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Abstract: Video with increasing resolution has been one offundamental network applications, such popular and 

emerging application attracts a variety of attentions from both industry and academia. Due to the constrained 

computational capability, limited power supply and dynamic transmission bandwidth, there exists a gap for 

general users in widely existed wireless networks to obtain the same user experience as those in wirednetworks. 

This paper analyzes video decoding for general low-end mobile devices in wireless networks and divides this 

problem into: a novel video decoding architecture design, and resource allocation based on the novel 

architecture. First, a novel architecture of real-time video decoding for computation offloading is introduced for 

mobile devices. Second, based on the proposed architecture, a joint computation offloading and multicast 

resource allocation optimization problem is introduced to maximize user satisfaction ratio and minimize energy 

consumption. Third, a feasibility condition of the optimization problem is derived in terms of the computational 

task offloading for real-time videos. Forth, a low-complexity sub-optimal scheme with proved computational 

complexity is designed by dividing the original NP-hard optimization problem into sub-problems to accomplish 

group-user allocation, group-subchannel allocation, and offloading ratio calculation. 

Keywords -Computation offloading,energy saving,mobile edge decoding,resource allocation,user satisfaction 

ratio 
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I. Introduction 

Video is a fundamental network application, which important application has dominated the network 

traffic [1]. Video resolution is significantly increasing with the consistent evolution of video technique, such as 

current ultra-high-definition (UHD) video [2-5] enabling much higher resolution than that of the conventional 

video and providing great user experience improvement. Such popular and emerging video is attracting a variety 

of attentions from both industry and academia [6-12]. Currently, network service providers are deploying plenty 

of UHD videos for fast obtaining profit from consumers.  

Mobile devices have already become the necessity for users,bringing a promising and large market for 

network serviceproviders to deploy novel UHD videos. However, the deploymentspeed is not as fast as people 

desire because wireless users cannot obtain the same watch experienceas those in wired networks. This 

restriction primary liesin 1) mobile device with low computational capability fordecoding UHDvideo with 

unacceptable decodingtime, 2) battery with limited power supply for decodingUHD video traffic with high 

energy consumption,and 3) wireless networks with dynamic bandwidth for videotransmission under varying 

condition channels.The above restriction leaves wireless user watch experience guaranteeand energy saving 

under UHD videos a tough challenge and how tosolve this problem is an open issue. 

Existing works on schemes for playing high-resolution videoson low-end mobile devices can be 

classified into: 1) coding/decoding protocols, such as scalable video coding (SVC)[35], 2) decoding 

architecture, e.g., mobile edgecomputing (MEC), remote graphical processing unit (GPU),cloud and fog *This 

paper was invited to IJESI 2018computing [17][18]. This paper focuses on real-time UHD video delivery 

scenario, which scenariobelongs to the second category. For the second category,previous works can be further 

classified into two kinds: 1)decoding on data source then transmitting to data receiver[19][21][23], 2) devices 

with video content deploy decodingtasks on remote devices [20][25][27]. There exists a restrictionif directly 

applying existing architecture, i.e., above twocategories, in our focused scenario. This reason of restrictionis list 

below: 1) the data volume after computing by remote device under thesecond categorybecomesextremely high, 

making the second category cannot be appliedin our focused scenario, 2) for decoding video at data source(e.g., 

cloud) under the first category, its traffic transmissionrequires much high bandwidth for the core networks. Asa 

result, traditional  

 

architecture, i.e., above two categories,cannot be applied in our focused scenario, requiring a novelarchitecture 

for video decoding to support the UHDvideo in wireless networks for low-end mobile devices. 
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MEC [15][16] is a promising and emerging technique tooffload computational tasks from massive low-

end mobileterminals to high-performance computing servers located inwireless access networks. To decode 

real-time UHDvideos under the MEC architecture, users can transmitall the video content to nearby servers for 

decoding,thereafter, users can receive and play the decoded video. Underthe MEC architecture, there is a 

significant difference between generalcomputational intensive tasks and graphically intensive ones.Compared 

with general computational intensive tasks, graphically intensive tasks, e.g., videodecoding, is much different, 

whichdifference introduces a restriction if directly applying existingMEC architecture into UHD video 

decoding.This restriction is that, 1) if a user sends all the video contentto a nearby computing server for 

decoding, both the uplink(from user to server) and downlink (from server to user) willbe occupied. 2) After 

decoding by the remote server, thedata volume transmitted in the downlink becomes extremelyhigh, compared 

with general computational intensive taskswith small traffic volume after computing. It is infeasible forthe twice 

transmissions with high bandwidth requirements forvideo decoding in current wireless networks. This motivates 

anew architecture for decoding UHD videos inwireless networks. 

In the current field of video decoding architecturedesign, the primary goal is to save energy. For 

example,mobile devices utilize high-end remote devices for complexcomputations [20] or high-performance 

GPU servers [22][24]to decode video [18][26] and realize visualizing 3D videostreaming sessions [23] for 

energy saving. Although existingconsolidate works have solved the problem of video playingat low-end mobile 

devices, their works cannot address thefollowing situations: 1) energy saving from users’ perspectivecannot 

fully reflect the system performance for evaluating thecase of multiple video resolutions,which motives a new 

user watch experience metric. 2) Fewworks focus on resource allocation under multicast condition,where there 

are many users with the same content request. 

To address the challenges of video decoding and multicasttransmitting for low-end mobile devices in 

wireless networks, it finds our works into: 1) video decoding architecture design,2) resource allocation based on 

the designed architecture. Specificallyspeaking, first, a novel architecture is designed for real-timevideo 

decoding. Second, a joint computation offloadingand multicast resource allocation is introduced to 

maximizeuser satisfaction ratio and minimize energy consumption. Themain contribution of this paper to tackle 

this tough challengeis below: 

1) A novel architecture of real-time video decoding forcomputation offloading is introduced for low-

end mobile deviceswith limited battery supply, constrained computationcapability, and dynamic traffic 

transmission bandwidth. 

2) Our optimization problem is formulated with the goalof energy saving and user watch experience 

improvement, whichproblem jointly considers computational task offloading andmulticast resource allocation. 

3) A feasibility condition of the optimization problem isproposed in terms of the computational task 

offloading forreal-time videos under the proposed architecture. 

4) A low-complexity sub-optimal scheme with proved computationalcomplexity is introduced by 

dividing the originalNP-hard optimization problem into sub-problems to accomplishgroup-user allocation, 

group-subchannel allocation, andoffloading ratio determination. 

5) Simulation results show that a) taking clock frequencyof devices and channel gain into consideration 

on the processof user allocation, our scheme can achieve better performancethan that in existing works, b) joint 

computational complexitywith resource allocation will achieve higher performance thanthat in existing works. 

The remainder of this paper is organized below. SectionII describes the related work. Section III shows 

the proposedmobile edge decoding architecture. Section IV defines the edgedecoding ratio. Section V presents 

the system model. SectionVI gives problem formulation. After introducing schemesin Section VII with the 

corresponding simulation results inSection VIII. Finally, section IX concludes the paper. 

 

II. Related Work 

This section first introduces the motivation of computationaltask offloading from the aspect of traffic 

type. Then, we givea NOVEL architecture from the aspect of traffic transmissionpath. Next, offloading schemes 

with the corresponding resource allocation are introduced. 

 

A. Motivation 

Low-end mobile deviceswith limited computation resource and power supplycan offload complex 

computation tasks to remote high-performancenodes, e.g., high-end mobile device [19][20],server [21-23], and 

cloud [25], for increasing computationcapability, decreasing execution time, saving energy, 

meetingrequirements for emerging applications, and improving userexperience. Existing works are shown as 

below. 

 

Some works focus on computational intensive applications,such as voice recognition [25]. For 

example, in Ref. [20],low-end mobile devices utilized the high-performance GPUof a remote device in an ad 
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hoc network to perform thecomplex computations for the benefit of energy consumptionand execution time. In 

Ref. [22], users with low-performanceGPU shared a high-performance GPU server to improve 

computationcapability and reduce execution time. In Ref. [25],mobile devices with low-power supply offloaded 

their highcomputing CPU load onto GPUs in the cloud, for emergingtime-insensitive high-computational 

applications. 

Others focus on graphically intensive applications, suchas video coding, rendering and decoding, 

graphics intensiveapplications, CAD/CAM computing, remote desktop sharing.In Ref. [23], a comprehensive 

client-server 3D renderingframework enabled limited resource devices with collaborativevisualization to 

interact with graphics intensive OpenGL-basedapplications. In Ref. [19], they proposed a mobile-to-

mobileremote computing protocol for smartphones to realizeremote desktop sharing by providing a remote view 

for real-time collaboration. In Ref. [21], efficient remote work withgraphically intensive applications (e.g., 

CAD/CAM and GPUcomputing) utilized GPU virtualization in remote computingto realize productive remote 

access to the office workplacescomposed with word processors, spreadsheets. However, thereis lack of metric to 

evaluate user watch experience undermultiple different resolution videos. 

 

B. Traffic Type in MEC 

MEC technique [17][18] brings a variety of benefits, suchas increasing computation capability, 

decreasing task executiontime, saving energy, meeting requirements for emergingapplications, and improving 

user experience. With MEC technique,massive low-end mobile devices with limited computationalresources and 

low-power supplycan offload their complex computation tasks tonearby high-performance nodes, e.g., high-end 

mobile devices[19][20], local servers [21-23], high-performance GPUservers [22][24], and even cloudlets [25]. 

Computational intensive applications are key targets thatthe MEC technique focuses on. These 

applications includevoice recognition [25], augmented reality, visualizing 3D videostreaming sessions [23], 

video decoding [18][26], etc. Existingworks, most related to this paper, on these applications areas follows. For 

example, low-end mobile devices in [20]utilized the high-performance GPU of a remote device in anad hoc 

network to perform the complex computations for thebenefits of energy consumption and execution time. In 

Ref. [22],users with low-performance GPUs shared a high-performanceGPU server to improve computation 

capability and reduceexecution time. Mobile devices with low-power supply [25]offloaded their CPU load onto 

remote GPUs, for emergingtime-insensitive high-computational applications. 

Graphically intensive applications are a kind of computationalintensive applications, which difference 

is that theformer application is visible by eyes. Existing works, mostrelated to this paper, on these applications 

are below. In Ref. [23], acomprehensive client-server 3D rendering framework enabledlimited resource devices 

with collaborative visualization tointeract with graphics intensive OpenGL-based applications.The authors in 

Ref. [19] proposed a mobile-to-mobile remotecomputing protocol for smartphones to realize remote 

desktopsharing by providing a remote view for real-time collaboration.Efficient remote work with graphically 

intensive applications[21] utilized GPU virtualization in remote computing to realizeproductive remote access to 

the office workplaces composedwith word processors and spreadsheets. 

Unfortunately, in graphically intensive applications consideredin this paper, most of exiting works on 

high-definitionvideo decoding for low-end terminals primarily focus on theoptimization of energy saving. Since 

energy saving cannotfully reflect users’ satisfaction on visible watch experience,some metrics are required to 

evaluate user experience, especiallyunder the video with multiple different resolutions in thispaper. On the other 

hand, few works have considered multicastcondition, where there are many users in the same group withthe 

same video content requests. Above limitations motive usto design a joint experience improving and energy 

saving asa new optimization objective under multicast condition. 

 

C. Traffic Journey in MEC 

We classify existing traffic in MEC into two categories fromthe aspect of data transmission path, 

named, return-journeyand single-journey. 

On one hand, some existing works belong to the return-journeycategory, which means the computation 

task is firsttransmitted from a data source node to a remote node fortask computing. The computed result is then 

delivered to thedata source [20][25][27], which process is shown as in Fig.1. There are some existing works in 

this category. For instance, theauthors in [20] realized a distributed computing technique forlow-end mobile 

devices to use remote high-end device’s GPUfor offloading the task of computational intensive applicationsto 

save energy consumption. In Ref. [27], nodes with installedGPUs acted as acceleration servers for serving 

otherusers withGPU virtualization technique. Insufficient computing power ofmobile and wearable devices [25] 

offloaded computation tasksto GPUs nearby. 

 

The return-journey scheme has its limitation in wirelessnetworks for decoding UHD videos under 

existingMEC architecture, because high bandwidth is requiredfor transmitting the undecodedUHD video 
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andextremely high bandwidth is required for transmitting the decodedcontent, which is different from 

conventional computingtasks whose decoded data volume is much smaller than thatof the undecoded data. 

On the other hand, some works belong to the single-journeycategory, which shows the task is 

computed on the data sourceand then transmitted to the data receiver [19][21][23]. Therelated works are list 

below. In Ref. [23], the server handledvisualization sessions for 3D video streaming to computevideo streams 

and transmitted for clients with different screenresolutions and bandwidth. Authors in [19] applied 

remotedesktop sharing for users with a remote desktop view. In [21],the authors studied GPU virtualization for 

remote computingfor the applications of virtual and remote workplace forremote work with graphically 

intensive applications, such asCAD/CAM and GPU computing. 

As the computing tasks for graphically intensive applicationshave been decoded on the source data side 

and thentransmitted to the data receiver, single-journey category alsohas limitation under our considered 

scenario because decoding on the data source, i.e., a cloud videoserver, for the real-time UHD video will 

takehuge bandwidth requirements for core networks. In summary,the traditional MEC architecture cannot be 

directly appliedin the considered scenario of this paper, requiring a novelarchitecture. 

 

D. Schemes 

We divide existing offloading schemes in terms of the traffictransportation path into two categories: 

return-journey andsingle-journey as defined in Sec. II-C. 

Some existing works belong to the return-journey category,where return-journey means the task is first 

transmitted fromthe data source to a remote node, on which the calculationtask is applied with the result 

transmittedback to the data source [20][25][27]. For instance, in Ref. [20], the authors realized adistributed 

computing technique for low-end mobile devicesto use remote high-end device’s GPU for offloading thetask of 

computational intensive applications to save energyconsumption. In Ref. [27], nodes with installed GPUs 

actedas acceleration servers for serving other users with GPUvirtualization technique. In Ref. [25], insufficient 

computingpower of mobile and wearable devices offloaded computationsto GPUs on the cloud. Return-journey 

scheme has limitationin wireless networks under UHD videos becausethe volume of data rate after decoding 

becomes much higherthan that of conventional computing tasks, which tasks consumegreat bandwidth for 

transmitting high bandwidth UHDvideo and extremely high bandwidth decoding videoin wireless networks. 

Other works belong to the single-journey category, whereone-way shows the task is computed on the 

data source andthen transmitted to the data receiver [19][21][23]. In Ref.[23], the server handled visualization 

sessions for 3D videostreaming to compute video streams and transmit it for clientswith different screen 

resolutions and bandwidth. In Ref. [19],they applied remote desktop sharing for users with a remotedesktop 

view. In Ref. [21], the authors studied GPU virtualizationfor remote computing for the applications of virtual 

andremote workplace for remote work with graphically intensiveapplications, such as CAD/CAM and GPU 

computing, officeworkplaces composed with word processors, spreadsheets. Thecomputing tasks for graphically 

intensive applications havebeen decoded on the source data side and then transmitted tothe data receiver. Single-

journey also has limitation becausedecoding cloud located video content, source data, will takehuge bandwidth 

requirements for core networks. 

 

E. Resource Allocation 

Multicast wireless transmission is a feasible technique fortransmitting the same content to a group of 

users. Mostexisting works utilize the channel gain as the metric to allocateusers to multicast groups to achieve 

better bitrate. 

There are widely research works. For example, in Ref.[36], they studied a multicast group division 

scheme based onlink quality differences among multicast users in orthogonalfrequency-division multiple access 

(OFDMA)-based wirelessnetworks. In Ref. [37], they studied a high spectral efficiencymulticast transmission 

strategy and proposed a multicast subgroupformation scheme, where group users are divided intoseveral 

subgroups according to their channel state information(CSI). In Ref. [35], they proposed a subgrouping 

technique byexploiting multiuser diversity and frequency selectivity for thedelivery of real-time scalable 

multicast video flows, such asInternet Protocol television (IPTV) over Long-Term Evolution(LTE) networks. In 

Ref. [32], they designed a multicastsubgrouping strategy by aggregating subsets of users withsimilar channel 

quality levels for multilayer video services tooptimize user satisfaction ratio, throughput and fairness. 

Most existing works utilize the channel gain as the metric toallocate users to multicast groups to 

achieve better bitrate forrequesting higher resolution video and better user watch experience,which metric 

cannot be directly used in our considered scenario,because real-time UHD video transmission for low-

enddevices. This is because users with limited power supplynot only focus on channel gain for achieving high  

 

data ratefor receiving UHD video but require energy savingunder limited energy supply for consistently long 

video playingtime. This makes energy constraint, i.e., clock frequency,of users a key factor to be considered to 
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combine withchannel gain under user allocation process. Moreover, there exitsthe variation of the volume of 

data traffic, i.e., much highervolume after decoding compared to small volume data ofexisting works, which will 

cost more bandwidth and give themulticast resource allocation a challenge. Besides, by combining multicast 

resource allocation with computationoffloading, our work is opposite to existing joint optimization 

problemfocusing on unicast transmission with computation offloading,especially under the traffic volume 

explosion condition. 

 
Fig. 1. architecture comparison 

 

 
Fig. 2. system model 

 

III. Mobile Edge Decoding Architecture 

We propose a video decoding architecture, named mobileedge decoding (MED), for a general scenario 

where mobiledevices with limited power supply and constrained computationcapability can play real-time UHD 

videowith high user watch experience. MED architecture is shown as the’single-journey’ in Fig. 1, which 

consists of a data source,a decoding device, and a data receiver. Traffic transmissionunder the proposed MED 

architecture in Fig. 1 operates asbelow: 

1) The video content located at the data source is transmittedfrom the cloud video server. 

2) When the video content is delivered to the wireless accessnetwork, the decoding device in the computing 

server can helpdecode. 

3) After remote decoding by the server, the traffic is thentransmitted to the user, i.e., the data receiver. 

As video content under the MED architecture is decodedon its transmission path from the source to the receiver, 

thedifference between the MED architecture (’Single-journey’ inFig. 1) and existing MEC architecture (’Return-

journey’ inFig. 1) is list below. 

1) MED architecture has the ’single-journey’ traffic transmissionfrom the computing sever to the user in 

wirelessnetworks, which is different from existing traffic transmissionunder the MEC architecture with twice 

transmission. 

2) After decoding by the computing server, the data volumebecomes much higher than those transmitted from 

the cloudvideo server. This is distinct from general computational intensivetraffic under the MEC architecture 

where the computeddata often has a small volume. 

3) Remote task and local task are separated at remotedecoder and uncompleted remote task cannot be done by 

localcomputing if it cannot be completed within some thresholdconditions. Since local computing for 

uncompleted remotecomputing will lead to a large delay, computing timeand energy consumption, enough 

bandwidth should be usedto guarantee the transmission time for decoded video data. 

4) Computing resource deployed at wireless networks islimited for serving only mobile users within certain 

distanceand deployed at small base station rooms, compared to conventionalcloud computing with nearly 

unlimited computingresources. 

An example of the MED architecture is given as shownin Fig. 2, which is to be used as the analyzed system 

inthis paper. The example system consists of a Video ContentServer (VCS) located in the cloud network as the 

data source,a Video Decoding Server (VDS) located in the wireless accessnetwork as a decoding device, a base  

 

station, and some mobiledevices acting as data receivers. One video with 2 resolutions,labeled a and b, is 

transmitted independently from the VCS inthe cloud network. In the wireless access network, the videocontent 
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can be decoded by both the VDS and the user. Eachresolution video can individually decide its data volume to 

bedecoded by the VDS. 

The MED architecture is proposed for a general scenario,where mobile devices can play real-time 

UHDvideo in wireless networks with the design goal of maximizingsatisfaction ratio and minimizing energy 

consumption. In nextsection, based on the MED architecture, we will introduce acore optimization variable, 

named edge decoding ratio (EDR)to obtain the design goal. 

 

IV. Edge Decoding Ratio 
There is one video with 𝐺 resolutions in the VCS as shownin Fig. 2, represented by 𝐺 independent 

resolution groups.Each group can decide the volume of video decoded by theVDS, denoted as edge 

decodingratio (EDR)𝛾𝑔 , where 0 ≤ 𝛾𝑔 ≤ 1. The EDR indicates thatthere are 𝛾𝑔percentage of decoding tasks 

sent to the VDS and1 − 𝛾𝑔percentage sent to the receiver. In general, 𝛾𝑔can beused to represent, how much 

volume of video traffic (bps, Mb) or how much time of video traffic decoded by remote devices. 

The real-time infinite video sequence in VCS is dividedinto multiple segments for mathematical 

analysis based on thewidely used division scheme in [28], which is reasonable becausewe will analyze the 

system at the time scale of resourceallocation (ms) rather than playing (min). The sequence for the video with𝐺 

resolutions is represented as: 

𝑇 = {𝑇1 ,𝑇2 ,⋯𝑇𝑔 ,⋯ ,𝑇𝐺}     (1) 

And the sequence for each resolution group is representedas: 

𝑇𝑔 =  𝜏𝑔,1, 𝜏𝑔,2,⋯ , 𝜏𝑔,1 ,⋯ ,∀𝑔             (2) 

Each segment, task𝜏𝑔,𝑖 , can choose its own EDR𝛾𝑔,𝑖 in the range from 0 to 1 for decoding video on 

different devicesincluding the VDS and the receiver, i.e., 𝛾𝑔,𝑖 percentage forremote decoding and 1 −

𝛾𝑔,𝑖percentage local decoding,compared with existing binary task division assumptions in[28][31], in which a 

task can be computed either on the VDSor the receiver. 

To obtain the feasible condition of the mobile edge decoding(MED) system, demand bound function 

𝑑𝑏𝑓(𝜏𝑔,𝑖 , 𝑣)is appliedto represent the maximum energy consumption for task 𝜏𝑔,𝑖  that must be satisfied within 

consumed energy 𝑣, whichfeasible condition is extended from existing time-oriented one[28] to energy-oriented 

one. The consumed energy interval ofthe MED system is assumed as (𝑉,𝑉 + 𝑣], where the energyconsumption 

of 𝜏𝑔 ,𝑖  is smaller than 𝑣 under current energylevel 𝑉. Within this interval, mobile edge decoding task mustbe 

finished, which introduces the performance metric, namedfeasible condition, of the MED system. The feasible 

conditionof the MED system is obtained from two theorems below. 

 

Theorem 1: For task 𝜏𝑔,𝑖with 𝛾𝑔,𝑖percentage of remotedecoding on the VDS and 1 − 𝛾𝑔,𝑖percentage of local 

decodingon the receiver, the demand bound function 𝑑𝑏𝑓(𝜏𝑔 ,𝑖 , 𝑥) isupper bounded by: 

𝑑𝑏𝑓 𝜏𝑔,𝑖 , 𝑥 ≤
𝑉 𝛾𝑔 ,𝑖 

𝑒𝑘
∗ 𝑥     (3) 

where system determined value 𝑉 𝛾𝑔,𝑖  is the upper boundenergy consumption with respect to 𝛾𝑔 ,𝑖 . 𝑒𝑘  is energy 

consumptionfor decoding video on receiver 𝑘. 

Proof. This comes from the definition of the demand boundfunction in [28] but extending from existing time-

oriented oneto energy-oriented one. 

After obtaining the demand bound function for the sequence𝜏𝑔 ,𝑖  in each resolution group in Equation 

(3), then, wecalculate the feasible condition for the infinite real-time videosequence 𝑇 in Equation (4). 

Theorem 2: For task 𝜏𝑔,𝑖  with a given𝛾𝑔,𝑖 the feasiblecondition for all the infinite real-time video sequence can 

beguaranteed with energy consumption constraint by: 

  ( 
𝑉 𝛾𝑔 ,𝑖 

𝑒𝑘
𝑑 𝛾𝑔,𝑖 

1

0
)𝜏𝑔 ,𝑖∈𝑇𝑔𝑇𝑔∈𝑇 ≤ 1    (4) 

Proof. see appendix A. 

 

V. System Model 
We denote resolution group set, mobile device set andsubchannel set as ℊ =  𝑔,𝑔 = 1,2,⋯ ,𝐺 , ϰ =

 𝑘, 𝑘 = 1,2,⋯ ,𝐾 ,ℵ =  𝑛,𝑛 = 1,2,⋯ ,𝑁 ,respectively.Groups, users and subchannels are distinct. All the 𝑁 

subchannels follow the i.i.d Rayleigh fading. Let 𝛼𝑔,𝑘 ∈ {0,1}represent the index of group-user allocation, where 

𝛼𝑔,𝑘 = 1represents that user 𝑘 is in resolution group 𝑔. Otherwise,𝛼𝑔,𝑘 = 0. Further, 𝛽𝑔 ,𝑛 ∈ {0,1}is applied as  

 

 

the index of group-subchannel allocation, where 𝛽𝑔 ,𝑛 = 1shows allocating subchannel 𝑛to resolution group 

𝑔.Otherwise, 𝛽𝑔 ,𝑛 = 0. In this section, we focus on one segment task and substitute 𝛾𝑔,𝑖by 𝛾𝑔 to simplify analysis. 
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Each user can select only one group to play one resolution video: 

 𝛼𝑔,𝑘𝑔 ≤ 1,∀𝑘   (5) 

Each subchannel can be allocated no more than one group since groups are distinct: 

 𝛽𝑔 ,𝑛𝑔 ≤ 1,∀𝑛   (6) 

Offloading ratio for each group satisfying: 

0 ≤ 𝛾𝑔 ≤ 1,∀𝑔   (7) 

The data rate for the video with resolution 𝑔which is not decoded by VDS can be expressed as: 

𝐶𝑔 = (1 − 𝛾𝑔)𝑅𝑔 ,∀𝑔   (8) 

where𝑅𝑔is the data rate for the video with resolution 𝑔transmitted from the VCS. 

The data rate of the decoded video with resolution 𝑔by VDS is: 

𝑀𝑔 = 𝐽(𝛾𝑔 ,𝑅𝑔),∀𝑔   (9) 

where the function J(∙,∙) represents the output data rate after decoding by VDS. 

 Decoding capacity of the VDS in terms of the data rate is limited by: 

 𝛾𝑔𝑅𝑔𝑔 ≤ 𝑀𝑚𝑎𝑥    (10) 

where 𝑀𝑚𝑎𝑥  represents the upper bound capacity of the VDS. 

 The throughput for group𝑔 is: 

𝑂𝑔 =  𝛽𝑔 ,𝑛𝐵𝑛 𝑙𝑜𝑔2  1 +
𝑃𝑛𝐻𝑔 ,𝑛

2

𝜎2  𝑛 ,∀𝑔   (11) 

where the channel gain satisfies 𝐻𝑔,𝑛 = 𝑚𝑖𝑛𝑘∈{𝛼𝑔 ,𝑘=1}𝐻𝑘 ,𝑛 .𝑃0 is radiation power. 𝜎2 is noise power. 𝐵0 is 

subchannel bandwidth, where subchannels are assumed with the same channel quality among all the group for 

simplicy. 

 User satisfaction ratio is used to represent users choosing different resolution videos [29]: 

𝑠𝑘 =  𝛼𝑔,𝑘
1−𝑒

−𝜃 
𝑆𝑔

𝑆𝑚𝑎𝑥
 

0.74

1−𝑒−𝜃𝑔 ,∀𝑘   (12) 

where 𝑆𝑔 is the satisfaction value for choosing the video with resolution 𝑔and 𝑆𝑚𝑎𝑥 is the highest value of 

satisfaction. Further, 𝜃 is a system parameter [29]. 

 Energy consumption for decoding video and receiving traffic through network card [30] for each 

mobile device is calculated as: 

𝑒𝑘 =  𝛼𝑔,𝑘(
𝐼(𝐹𝑘 )𝐶𝑔

𝐹𝑘
+

𝑃𝑁𝐼𝐶 (𝑀𝑔+𝐶𝑔 )

𝑂𝑔
)𝑔 ,∀𝑘   (13) 

where 𝐹𝑘 is the clock frequency of devices.𝐼(𝐹𝑘)is decoding power function [30] in terms of 𝐹𝑘 .𝑃𝑁𝐼𝐶 is receiving 

power of the network interface card. 𝐶𝑔/𝐹𝑘  and (𝑀𝑔 + 𝐶𝑔)/ 𝑂𝑔  are time duration for video decoding and traffic 

reception delay [31], respectively.  

 

VI. Problem Formulation 
This section introduces an optimization problem of theMED system jointly considering both 

computational task offloadingand multicast resource allocation with the aim of maximizingsatisfaction ratio and 

minimizing energy consumptionfor users to play real-time UHD videos. Theoptimization problem is designed to 

find the optimal edge decoding ratio 𝛾𝑔 , group-user allocation index 𝛼𝑔,𝑘and group-subchannel allocation index 

𝛽𝑔 ,𝑛 . 

This optimization problem is shown below: 

𝑷𝟎:𝑚𝑎𝑥{𝛼𝑔 ,𝑘 ,𝛽𝑔 ,𝑛 ,𝛾𝑔 } =  𝑠𝑘𝑘 − 𝑞 𝑒𝑘𝑘    (14) 

subject to: 

𝐶1: 𝛼𝑔 ,𝑘

𝑔

≤ 1,∀𝑘 

𝐶2: 𝛽𝑔 ,𝑛

𝑔

≤ 1,∀𝑛 

𝐶3:𝑀𝑔 + 𝐶𝑔 ≤  𝑂𝑔 ,∀𝑔 

𝐶4: 𝛾𝑔𝑅𝑔

𝑔

≤ 𝑀𝑚𝑎𝑥  

𝐶5:𝛼𝑔,𝑘 ∈  0,1 ,∀g, 𝑘 

𝐶6:𝛽𝑔 ,𝑛 ∈ {0,1},∀g, n 

 

𝐶7: 0 ≤ 𝛾𝑔 ≤ 1,∀𝑔 
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where 𝑞is a system determined parameter.Constraint C3 represents the allocated data rate for group 𝑔is greater 

than or equal to system requirement. Constraint C4 shows the decoding capacity of the VDS. 

 The optimization problem P0 is a non-convex non-linear programming problem [34], which is much 

difficult to obtain a global optimal solution. To solve this optimization problem, we will introduce a low-

computational complexity solution in next section.  

 

VII. Proposed Algorithms 
This section proposes a low computation complexity sub-optimal solution for the joint optimization 

problem by dividing P0 into two subproblems P1 and P2.  

The first subproblem P1 focuses on offloading ratio 𝛾𝑔calculation under the case where the indicators 

of group-user allocation 𝛼𝑔 ,𝑘and group-subchannel allocation 𝛽𝑔 ,𝑛are given. Meanwhile, the second subproblem 

P2 is to calculate 𝛼𝑔,𝑘and 𝛽𝑔 ,𝑛when  𝛾𝑔 is obtained after solving by P1. These two subproblems are shown below.  

𝑷𝟏:𝑚𝑖𝑛{𝛾𝑔}𝑞   𝛼𝑔,𝑘(
𝐼(𝐹𝑘 )𝐶𝑔

𝐹𝑘
+

𝑃𝑁𝐼𝐶 (𝑀𝑔+𝐶𝑔 )

𝑂𝑔
)𝑘𝑔   (15) 

subject to: C3,C4. 

𝑷𝟐:𝑚𝑎𝑥{𝛼𝑔 ,𝑘 ,𝛽𝑔 ,𝑛 }   𝛼𝑔,𝑘
1−𝑒

−𝜃 
𝑆𝑔

𝑆𝑚𝑎𝑥
 

0.74

1−𝑒−𝜃𝑔𝑘 − 𝑞  𝛼𝑔 ,𝑘(
𝐼(𝐹𝑘 )𝐶𝑔

𝐹𝑘
+

𝑃𝑁𝐼𝐶 (𝑀𝑔+𝐶𝑔 )

𝑂𝑔
)𝑔𝑘   (16) 

subject to: C1,C2,C3,C5,C6. 

A. Subproblem P1 

 This subsection is to solve 𝛾𝑔 in P1. For each resolution group, we first calculate the optimal 𝛾𝑔 of the 

objective function in P1 by Theorem 3. Next, we modify the above obtained optimal𝛾𝑔 into𝛾𝑔 by Theorem 4 

with the consideration of the Constraint C3 in P1. Further taking the Constraint C4 in P1 into 

consideration,an iteration process is applied to decrease 𝛾𝑔 with system determined step size ∆𝛾𝑔 until 

Constraint C4 is satisfied. Finally, we can obtain the results 𝛾𝑔 , which is optimal under the conditions given in 

Theorem 5. The detail process is shown in Algorithm 1. 

 Theorem 3: The optimal result 𝛾𝑔of the objective function in P1 can be obtained by: 

𝛾𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝛾𝑔  
 𝑞  𝛼𝑔 ,𝑘  

𝐼 𝐹𝑘  𝐶𝑔

𝐹𝑘
+

𝑃𝑁𝐼𝐶  𝑀𝑔+𝐶𝑔 

𝑂𝑔
 𝑘  ,∀g (17) 

under the case where 𝑀𝑔 is either linear function or quadratic function. 

  Proof.see appendix B. 

Theorem 4: The optimal result of P1 can be obtained below when taking the Constraint C3 in P1 into 

consideration: 

𝛾𝑔 =  
𝑚𝑜𝑣𝑒 𝛾𝑔  𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 𝐹𝑅𝑔 ∩  0,1 , 𝛾𝑔 ∉ 𝐹𝑅𝑔 ∩  0,1 

𝛾𝑔 , 𝛾𝑔 ∈ 𝐹𝑅𝑔 ∩  0,1 
  (18) 

where 𝐹𝑅𝑔is obtained as a feasible range against variable 𝛾𝑔from Constraint C3 in P1. 

Proof: see appendix C. 

Theorem 5: The optimal result of P1 can be obtained no matter when 𝑅𝑔is equal or not, if𝑀𝑔  is a 

linear function. 

Proof.see appendix D. 

 

Algorithm 1 Scheme for P1 

Require: 

Index set of resolution group: ℊ  

Index of group-user allocation:𝛼𝑔,𝑘  

Index of group-subchannelallocation:𝛽𝑔,𝑛  

System determined step size: ∆𝛾𝑔  

Temporary variable: 𝛿𝑔  

Ensure: 

1:for each resolution group𝑔do 

2:   Calculate𝛾𝑔 by Equation (15) 

3:   Modify𝛾𝑔  into 𝛾𝑔  by Equation (18) 

4: end for 

5: while Constraint C4in P1 is not satisfied do 

6: for each resolution group 𝑔do  

7:  Calculate energy increase 𝛿𝑔  of the objective function ofP1 against the variable increase ∆𝛾𝑔  

8: end for 
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9:Find resolution group 𝑔∗ with the minimal energy increase by 𝑔∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔𝛿𝑔  

10:Renew 𝛾𝑔   by 𝛾𝑔 = 𝛾𝑔 +  ∆𝛾𝑔  

11:   if𝛾𝑔 is beyond the range of 𝐹𝑅𝑔then 

12: Delete 𝑔 fromℊ  by ℊ = ℊ  \𝑔 

13: end if 

14: end while 

15: Output: 𝛾𝑔  

 

Algorithm 2 Scheme for P2 

Require: 

Index of group-user allocation:𝛼𝑔,𝑘  

Index of group-subchannelallocation:𝛽𝑔,𝑛  

Objective function value of P2 calculated from group-subchannel allocation scheme: 𝑂𝑏𝑗1  
Objective function value of P2 calculated from group-user allocation scheme: 𝑂𝑏𝑗2 

System determined threshold value: Γ 

Ensure: 

1:while|𝑂𝑏𝑗1 − 𝑂𝑏𝑗2| > 𝛤do 

2:   Calculate𝑂𝑏𝑗1by Algorithm 3 

3:   Calculate𝑂𝑏𝑗2by Algorithm 4 

4: end while 

 

B. Subproblem P2 

 After solving P1 and obtaining 𝛾𝑔 , this subsection is to calculate 𝛼𝑔,𝑘and 𝛽𝑔 ,𝑛 . First, users are allocated 

to resolution groups randomly to get the initial value of  𝛼𝑔,𝑘 . After that, we allocate subchannel for groups with 

the aim of maximizing the objective function value of P2. This iterate process including group-user allocation 

and group-subchannel allocation will not stop until the objective function value converges. 

 Group-subchannel allocation: When the initial user allocation is given, we iteratively search for each 

subchannel among all the groups to find one group achieving the maximum objectivefunction value of P2 and 

then allocate the subchannel to the group. The group-subchannel allocation will not stop until all the 

subchannels are allocatedand the Constraint C3 in P2 has been satisfied. The detail process is list in Algorithm 

3. 

 Group-user allocation: Based on the results obtained from the above group-subchannel allocation, 

one resolution group may have multiple subchannels. Thereafter, we allocate users to groups. This algorithm has 

two steps, where the first is to allocate each group subchannel one user and the second step is to allocate the 

remaining users for groups, i.e., allocating all the remaining users to all group channels, with the aim of 

maximizing the objective function value of P2. The two steps operate below in detail. 1) The algorithm operates 

for each group individually. In each group, round robin is applied for group subchannels, and one feasible user 

in set 𝐻 with the criteria shown in Theorem 6 is selected for each group subchannel, which user selection 

process will not stop until the Constraint C3 is satisfied. When Constraint C3 of P2 is satisfied, we allocate all 

the selected users in this group to all the group subchannels. 2) After the first step, for each unallocated user, the 

algorithm searches for each group to find one with the maximum objective function value if the user can satisfy 

the channel gain requirement. The above detail process is list in Algorithm 4. 

 Theorem 6: A user 𝑘that can be allocated to subchannel 𝑛in resolution group𝑔 should satisfy: 

𝐻𝑘 ,𝑛 ≤ 𝐻𝑘 ,𝑛 ′ ,𝑛,𝑛′ ∈  𝛽𝑔 ,𝑛 = 1 ,𝑛′ ≠ 𝑛    (19) 

where 𝐻𝑘 ,𝑛 is the channel gain of user 𝑘on subchanneln. 

Proof. See appendix E.  

 

Algorithm 3Group-subchannel Allocation 

Require: 

Index set of resolution group: ℊ  

Index set of subchannel: ℵ  

Index of group-user allocation:𝛼𝑔,𝑘  

Index of group-subchannelallocation:𝛽𝑔,𝑛  

Temporary set: 𝑌𝑔 ,𝑛  

Ensure: 

1:for each subchannel 𝑛do 

2:for each resolution group 𝑔do 
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3:Calculate the objective function value 𝑌𝑛  of P2 

4: end for 

5:     Find the maximum objective function value by  𝑔∗,𝑛 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑔 ,𝑛𝑌𝑔,𝑛  

6:     Allocate 𝑛 to 𝑔∗ by 𝛽𝑔∗,𝑛 = 1 

7:     Delete 𝑛 from ℵ  by ℵ = ℵ \𝑛 

8:     Calculate 𝑂𝑔∗by Equation (11) with  𝑔∗,𝑛,𝛽𝑔∗,𝑛 = 1 

9:   if𝑀𝑔∗ + 𝐶𝑔∗ ≤  𝑂𝑔∗then 

10: Delete 𝑔∗byℊ = ℊ \𝑔∗ 

11: end if 

12:endfor 

13:Output: 𝛽𝑔∗,𝑛  

 

Algorithm 4Group-user Allocation 

Require: 

Index set of resolution group: ℊ  

Index set of user: ϰ 

Index of group-user allocation:𝛼𝑔,𝑘  

Index of group-subchannelallocation:𝛽𝑔,𝑛  

Index set of user channel gain ℋ: by sorting the value of channel gain 𝐻𝑛 ,𝑘  in increasing order 

Pointer for subchannel 𝑛 on matrix ℋ:𝑍𝑛 = 0 

Temporary set: 𝑌𝑔 ,𝑘  

Ensure: 

1:for each resolution group 𝑔do 

2:whileConstraint C3 in P2 is not satisfied do 

3: Apply round robin searching for each subchannel 𝑛 ∈ {𝛽𝑔 ,𝑛 = 1}allocated to resolution group 𝑔 

4: while 𝑍𝑛 ≠ 𝑘do  

5:if𝑍𝑛 -th user in ℋ can satisfy the criteria in Theorem 6 then 

6: Allocate 𝑍𝑛 -th user to subchannel 𝑛 

7: break 

8:else 

9:𝑍𝑛 = 𝑍𝑛 + 1 

10:end if  

11:end while  

12:end while  

13: Allocate above selected users to group 𝑔 and obtain 𝛼𝑔 ,𝑘  

14:Allocate the selected users to all the group subchannels  

15: Delete the selected users from user set ϰ 

16:end for 

17:for each unallocated user𝑘 do  

18: for each resolution group 𝑔do  

19:Calculate objective function value 𝑌𝑔 ,𝑘 in P2 with 𝑔 and 𝑘 

20:end for 

21: Find the maximum objective function value by  𝑔∗, 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔 ,𝑘𝑌𝑔,𝑘  if user 𝑘 satisfies the channel gain 

of all the group subchannels 

22:Allocate user𝑘  to group 𝑔 ∗by 𝛼 𝑔 ∗,𝑘 = 1 

23:Delete users from user set by ϰ= ϰ\𝑘  

24:end for  

25:Output: 𝛼 𝑔 ,𝑘  

 

VIII. Simulation Results 
This section conducts extensive performance evaluationbetween the proposed algorithm and existing 

works [31-33][38] from the aspects including the objective function valueof P0, energy consumption, user 

satisfaction ratio, etc. Theperformance is evaluated from two aspects: offloading ratio determinationand 

multicast resource allocation including group-subchanneland group-user allocation. The primary 

simulationparameters are shown in Table I. All the schemes comparedin this section include: 
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TableI  Experimental setup 

Parameter     Value 

𝐵 0    200-1000KHz 

α    {1,10,1000} 

γ     [0,1] 

ℊ     {1,2,3,4,5,6,7,8} 

𝜃                   {0.1,1,10} 

 

PS: The proposed scheme for joint offloading and resourceallocation to maximize the objective 

function value of P0. 

CP1: Only considering offloading without resource allocation[31][38]. For the offloading decision, 

they consider binarytask division assumptions, i.e., offloading and not offloadingconditions. 

CP2: Only considering resource allocation without offloading[32]. For group-user allocation, they 

assume that a subgroupcollects users that have similar channel qualities. Forgroup-subchannel allocation, they 

assume that resources areallocated to subgroup iteratively. 

CP3: Only considering resource allocation without offloading[33]. For group-subchannel allocation, 

base layer hashigher priority for channel allocation, besides, base layerrequires subchannels with the largest 

equivalent channel gains.For group-user allocation, a normalized equivalent channelgain threshold is set to 

determine which users should beallowed to access the enhancement layers, and the users withhigh signal-to-

noise ratio (SNRs) are selected as the enhancementlayer users. Note that, base layer and enhancementlayers can 

be mapping to our groups. 

 

 
Fig. 3. user energy consumption under different resolution groups 

 

Fig. 3 shows energy consumption for decoding video andreceiving traffic through the network card for 

each mobiledevice 𝑘 on each resolution group 𝑔 . The higher resolutiongroup ID with higher resolution video 

content, there will behigher energy consumption. 

 

 
Fig. 4. user satisfaction ratio under different resolution groups 

 

Fig. 4 shows user satisfaction ratio for each user 𝑘  oneach resolution group  𝑔 under different 

parameters 𝜃 in Equation (12). Regarding the value of user satisfaction ratio under 𝜃 =1as the base-line, there  

exist a large gap between any adjacentresolution groups’ satisfaction ratio, and a large gap betweenthe highest 

and lowest resolution groups under the case of𝜃 = 10, compared to that of 𝜃 = 0.1. 
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Fig. 5. user energy consumption under different offloading ratio 

 

Fig. 5 shows user energy consumption for decoding videoand receiving traffic through the network 

card for each mobiledevice 𝑘  versus different value of offloading ratio under thecases 𝑀𝑔 , the data rate of the 

decoded video with resolution𝑔  by the VDS in terms of 𝛾 𝑔 , is linearfunction and quadratic function. User 

energy consumptionincreases with the value of offloading ratio 𝛾 𝑔 increasing,which is because 𝑀𝑔  increases 

with 𝛾 𝐺 and 𝑒 𝑘  increases with𝑀𝑔 . Besides, different parameters in decoding equation, 𝑀𝑔 ,can achieve different 

value of energy consumption under thesame average value of offloading ratio. 

 

 
Fig. 6. objective function value versus offloading ratio for different schemes (𝐵 𝑛 = 3𝑀𝐻𝑧 ) 

 

 
Fig. 7. objective function value versus offloading ratio for different schemes (𝐵 𝑛 = 400𝐾𝐻𝑧 ) 
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Figs. 6 and 7 show objective function values versusoffloading ratio for different schemes. Our 

proposed schemehas the highest value compared to those of other schemes.Specifically speaking, the objective 

function values of ourscheme can achieve 15% higher than CP1, 57% higher thanCP2, close performance to 

CP3, under 𝐵 𝑛 = 3𝑀𝐻𝑧 ; 14%higher than CP1, 49% higher than CP2, close performance toCP3, under 

𝐵 𝑛 = 400𝐾𝐻𝑧 ; when binary variable are usedfor all the schemes in Figs. 6 and 7. 

Moreover, the objective function values of our scheme canachieve 15% higher than CP1, 57% higher 

than CP2, closeperformance to CP3, under𝐵 𝑛 = 3𝑀𝐻𝑧 ; 14% higher thanCP1, 50% higher than CP2, close 

performance to CP3, under𝐵 𝑛 = 400𝐾𝐻𝑧 ; when relaxing binary variable forall the schemes. By relaxing the 

offloadingratio from integer to real, it can help increase the performanceamong all existing schemes. Moreover, 

the schemes can obtainhigher value when releasing the constraint that the offloadingratio 𝛾 𝑔 can only be chosen 

as binary conditions. 

 

 
Fig. 8. objective function value versus the number of users for different schemes 

 

Fig. 8 shows objective function value versus the numberof users for different schemes. Bandwidth of 

each subchannelis 150kHz, and total bandwidth is 7.5MHz under 50 subchannels.Our scheme can achieve higher 

performance thanthat of other schemes, which is due to channel gain andclock frequency of users are considered 

when applying userallocation. 

 

 
Fig. 9. difference of energy consumption versus the number of subchannels 

 

Fig. 9 shows energy consumption versus the number ofsubchannels for different schemes. As the 

number of subchannelsincreasing, the bandwidth of each subchannel decreasingwhen total bandwidth is fixed, 

resulting in smaller group datarate and higher user energy consumption. As a result, thereis increasing objective 

function value when user satisfactionratio is constant. Our scheme can achieve the highest objectivefunction 

value than those of other schemes. 

 

IX. Conclusion 
This paper analyzes general video decoding and multicasttransmitting for massive low-end mobile 

devices in widely existedwireless networks. This problem is divided into: a novelvideo decoding architecture 

design, and resource allocationbased on the novel architecture. First, a novel architectureof real-time video 
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decoding for computation offloading isintroduced, considering limited battery supply, constrainedcomputation 

capability, and dynamic traffic transmission bandwidth.Second, on the basis of the proposed architecture, ajoint  

 

computation offloading and multicast resource allocationoptimization problem is proposed to maximize user 

satisfactionratio and minimize energy consumption. Third, a feasibilitycondition of the optimization problem is 

introduced interms of the computational task offloading for real-time videowith multiple resolutions. Forth, a 

low-complexity sub-optimalscheme with proved computational complexity is proposedby dividing the original 

NP-hard optimization problem intosub-problems to accomplish group-user allocation, group-subchannel 

allocation and offloading ratio calculation. Thispaper proposed a theoretical basis which can be potentiallyused 

as a guidance to the design and implementation of futuremobile edge decoding applications. 

 

APPENDIX A 

Proof of Theorem 2 

Let us assume the task set is not schedulable, i.e., the task may excess the energy threshold. It is 

assumed that the first task misses the energy threshold has energy consumption value of𝑥 . Let 𝑥 0 be the energy 

value before 𝑥 , i.e., 𝑥 0 < 𝑥 . Therefore, the necessary condition to have energy threshold misses is that the 

demand energy consumption from 𝑥 0 to 𝑥  with absolute threshold less than or equal to 𝑥  is larger that 𝑥 − 𝑥 0 

[28]. There we have: 

𝑥 − 𝑥 0 <   𝑑𝑏𝑓 (𝜏 𝑔 ,𝑖 , 𝑥 − 𝑥 0)𝜏 𝑔 ,𝑖 ∈𝑇 𝑔𝑇 𝑔 ∈𝑇 ≤1      
𝑉 𝛾 𝑔 ,𝑖  

𝑒 𝑘
𝑑  𝛾 𝑔 ,𝑖  

1

0
 𝜏 𝑔 ,𝑖 ∈𝑇 𝑔𝑇 𝑔 ∈𝑇  ∗ (𝑥 − 𝑥 0) (20) 

where ≤1 coms form Theorem 1. 

The equation  
𝑉  𝛾 𝑔 ,𝑖  

𝑒 𝑘
𝑑  𝛾 𝑔 ,𝑖  

1

0
 gives the upper boundary in terms of energy consumption for 

task𝜏 𝑔 ,𝑖  under all values of 𝛾 𝑔 ,𝑖 . There we have the energy threshold miss condition by: 

1 <     
𝑉  𝛾 𝑔 ,𝑖  

𝑒 𝑘
𝑑  𝛾 𝑔 ,𝑖  

1

0
 𝜏 𝑔 ,𝑖 ∈𝑇 𝑔𝑇 𝑔 ∈𝑇  (21) 

 

AppendixB 

Proof of Theorem 3 
The summation energy of users in the objective function of P1 equals to the summation energy of 

groups by the transformation below: 

𝑞   𝛼 𝑔 ,𝑘 (
𝐼 (𝐹 𝑘 )𝐶 𝑔

𝐹 𝑘
+

𝑃𝑁𝐼𝐶 (𝑀𝑔 +𝐶 𝑔 )

𝑂𝑔
)𝑔𝑘 = 𝑞   𝛼 𝑔 ,𝑘 (

𝐼 (𝐹 𝑘 )𝐶 𝑔

𝐹 𝑘
+

𝑃𝑁𝐼𝐶 (𝑀𝑔 +𝐶 𝑔 )

𝑂𝑔
)𝑘𝑔 (22) 

Further, finding the minimal energy of the summation of groups is equivalent to calculate the minimal 

energy for each group individually, because users are distinct and group-user allocation index is given. 

Thereafter, we focus on calculating the minimal energy consumption for each group. 

The energy equation in Equation (17) for each group has only one minimal value when 𝑀𝑔 is either a 

linear function or a quadratic function in terms of 𝛾 𝑔 . This is because the minimal value for a linear function 

can be obtained at the endpoints, i.e., 𝛾 𝑔 = 0 or 𝛾 𝑔 = 1. Moreover, the minimal value for a quadratic function 

may be obtained at the endpoints or the point which achieves the derivative of the function equals to zero, i.e., 

𝛾 𝑔 = 𝑎𝑟𝑔 𝛾 𝑔
(
𝜕𝑀 𝑔

𝜕 𝛾 𝑔
= 0). Therefore, all the minimal value for groups can be calculated by above results.  

 

Appendix C 

Proof of Theorem 4 
The Constraint C3 gives each group an effective range𝐹𝑅 𝑔 , which should satisfy 𝐹𝑅 𝑔 ∩  0,1 ≠ Φ. 

The range 𝐹𝑅 𝑔 ∩  0,1 may not include the value 𝛾 𝑔 obtained from Theorem 3. Therefore, Constriant C1 

drives us to move 𝛾 𝑔 into the range of 𝐹𝑅 𝑔 ∩  0,1 , which is then analyzed under different cases where𝑀𝑔  is a 

linear function or a quadratic function. 

Considering the case where𝑀𝑔 is a linear function, if 𝛾 𝑔 = 0, we increase 𝛾 𝑔 obtained from Theorem 

3 until reaching the left-hand side of the range 𝐹𝑅 𝑔 ∩  0,1 . If 𝛾 𝑔 = 1 , we decrease 𝛾 𝑔 obtained from 

Theorem 3 until reaching the right-hand side of the range 𝐹𝑅 𝑔 ∩  0,1 . 
Taking the case where 𝑀𝑔 is aquadratic function into consideration, if 𝛾 𝑔 equals to either 0 or 1, follow 

the process above. When0 < 𝛾 𝑔 < 1, if 𝛾 𝑔 is outside the feasible range of 𝐹𝑅 𝑔 ∩  0,1 , move 𝛾 𝑔 to the range. 

Otherwise, if 𝛾 𝑔 is inside the feasible range of 𝐹𝑅 𝑔 ∩  0,1 , we can move 𝛾 𝑔 in the range with bi-direction 

(left-hand side and right-hand side). 
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Appendix D 

Proof of Theorem 5 
IfConstraint C4cannot be satisfied, we need to decrease obtained 𝛾 𝑔 from Theorem 4 within the 

feasible range of 𝐹𝑅 𝑔 ∩  0,1 . Then, we use the system determined step size ∆𝛾 𝑔 to find a group which will 

obtain the minimal energy increase. Then we decrease 𝛾 𝑔 with ∆𝛾 𝑔 and then renew Constraint C2. 

For a linear objective function inP1, the slope of the energy function against𝛾 𝑔  for each group𝑔  is a 

constant, when𝑅 𝑔  has equal values among𝑔 . Meanwhile, the slope of the energy function multiplied by given 

𝑅 𝑔 is also a constant even when𝑅 𝑔 has unequal values among𝑔 . Therefore, we can increase a unit energy of the 

objective function value each time and find the group who can fastest satisfy Constraint C4. Note that, the 

chosen group will always be chosen since it frequently reaches the maximal decrease for Constraint C4 until 

the variable 𝛾 𝑔 cannot be changed any more. Under this case, we use the remaining groups for the remaining 

iteration process. 

 

Appendix E 

Proof of Theorem 6 
The user allocated to current subchannel in group 𝑔will not degrade other subchannels in group when 

this user is allocated to those group subchannels. The above situation can be guaranteed if we use user criteria: 

the channel gain for this user at the current channel is less than the case when this user on other channels in 

group 𝑔 , i.e., 𝑐 |𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝑘 <  𝑐 |𝑜𝑡  𝑒𝑟𝑠 ,𝑘 . 
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