation MvAR generation Mw load MvAR load MvAR compensation Mw loss	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000 9.6741
Area wise distribu Description MW generation MVAR generation MW load MVAR load MVAR compensation MW loss MVAR loss	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000 9.6741 10.4290
Area wise distribu Description MW generation MVAR generation MW load MVAR load MVAR compensation MW loss MVAR loss MVAR loss	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000 9.6741 10.4290 0.0000
Area wise distribu Description Mw generation MvAR generation Mw load MvAR load MvAR compensation Mw loss MvAR loss MvAR loss MvAR - inductive MvAR - capacitive	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000 9.6741 10.4290 0.0000 0.0000
Area wise distribu Description MW generation MVAR generation MW load MVAR load MVAR compensation MW loss MVAR loss MVAR loss MVAR - inductive MVAR - capacitive	tion Area # 1 414.6684 210.4289 405.0000 200.0000 0.0000 9.6741 10.4290 0.0000 0.0000

Date and Time : Tue May 29 15:12:08 2018

Voltage instability result report: VOLTAGE INSTABILITY ANALYSIS CASE NO : 1 CONTINGENCY : 0 SCHEDULE NO : 0 CONTINGENCY NAME : Base Case

%% Fi LARGE NUMBE NUMBE NUMBE NUMBE NUMBE NUMBE	R OF R OF R OF R OF R OF R OF R OF R OF	Power JS NUF 2 WII TRAN: SERII BUS O SHUN SHUN LOAD FILT HVDC	System Ni MBER USED ND. TRANSI SMISSION I ES REACTOI COUPLERS T REACTOR: T REACTOR: T IMPEDANG S ERS CONVERTOI	etwork FORMERS LINES RS S CES			ACTUAL NUMBEF NUMBEF NUMBEF	NUN OF OF OF OF	IBER (3 WIN SERIE SHUNT GENEF	DF BU ND. 1 ES CA R CAP	USES TRANSFO APACITO PACITOR	DRMERS DRS RS	:	5 0 0 2
NUMBE PRINT PLOT BASE NOMIN	R OF OPTION MVA	ZONE: LON DN YSTEM	FREQUENC	: 1 : 3 (B : 0 (N : 100. Y: 50.	OTH DA O PLOT 000 000	TA AN	ND RES E GENE	RATI	5 PRIMI	νт)				
CIRCU CIRCU TRANS	JIT BE	REAKEI REAKEI ER R/3	R RESISTAN R REACTAN K RATIO	NCE (PU) CE (PU)						0.0	000000 000100 050000			
BUS D	OATA STAT	ZONE	BUS-KV	NAME	VMAG	G-PU	VANG- PLOAD	-DEG D-MW	PGEN QLOAI	N-MW D-MR	QGEN- QCOMP-	-MR -MR		
1	1	1	138.000	Bus	1 1.	0400	0.	000	234.	670	100.1	130		
2	1	1	138.000	Bus	2 0.	9614	65. -6.	322	30.	000	0.0	000		
3	1	1	138.000	Bus	3 1.	0200	-3.	713	180.	000	110.	300		
4	1	1	138.000	Bus	4 0.	9203	-10.	886	40.	000	0.0	000		
5	1	1	138.000	Bus	5 0.	9683	70. -6. 85.	000 162 000	30. 0. 40.	000	0.0	000		
TRANS	MISS	CON L	INE DATA											
STAT	сктѕ	FROM NODE	FROM NAME	TO TO NODE NA	ME	RP	(P.U)	XP	(P.U)	BP/2	2(PU)			
3 3 3 3 3 3 3 3	1 1 1 1 1	1 2 3 3 4	Bus1 Bus1 Bus2 Bus3 Bus3 Bus4	2 5 3 4 5 5	Bus Bus Bus Bus Bus Bus		04200 03100 03100 08400 05300 06300	0.1 0.1 0.2 0.2	L6800 L2600 L2600 33600 21000 25200	0.0 0.0 0.0 0.0 0.0	02050 01550 01550 04100 02550 03050			

GENERATOR DAT	λ.
FROM FROM NODE NAME	STATUS 0/3
1 Bus1 3 Bus3	 3 3
CENTROID VOLT	AGE OF GENERATOR BUS VOLTAGES : (1.028929) + (j -0.033030)
L INDEX VALUE	AND VCPI(Centroid) FOR THE SYSTEM AT GIVEN OPERATING CONDITION
SLNO BUSNO NA	IE VOLT-MAG L-INDEX VCPI-Centroid
1 2 2 5 3 4	Bus2 0.961413 0.104364 0.107531 Bus5 0.968310 0.107694 0.100186 Bus4 0.920314 0.200256 0.204699
Date and Time	: Tue May 29 15:27:16 2018

VIII. CONCLUSION

Power flow or load flow studies exhibit significant importance for power system planning and operation. This paper represents the load flow and Voltage instability analysis of 5 bus system using Fast decoupled method by MiPower software. This software helps to solve the load flow technique in an efficient manner andleads the system to effective utilization of power and voltage. The principal information obtained from the power flow study is the magnitude and phase angle of the voltage at each bus, and the real and reactive power flowing in each line.L(line) index is proposed as a good voltage stability indicator with its value change between zero (no load) and one (voltage collapse) In voltage instability analysis we get L Index value at Bus number 2,4 and 5 which is shown in voltage instability result report. Graphical analysis between real power and L Index with voltage at bus number 5 has also been depicted.

REFERENCES

- [1]. .SreemoyeeChatterjee&SuprovabMandal, "A novel comparison of Gauss-Seidel and Newton Raphson methods for load flow analysis", *IEEE Trans. Power Syst.*, vol.10, no.1109, ICIEECT.2017. 17289904, 16-18 March 2017.
- [2]. .Dharamjit and D.K.Tanti "Load Flow Analysis on IEEE 30 bus System " International Journal of Scientific and Research Publications, Vol.2, Issue 11, Nov. 2012.
 [3] Sandeen Keur, America Singh Dr. Paia Singh Khela, Jacday Singh Sandhu, "Load Flow Analysis of IEEE 3 hus system by using
- [3]. SandeepKaur, Amarbir Singh, Dr. Raja Singh Khela, Jasdev Singh Sandhu, "Load Flow Analysis of IEEE-3 bus system by using Mipower Software", International Journal of Engineering Research and Technology, Vol. 4 Issue 03, March-2015.

- M.J.Katira, Student, M. Tech. Final (I.P.S.), K.B.Porate, Assistant Professor, "Load Flow Analysis of 132 / 11 kV Distribution Sub Station using Static Var Compensator for Voltage Enhancement A Case Study", TENCON 2009-2009 IEEE Region 10 [4]. Conference.
- [5]. M. Javad, G. Eskandar, K. Amin, "A comprehensive review of the voltage stability indices", Renewable and Sustainable Energy Reviews, vol. 63, pp. 1-12, 2016.
- Ray D. Zimmerman and Hsiao-Dong Chiang." Fast Decoupled Power Flow for Unbalanced Radial Distributi on System s" [6]. 1995,IEEE.pp241-25 0.
- [7]. Power System Analysis by HadiSaadat, 1999, TheMc-Graw Hill Componies, Inc., pp. 208,240-242.
- [8].
- AbhijitChakrabarti, SunitaHalder, "Power System Analysis: Operation and Control", *PHI Learning Pvt. Ltd.*, 2010. P. S. Bhowmik, D. V. Rajan, and S. P. Bose "Load Flow Analysis: An Overview" World Academy of Science, Engineering and [9]. Technology 63 [201 2].
- [10]. Brian Scott, "Review of Load-Flow Calculation Methods", Proceedings of the IEEE, vol. 62, no. 7,1974.

Vibha Parmar. " Load Flow And Voltage Instability Analysis Using MI Power Software"International Journal of Engineering Science Invention (IJESI), vol. 07, no. 06, 2018, pp 49-55